当前位置:文档之家› 定时器及中断程序设计

定时器及中断程序设计

定时器及中断程序设计
定时器及中断程序设计

实验四定时器及中断程序设计

一、实验目的:

1、练习使用定时器;

2、学习中断服务程序的基本设计方法。

二、实验原理:

MCS-51系列单片机中集成2~3个16位加1计数器,每个计数器有4中工作方式,计数脉冲可以选择来自片内或片外指定引脚,当来自片内时由于主频的规律性,计数值与时间具有确定的对应关系,因此又称计数器为定时器。

三、实验内容:

1、使用定时方式2从P1.0输出音频信号;

C语言程序如下:

#include //定时方式2从P1.0输出音频

#define fosc 11059200L

#define time 10

#define count 256-time*fosc/12000

void main(void)

{

P0=0;

TMOD=0x02;

TH0=count%256;

TL0=TH0;

EA=1;

ET0=1;

TR0=1;

while(1){}

}

void timer0() interrupt 1

{

TH0=count%256;

TL0=TH0;

P1^=1;

}

2、使用定时方式1从P0输出驱动L1~L8,使它们以不同频率闪烁;

C语言程序如下:

#include //还用定时器方式1从P0口输出驱动L1~L8,是它们以不同频率闪烁sbit led0=P0^0;

#define fosc 11059200L

#define time 50

#define count 65536-time*fosc/12000

unsigned int i=0;

void main(void)

{

P0=0;

TMOD=0x01;

TH0=count/256;

TL0=count%256;

EA=1;

ET0=1;

TR0=1;

while(1)

{

if(i==1)

P0^=1;

if(i==2)

P0^=0x02;

if(i==3)

P0^=0x04;

if(i==4)

P0^=0x08;

if(i==5)

P0^=0x10;

if(i==6)

P0^=0x20;

if(i==7)

P0^=0x40;

if(i==8)

{

P0^=0x80;

i=0;

}

}

}

void timer0() interrupt 1

{

TH0=count/256;

TL0=count%256;

i++;

}

四、实验小结:

本次试验学习了利用定时器中断控制蜂鸣器及LED灯的工作,定时器的学习使用为下一步进行电子时钟的设计打下基础,因此,我们应熟练掌握定时器的使用及编程方法。同时,我在学习定时器的使用是掌握的并不熟练,今后会继续加强学习。

嵌入式定时器基本功能(定时器中断)c语言代码

定时器基本功能实验(定时器中断) 1.实验内容 使用定时器0 实现1 秒定时,控制蜂鸣器蜂鸣。采用中断方式实现定时控制。 备注:EasyARM2131实验板上的系统时钟默认为11.0592MHz;系统中已定义了符号常量Fpclk = 11059200 ; 2.实验步骤 ①启动ADS 1.2,使用ARM Executable Image for lpc2131工程模板建立一个工程 TimeOut_C。 ②在user 组中的main.c 中编写主程序代码。 ③主程序中使用IRQEnable( )使能IRQ 中断。 ④选用DebugInExram 生成目标,然后编译连接工程。 ⑤将LPC2131实验板上的Beep跳线短接到P0.7。 ⑥选择【Project】->【Debug】,启动AXD 进行JTAG 仿真调试。 ⑦全速运行程序,蜂鸣器会响一秒,停一秒,然后再响一秒……依次循环。 3.实验参考程序 程序清单错误!文档中没有指定样式的文字。-1 定时器实验参考程序#include "config.h" #define BEEP 1 << 7 /* P0.7控制BEEP,低电平蜂鸣 */ /***************************************************************************************** ** 函数名称:IRQ_Timer0() ** 函数功能:定时器0中断服务程序,取反LED9控制口。 ** 入口参数:无 ** 出口参数:无 ****************************************************************************************** */ void __irq IRQ_Timer0 (void) { if ((IO0SET & BEEP) == 0) IO0SET = BEEP; /* 关闭BEEP */ else IO0CLR = BEEP; T0IR = 0x01; /* 清除中断标志*/ VICVectAddr = 0x00; /* 通知VIC中断处理结束*/ } /* ***************************************************************************************** ** 函数名称:main() ** 函数功能:使用定时器实现1秒钟定时,控制LED9闪烁。中断方式。

单片机计数器与定时器的区别

单片机计数器与定时器的区别 在的学习过程中,我们经常会发现中断、串口是学习的难点,对于初学者来说,这几部分的内容很难理解。但是我个人觉得这几部分内容是的重点,如果在一个学期的课堂学习或者自学中没有理解这几部分内容,那就等于还没有掌握51单片机,那更谈不上单片机的开发了,我们都知道在成品的单片机项目中,有很多是以这几部分为理论基础的,万年历是以定时器为主的,报警器是以中断为主的,联机通讯是以串口为主的。 在这几部分内容中,计数器/定时器对于初学者说很容易搞混淆,下面我将对这方面的内容结合自己的学习经验谈几点看法。 计数器和定时器相同的,他们都是对单片机中产生的脉冲进行计数,只不过计数器是单片机外部触发的脉冲,定时器是单片机内部在晶振的触发下产生的脉冲。当他们的脉冲间隔相同的时候,计数器和定时器就是一个概念。 在定时器和计数器中都有一个溢出的概念,那什么是溢出了。我们可以从一个生活小常识得到答案,当一个碗放在水龙头下接水的时候,过了一会儿,碗的水满了,就发生溢出。同样的道理,假设水龙头的水是一滴滴的往碗里滴,那

么总有一滴水是导致碗中的水溢出的。在碗中溢出的水就浪费了,但是在单片机的中溢出将导致一次中断。 在定时器计数器中,我们有个概念叫容量,就是最大计数量。 把水滴比喻成脉冲,那么导致碗中水溢出的最后一滴水的就是定时计数器的溢出的最后一个脉冲。 在各种单片机书本中,在介绍定时计数器时都讲到一个计数初值,那什么是计数初值呢?在这里我们还是假设水滴碗。假设第一百滴水能够使碗中的水溢出,我们就知道这个碗的容量是100。 在这里计数初值有3个,假设: 根据所得的初始值,再将其转换为,就可以进行计数或者定时了。后面讲解定时器初值的。 单片机, 计数器, 定时器

单片机中断程序大全

单片机中断程序大全公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

//实例42:用定时器T0查询方式P2口8位控制L E D闪烁#include // 包含51单片机寄存器定义的头文件void main(void) { // EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x01; //使用定时器T0的模式1 TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 TR0=1; //启动定时器T0 TF0=0; P2=0xff; while(1)//无限循环等待查询 { while(TF0==0) ; TF0=0; P2=~P2; TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 //实例43:用定时器T1查询方式控制单片机发出1KHz音频

#include // 包含51单片机寄存器定义的头文件sbit sound=P3^7; //将sound位定义为P3.7引脚 void main(void) {// EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x10; //使用定时器T1的模式1 TH1=(65536-921)/256; //定时器T1的高8位赋初值 TL1=(65536-921)%256; //定时器T1的高8位赋初值 TR1=1; //启动定时器T1 TF1=0; while(1)//无限循环等待查询 { while(TF1==0); TF1=0; sound=~sound; //将P3.7引脚输出电平取反 TH1=(65536-921)/256; //定时器T0的高8位赋初值 TL1=(65536-921)%256; //定时器T0的高8位赋初值 } } //实例44:将计数器T0计数的结果送P1口8位LED显示 #include // 包含51单片机寄存器定义的头文件sbit S=P3^4; //将S位定义为P3.4引脚

51单片机定时中断C语言的写法步骤

51单片机定时中断C语言的写法步骤 程序说明:51单片机定时器0工作于方式一,定时50ms中断一次 晶振为12M #include void main { TOMD = 0X01;//配置定时器0工作于方式一 TH1 = (65536-50000)/256; //高八位装入初值 TL1 = (65536-50000)%256; //低八位装入初值 ET0 = 1; //开定时器0中断 EA = 1; //开总中断 TR0 = 1; //启动定时器0 while(1) { ; } } void Timer0_int() interrupt 1 { //重新装初值 TH1 = (65536-50000)/256; //高八位装入初值 TL1 = (65536-50000)%256; //低八位装入初值 } /****************************************************************************** *********************************/ 上面是比较好理解的。如果实在要求简洁的话,看下面的,跟上面功能一样 #include void main { TOMD = 0X01;//配置定时器0工作于方式一 TH1 = 0x3c; //高八位装入初值 TL1 = 0xb0; //低八位装入初值 IE = 0x82;//开总中断并开定时器0中断 TR0 = 1; //启动定时器0 while(1) { ; } }

void Timer0_int() interrupt 1 { //重新装初值 TH1 = 0x3c; //高八位装入初值TL1 = 0xb0; //低八位装入初值}

定时器计数器

定时器/计数器 MCS-51单片机内部有两个16位可编程的定时器/计数器,即定时器T0(由TH0和TL0组成)和定时器T1(由TH1和TL1组成),它们既可用作定时器定时,又可用作计数器记录外部脉冲个数,其工作方式、定时时间、启动、停止等均用指令设定。 定时器/计数器的结构 1.定时器/计数器的工作原理 定时器/计数器T0和T1的工作方式通过八位寄存器TMOD设定,T0和T1 的启动、停止由八位寄存器TCON控制。工作前需先装入初值,利用传送指令将初值装入加1计数器TH0和TL0或TH1和TL1,高位数装入TH0或TH1,低位数装入TL0或TL1。当发出启动命令后,加1计数器开始加1计数,加到满值(各位全1)后,再加1就会产生溢出,系统将初值寄存器清0。如果需要继续计数或定时,则需要重新赋计数初值。 2.定时器的方式寄存器TMOD 特殊功能寄存器TMOD为定时器的方式控制寄存器。TMOD是用来设定定时器的工作方式,其格式如下: 各位功能如下: (1)GATE控制定时器的两种启动方式 当GATE=0时,只要TR0或TR1置1,定时器启动。 当GATE=1时,除TR0或TR1置1外,还必须等待外部脉冲输入端(P3.3)或(P3.2)高电平到,定时器才能启动。若外部输入低电平则定时器关闭,这样可实现由外部控制定时器的启动、停止,故该位被称为门控位。定时器1类同。 (2)定时/计数方式选择位 当该位为0时,T0或T1为定时方式;当该位为1时,T0或T1为计数方式。(3)方式选择位M1、M0 M1、M0两位可组合成4种状态,控制4种工作方式。每种方式的功能如表5-1。 表5-1 M1、M0控制的工作方式 M1 M0 工作方式说明 0 0 0 1 1 0 1 1 0 1 2 3 13位计数器 16位计数器 可再装入8位计数器

定时器中断程序设计实验

实验一定时器/中断程序设计实验 一、实验目的 1、掌握定时器/中断的工作原理。 2、学习单片机定时器/中断的应用设计和调试 二、实验仪器和设备 1、普中科技单片机开发板; 2、Keil uVision4 程序开发平台; 3、PZ-ISP 普中自动下载软件。 三、实验原理 805l 单片机内部有两个 16 位可编程定时/计数器,记为 T0 和 Tl。8052 单片机内除了 T0 和 T1 之外,还有第三个 16 位的定时器/计数器,记为 T2。它们的工作方式可以由指令编程来设定,或作定时器用,或作外部脉冲计数器用。定时器 T0 由特殊功能寄存器 TL0 和 TH0 组成,定时器 Tl 由特殊功能寄存器 TLl 和 TH1 组成。定时器的工作方式由特殊功能寄存器 TMOD 编程决定,定时器的运行控制由特殊功能寄存器 TCON 编程控制。T0、T1 在作为定时器时,规定的定时时间到达,即产生一个定时器中断,CPU 转向中断处理程序,从而完成某种定时控制功能。T0、T1 用作计数器使用时也可以申请中断。作定时器使用时,时钟由单片机内部系统时钟提供;作计数器使用时,外部计数脉冲由 P3 口的 P3.4(或 P3.5)即 T0(或 T1)引脚输入。 方式控制寄存器 TMOD 的控制字格式如下: 低 4 位为 T0 的控制字,高 4 位为 T1 的控制字。GATE 为门控位,对定时器/计数器的启动起辅助控制作用。GATE=l 时,定时器/计数器的计数受外部引脚输入电平的控制。由由运行控制位 TRX (X=0,1)=1 和外中断引脚(0INT 或 1INT)上的高电平共同来启动定时器/计数器运行;GATE=0时。定时器/计数器的运行不受外部输入引脚的控制,仅由 TRX(X=0,1)=1 来启动定时器/计数器运行。 C/-T 为方式选择位。C/-T=0 为定时器方式,采用单片机内部振荡脉冲的 12 分频信号作为时钟计时脉冲,若采用 12MHz 的振荡器,则定时器的计数频率为 1MHZ,从定时器的计数值便可求得定时的时间。 C/-T=1 为计数器方式。采用外部引脚(T0 为 P3.4,Tl 为 P3.5)的输入脉冲作为计数脉冲,当 T0(或 T1)输入信号发生从高到低的负跳变时,计数器加 1。最高计数频率为单片机时钟频率的 1/24。 M1、M0 二位的状态确定了定时器的工作方式,详见表。

用定时器计数器设计一个简单的秒表

目录 摘要................................................................................................ 错误!未定义书签。 1 Proteus简介错误!未定义书签。 2 主要相关硬件介绍错误!未定义书签。 AT89C52简介错误!未定义书签。 四位数码管错误!未定义书签。 74LS139芯片介绍错误!未定义书签。 3 设计原理错误!未定义书签。 4 电路设计错误!未定义书签。 电路框图设计错误!未定义书签。 电路模块介绍错误!未定义书签。 控制电路错误!未定义书签。 译码电路错误!未定义书签。 数码管显示电路错误!未定义书签。 仿真电路图错误!未定义书签。 5 设计代码错误!未定义书签。 6 仿真图错误!未定义书签。 7 仿真结果分析错误!未定义书签。 8 实物图错误!未定义书签。 9 心得体会错误!未定义书签。 参考文献错误!未定义书签。

摘要 现在单片机的运用越来越宽泛,大到导弹的导航装置、飞机上各种仪表的控制、计算机的网络通讯与数据传输、工业自动化过程的实时控制和数据处理,小到广泛使用的各种智能IC卡、各种计时和计数器等等。本次课设我们要设计一个能显示计时状态和结果的秒表,它是基于定时器/计数器设计一个简单的秒表。 本次设计的数字电子秒表系统采用AT89C51单片机为中心器件,利用其定时器/计数器定时和记数的原理,结合显示电路、LED数码管以及外部中断电路来设计计时器。将软、硬件有机地结合起来,使得系统能够实现四位LED显示,显示时间为0~秒,计时精度为秒,能正确地进行计时,并显示计时状态和结果。其中软件系统采用汇编或者C语言编写程序,包括显示程序,定时中断服务,外部中断服务程序,延时程序等,并在keil中调试运行,硬件系统利用PROTEUS强大的功能来实现,简单切易于观察,在仿真中就可以观察到实际的工作状态。 关键词:秒表,AT89C51,proteus,C语言

定时器计数器答案

定时器/计数器 6·1 80C51单片机内部有几个定时器/计数器?它们是由哪些专用寄存器组成? 答:80C51单片机内部设有两个16位的可编程定时器/计数器,简称为定时器0(T0)和定时 器l(Tl)。在定时器/计数器中的两个16位的计数器是由两个8位专用寄存器TH0、TL0,THl、TLl组成。 6·2 80C51单片机的定时器/计数器有哪几种工作方式?各有什么特点? 答:80C51单片机的定时器/计数器有4种工作方式。下面介绍4种工作方式的特点。 方式0是一个13位的定时器/计数器。当TL0的低5位溢出时向TH0进位,而TH0溢出时向中断标志TF0进位(称硬件置位TF0),并申请中断。定时器0计数溢出与否,可通过查询TF0是否置位或产生定时器0中断。 在方式1中,定时器/计数器的结构与操作几乎与方式0完全相同,惟一的差别是:定时器是以全16位二进制数参与操作。 方式2是能重置初值的8位定时器/计数器。其具有自动恢复初值(初值自动再装人)功;能,非常适合用做较精确的定时脉冲信号发生器。 方式3 只适用于定时器T0。定时器T0在方式3T被拆成两个独立的8位计数器TL0: 和TH0。其中TL0用原T0的控制位、引脚和中断源,即:C/T、GATE、TR0、TF0和T0 (P3.4)引脚、INTO(P3.2)引脚。除了仅用8位寄存器TL0外,其功能和操作与方式0、方式1 完全相同,可定时亦可计数。此时TH0只可用做简单的内部定时功能。它占用原定时器Tl 的控制位TRl和TFl,同时占用Tl的中断源,其启动和关闭仅受TRl置1和清0控制。6·3 定时器/计数器用做定时方式时,其定时时间与哪些因素有关?作计数时,对外界计数频率有何限制? 答: 定时器/计数器用做定时方式时,其定时时间与时钟周期、计数器的长度(如8位、13位、16位等)、定时初值等因素有关。作计数时,外部事件的最高计数频率为振荡频率(即时钟周期)的1/24。 6·4 当定时器T0用做方式3时,由于TR1位已被T0占用,如何控制定时器T1的开启和关闭? 答:定时器T0用做方式3时,由于TRl位己被T0占用,此时通过控制位C/T切换其定时器或计数器工作方式。当设置好工作方式时,定时器1自动开始运行;若要停止操作,只需送入一个设置定时器1为方式3的方式字。

PLC程序中定时器和计数器的配合应用

PLC程序中定时器和计数器的配合应用 实际应用中,定时器和计数器,常常有“强强联合”形式的搭配性应用。 一、定时器 1、定时器是位/字复合元件,可以有三个属性: 1)有线圈/触点元件,当满足线圈的驱动(时间)条件时,触点动作; 2)具有时间控制条件,当线圈被驱动时,触点并不是实时做出动作反应,而是当线圈被驱动时间达到预置时间后,触点才做出动作; 3)具有数值/数据处理功能,同时又是“字元件”。 2、可以用两种方法对定时时间进行设置: 1)直接用数字指定。FX编程器用10进制数据指定,如K50,对于100ms 定时器来讲,延时5秒动作。为5秒定时器。对LS编程器,可用10制数或16进制数设定,如50(或h32),对于100ms定时器来讲,延时5秒动作; 2)以数据寄存器D设定定时时间,即定时器的动作时间为D内的寄存数值。 3、由定时器构成的时间控制程序电路: LS编程器中的定时器有多种类型,但FX编程器中的定时器只有“得电延时输出”定时器一种,可以通过编写相应程序电路来实现“另一类型”的定时功能。图1程序电路中,利用M0和T1配合,实现了单稳态输出——断开延时定时器功能,X1接通后,Y0输出;X1断开后,Y0延时10秒才断开;T2、T3、Y2电路则构成了双延时定时器,X4接通时,Y2延时2秒输出;X4断开时,Y2延时3秒断开;Y3延时输出的定时时间,是由T4定时器决定的,T4的定时时间是同D1数据寄存器间接指定的。当X2接通时,T4定时值被设定为10秒;当X3接通时,T4定时值则被设定为20秒。XO提供定时值的清零/复位操作。 单个定时器的定时值由最大设定值所限定(0.1∽3276.7s),换言之,其延时动作时间不能超过1小时。如欲延长定时时间,可以如常规继电控制线路一样,将多只定时器“级联”,总定时值系多只定时器的定时值相加,以扩展定时时间。更好的办法,是常将定时器与计数器配合应用,其定时时间,即变为定时器的定时器与计数器的计数值相乘,更大大拓展了定时范围,甚至可以以月或年为单位

PLC中三种计数器和定时器

COUNTER计数器 1.CTD减计数器 当CD收到一个上升沿,CV递减一,收到第2个上升沿,CV再递减一,直到CV递减到0后,Q输出TRUE。 PV-----装入的是计数器的,初始数值,CV从这个初始数值开始递减(一个CD收到的上升沿脉冲让CV减一) LOAD-------当LOAD变为TRUE,减计数器复位,PV变成设置的最大值。 2.CTU加计数器 CU----接受上升沿个数,收到一个脉冲,CV增加1,直到CV=PV后,

Q输出TRUE,RESET复位----如果RESET=TRUE,则计数器被复位成0。--------------CU,Q,RESET都为BOOL变量,CV和PV为WORD 变量。 3.CTUD增减计数器 CU, CD, RESET, LOAD, QU , QD 都是 BOOL变量, PV 和 CV 都是 INT变量. 如果 RESET=TRUE, CV 被赋值为0. If LOAD=TRUE,那么 CV 被设置成PV的数值. 如果 CU收到一个上升沿脉冲信号, CV在不超出范围的前提下增加1。. 如果CD 收到一个上升沿脉冲信号, CV 在不小于0的情况下,会减少1。 当CV = PV时,QU输出TRUE. 当 CV= 0时,QD输出TRUE. 三种定时器的区别

TP定时器 Q由FALSE变成TRUE被IN上升沿促发,(脉冲促发),由TRUE 变成FALSE为达到延迟时间PT后促发。只要TP检测IN有一个上升沿,Q马上变成TRUE。计时开始-----当达到PT设置的时间后,不管IN为什么状态,Q由TRUE变成FALSE。 TON定时器 (延时接通) 当IN为TRUE,并且IN保持为TRUE,当ET的时间=PT以后,Q 促发,由FALSE变为TRUE。而且IN为TRUE不变,只要IN变为FALSE,IN变FALSE的下降沿马上促发Q由TRUE变成FALSE。

51单片机C语言程序 定时 计数器 中断

51单片机C语言程序定时计数器中断51单片机C语言程序定时计数器 中断 程序一 利用定时/计数器T0从P1.0输出周期为1s的方波,让发光二极管以1HZ闪烁, #include reg52.h//52单片机头文件 #include intrins.h//包含有左右循环移位子函数的库 #define uint unsigned int//宏定义 #define uchar unsigned char//宏定义 sbit P1_0=P1^0; uchar tt; void main()//主函数 { TMOD=0x01;//设置定时器0为工作方式1 TH0=(65536-50000)/256; TL0=(65536-50000)%256; EA=1;//开总中断 ET0=1;//开定时器0中断 TR0=1;//启动定时器0 while(1);//等待中断产生 } void timer0()interrupt 1 { TH0=(65536-50000)/256; TL0=(65536-50000)%256; tt++;

if(tt==20) { tt=0; P1_0=~P1_0; } } 程序二 利用定时/计数器T1产生定时时钟, 由P1口控制8个发光二极管, 使8个指示灯依次一个一个闪动, 闪动频率为10次/秒(8个灯依次亮一遍为一个周期),循环。 #include reg52.h//52单片机头文件 #include intrins.h//包含有左右循环移位子函数的库 #define uint unsigned int//宏定义 #define uchar unsigned char//宏定义 sbit P1_0=P1^0; uchar tt,a; void main()//主函数 { TMOD=0x01;//设置定时器0为工作方式1 TH0=(65536-50000)/256; TL0=(65536-50000)%256; EA=1;//开总中断 ET0=1;//开定时器0中断 TR0=1;//启动定时器0 a=0xfe; while(1);//等待中断产生 } void timer0()interrupt 1

51单片机C语言中断程序定时计数器

51单片机C语言中断程序定时/计数器 程序一 利用定时/计数器T0从P1.0输出周期为1s 的方波,让发光二极管以1HZ闪烁, #include //52单片机头文件 #include //包含有左右循环移位子函数的库#define uint unsigned int //宏定义 #define uchar unsigned char //宏定义 sbit P1_0=P1^0; uchar tt; void main() //主函数 { TMOD=0x01;//设置定时器0为工作方式1 TH0=(65536-50000)/256; TL0=(65536-50000)%256; EA=1;//开总中断 ET0=1;//开定时器0中断 TR0=1;//启动定时器0 while(1);//等待中断产生 }

void timer0() interrupt 1 { TH0=(65536-50000)/256; TL0=(65536-50000)%256; tt++; if(tt==20) { tt=0; P1_0=~P1_0; } } 程序二 利用定时/计数器T1产生定时时钟, 由P1口控制8个发光二极管, 使8个指示灯依次一个一个闪动, 闪动频率为10次/秒(8个灯依次亮一遍为一个周期),循环。#include //52单片机头文件 #include //包含有左右循环移位子函数的库 #define uint unsigned int //宏定义 #define uchar unsigned char //宏定义

定时器与计数器

四川工程职业技术学院 单片机应用技术课程电子教案 Copyright ? https://www.doczj.com/doc/a97332281.html, 第 讲 15 定时器/计数器基础

本讲主要内容: 15-1.实现定时的方法 15-2.定时器/计数器的结构和工作原理15-3.定时器/计数器的控制 15-4.定时器/计数器的工作方式 15-5.定时器/计数器应用

15-1.实现定时的方法 软件定时 ? 软件延时不占用硬件资源,但占用了CPU时间,降低了CPU的利用 率。例如延时程序。 采用时基电路定时 ?例如采用555电路,外接必要的元器件(电阻和电容),即可构成硬 件定时电路。但在硬件连接好以后,定时值与定时范围不能由软件 进行控制和修改,即不可编程,且定时时间容易漂移。 可编程定时器定时 ?最方便的办法是利用单片机内部的定时器/计数器。结合了软件定时 精确和硬件定时电路独立的特点。 定时器/计数器 如何使用呢?

定时器/计数器的结构 定时器/计数器的实质是加1计数器(16位),由高8位和低8位两个寄存器组成。TMOD 是定时器/计数器的工作方式寄存器,确定工作方式和功能;TCON 是控制寄存器,控制T0、T1的启动和停止及设置溢出标志。 G A T E C /T M 1 M 0 G A T E C /T M 1 M 0 TH1TL1TH0TL0 T1方式T0方式 T1引脚 T0引脚 机器周期脉冲 内部总线 TMOD TCON 外部中断相关位 T F 1 T R 1 T F 0 T R 0 T1计数器 T0计数器 控制单元

定时器/计数器的工作原理 ?计数器输入的计数脉冲源 系统的时钟振荡器输出脉冲经12分频后产生; T0或T1引脚输入的外部脉冲源。 ?计数过程 每来一个脉冲计数器加1,当加到计数器为全1(即FFFFH)时,再输入一个脉冲就使计数器回零,且计数器的溢出使TCON中TF0或TF1置1,向CPU发出中断 请求(定时器/计数器中断允许时)。如果定时器/计数器工作于定时模式,则表 示定时时间已到;如果工作于计数模式,则表示计数值已满。

《PIC16系列单片机C程序设计与proteus仿真》学习之2----TMR0定时器中断

/**用TMR0延时中断,产生脉冲**/ /** 设定时器TMR0延时10MS,8位pic单片机晶振4MHZ,则指令周期Tcy=1us,计算如下:1.设预分频比为K,则256*K*Tcy=10_000us,得K=39.06,要取大于此值的最小分频比,即K=64 2.计算延时常数X,(256-X)*64*Tcy=10_000us,得X=99.75,四舍五入取整,得X=100. */ #include __CONFIG(0x3f71); #define LED RB0 #define T0_10MS 100 //定义TMR0延时10MS的时间常数 char A; void interrupt ISR(void); void main(void) { RISB0=0; //设定RB0位输出,其余B口未设置,采用上电默认值,为输入 OPTION=0b10000101;//RBPU=1:B口上拉使能,INTEDG=0:下降沿触发,T0CS=0:对内部指令周期计数,T0SE=0:RA4/T0CKI的上升沿计数,PSA=0:预分频分配位给TMRO,PS2PS1PS0=101:TMR0比率为1:64 INTCON=0b10100000;//GIE=1:允许全局中断使能,PEIE=0:禁止外设中断使能,T0IE/TMR0IE=1:允许TMR0溢出中断使能,INTE=0:禁止INT引脚中断使能//RBIE=0:禁止RB口高4位电平变化使能,T0IF/TMR0IF=0:TMR0溢出中断标志位--未溢出 //INTF=0:未发生INT中断,RBIF=0:RB7:RB4引脚的逻辑状态未发生变化 TMR0=T0_10MS; //TMR0赋初值 LED=1; A=1; while(1); //原地等待 } void interrupt ISR(void) { if(T0IF==1) { T0IF=0; TMR0=T0_10MS;//TMR0赋初值,必须 if(A==1) { A=0; LED=0; } else { A=1; LED=1;

计数器与定时器概念

计数器与定时器概念 一、计数概念的引入 从选票的统计谈起:画“正”。这就是计数,生活中计数的例子处处可见。例:录音机上的计数器、家里面用的电度表、汽车上的里程表等等,再举一个工业生产中的例子,线缆行业在电线生产出来之后要计米,也就是测量长度,怎么测法呢?用尺量?不现实,太长不说,要一边做一边量呢,怎么办呢?行业中有很巧妙的方法,用一个周长是1米的轮子,将电缆绕在上面一周,由线带轮转,这样轮转一周不就是线长1米嘛,所以只要记下轮转了多少圈,就可以知道走过的线有多长了。 二、计数器的容量 从一个生活中的例子看起:一个水盆在水龙头下,水龙没关紧,水一滴滴地滴入盆中。水滴不断落下,盆的容量是有限的,过一段时间之后,水就会逐渐变满。录音机上的计数器最多只计到999….那么单片机中的计数器有多大的容量呢?8031单片机中有两个计数器,分别称之为T0和T1,这两个计数器分别是由两个8位的RAM单元组成的,即每个计数器都是16位的计数器,最大的计数量是65536。 三、定时 8031中的计数器除了可以作为计数之用外,还可以用作时钟,时钟的用途当然很大,如打铃器,电视机定时关机,空调定时开关等等,那么计数器是如何作为定时器来用的呢? 一个闹钟,我将它定时在1个小时后闹响,换言之,也可以说是秒针走了(3600)次,所以时间就转化为秒针走的次数的,也就是计数的次数了,可见,计数的次数和时间之间的确十分相关。那么它们的关系是什么呢?那就是秒针每一次走动的时间正好是1秒。

图1 结论:只要计数脉冲的间隔相等,则计数值就代表了时间的流逝。 由此,单片机中的定时器和计数器是一个东西,只不过计数器是记录的外界发生的事情,而定时器则是由单片机提供一个非常稳定的计数源。 那么提供组定时器的是计数源是什么呢?看图1,原来就是由单片机的晶振经过12分频后获得的一个脉冲源。晶振的频率当然很准,所以这个计数脉冲的时间间隔也很准。问题:一个12M的晶振,它提供给计数器的脉冲时间间隔是多少呢?当然这很容易,就是12M/12等于1M,也就是1个微秒。 结论:计数脉冲的间隔与晶振有关,12M的晶振,计数脉冲的间隔是1微秒。 四、溢出 让我们再来看水滴的例子,当水不断落下,盆中的水不断变满,最终有一滴水使得盆中的水满了。这时如果再有一滴水落下,就会发生什么现象?水会漫出来,用个术语来讲就是“溢出”。 水溢出是流到地上,而计数器溢出后将使得TF0变为“1”。至于TF0是什么我们稍后再谈。一旦TF0由0变成1,就是产生了变化,产生了变化就会引发事件,就象定时的时间一到,闹钟就会响一样。至于会引发什么事件,我们下次课再介绍,现在我们来研究另一个问题:要有多少个计数脉冲才会使TF0由0变为1。 五、任意定时及计数的方法 刚才已研究过,计数器的容量是16位,也就是最大的计数值到65536,因此计数计到65536就会产生溢出。这个没有问题,问题是我们现实生活中,经常会有

实验五 8051单片机定时中断实验

实验五8051单片机定时中断实验 一实验目的: 了解8051系列单片机的定时中断基本工作原理。掌握8051系列单片机定时中断的用法。 二实验原理: 在上一个实验里我们介绍了8051单片机的外中断应用,本实验要介绍的是定时器中断的应用。 8051系列单片机至少有两个16位的内部定时器/计数器,既可以编程为定时器使用,也可以作为计数器使用。如果是计数内部晶振驱动时钟,它是定时器,如果是计数8051的输入管脚的信号,就是计数器。 MCS-51单片机内部的定时/计数器的结构如图5-1所示,定时器T0特性功能寄存器TL0(低8位)和TH0(高8位)构成,定时器T1由特性功能寄存器TL1(低8位)和TH1(高8位)构成。特殊功能寄存器TMOD控制定时寄存器的工作方式,TCON则用于控制定时器T0和T1的启动和停止计数,同时管理定时器T0和T1的溢出标志等。程序开始时需对TL0、TH0、TL1和TH1进行初始化编程,以定义它们的工作方式和控制T0和T1的计数。 图5-1 TMOD特殊功能寄存器的格式参见下表(表5-1): 表5-1 高4位为定时器/计数器1的控制字,低4位为定时器/计数器0的控制字。其中GATE 为门控信号,C/T为定时器或计数器的选择,而M1,M0是工作方式选择位。 当M1M0=00时,T/C工作在方式0。方式0为13位的T/C,其计数器由TH的8位和TL的5

位构成,计数器的计数值范围是: 1—8192(213),但是启动前可以预置计数初值。当C/T为 0时,T/C为定时器,计数脉冲为振荡源12分频的信号;当C/T为1时,T/C为计数器,对输入端T0或T1输入的脉冲进行计数。计数脉冲加到计数器上与否决定于启动信号。当GATE=0时,TR=1时T/C便启动,当GATE=1时,启动受到TR与INT的双重控制,即二者同时为高 时才启动。当计数满时,TH向高位进位,这时中断溢出标志TF置1,即产生中断请求。而当CPU转向中断服务程序时,TF自动清零。 当M1M0=01时,T/C工作在方式1。方式1和方式0的区别仅在于方式0的计数器位数为13位,而方式1的为16位。 当M1M0=10时,T/C工作在方式2。区别于前面的两种工作方式的是,方式2具有自动重装载的功能。TH和TL作为两个8位的计数器,TH中的8位初值始终保持不变,由TL进行8位计数。在计数溢出时不但会产生中断请求,而且自动将TH中的值加载至TL 中,即自动重装载。 当M1M0=11时,T/C工作在方式3。但是这种工作方式只存在于T/C0中,这时TH0与TL0成为两个独立的计数器。只有在T/C1作为串行口的波特率发生器使用,而造成定时器不够用时,T/C0才能工作在方式3。 下面是定时器时间常数计算公式,这个公式在方式1,即16 位定时或计数模式可用。 THX=(65536-定时时长[μS]/(机器周期数/时钟频率[MHz])/256; TLX=(65536-定时时长[μS]/(机器周期数/时钟频率[MHz])%256; 在定时器重装载过程中因为TL1=0可以不写。 三实验内容: 利用中断方式在LED上输出10HZ方波,系统晶体频率11.059MHz。 四实验电路图:

C语言的定时器中断程序

C语言的定时器中断程序 #include #define uint unsigned int #define uchar unsigned char uchar code table[]= {0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f}; uchar aa,num; void main() { aa=0; num=0; TMOD=0x01; TH0=(65536-50000)/256; TL0=(65536-50000)%256; EA=1; ET0=1;

TR0=1; P2=0xf0; P0=0x3f; while(1) { if(aa==10) { aa=0; num++; if(num==10) { num=0; } P2=0xf0; P0=table[num]; } } } void timer0() interrupt 1 { TH0=(65536-50000)/256; TL0=(65536-50000)%256;

aa++; } void timer0(void) interrupt 1 using 3 //中断部分代码,见下文的释疑{ …………… } 释疑:void Timer0() interrupt 1 using 1 Timer0 是函数名,随便取的 interrupt xx using y 跟在interrupt 后面的xx 值得是中断号,就是说这个函数对应第几个中断端口,一般在51中 0 外部中断0 1 定时器0 2 外部中断1 3 定时器1 4 串行中断 实际上编译的时候就是把你这个函数的入口地址方到这个对应中断的跳转地址 using y 这个y是说这个中断函数使用的那个寄存器组,51里面一般有4组 r0 -- r7寄存器,一共有32个,看看原码、补码就知道。正数的补码是对应的二进制数,符号位为零,负数的补码是它的绝对值对应的二进制数按位取反再加一,符号位为一。

单片机实验3中断、定时器计数器实验

西南科技大学实验报告 课程名称:单片机原理及应用A 实验名称:中断、定时器/计数器实验姓名: 学号: 班级:生医1401 指导教师:雷华军 西南科技大学信息工程学院制

实验题目 数码管动态扫描显示驱动、键盘动态扫描驱动 一、实验目的 1、熟练巩固单片机开发环境KEIL界面的相关操作和PROTUES仿真软件的操 作,会使用HEX文件进行单片机的仿真。 2、了解定时器的原理和四种工作方式的使用方法,学习定时器的相关应用,包括产生信号和 计数,利用定时器进行延时等。 3、进一步掌握熟练单个数码管以及多位数码管的显示原理,学会将0~1000的数字进行显示。 4、掌握利用单片机产生矩形方脉冲的相关原理。 二、实验原理 1、定时器结构和原理 图① 上图①为定时器T0、T1的结构,其中振荡器经12分频后作为定时器的时钟脉冲,T为外部计数脉冲输入端,通过开关K1选择。反相器,或门,与门共同构成启/停控制信号。TH 和TL为加1计数器,TF为中断标志。每接收到一个脉冲,加1计数器自动加1,当计数器中的数被加为0时产生溢出标志,TF将被置1。计数器工作方式的选择和功能的实现需要配置相应的寄存器TMOD和TCON。 2、定时器工作方式 定时器共有四种工作方式分别为方式0——方式3。 方式0:13位计数器,最大计数值为213个脉冲。 方式1:16位计数器,最大计数值为216个脉冲。 方式2:8位自动重装计数器。该方式下,TL进行计数工作,TH用于存放计数初值,当产生溢出中断请求时会自动将TH中的初值重新装入TL,以使计数器继续工作。 方式3:仅限于T0计数器,在方式3下,T0计数器被分成两个独立的8为计数器TL0和TH0。

定时器和计数器的实例

TSCR1 寄存器是定时器模块的总开关,它决定模块是否启动以及在中断等待、BDM 方式下的行为,还包括标志的管理方式。其各位的意义如下: TEN:定时器使能位,此外它还控制定时器的时钟信号源。要使用定时器模块的 IC/OC 功能,必须将 TEN 置位。如果因为某种原因定时器没有使能,脉冲累加器也将得不到 ECLK/64 时钟,因为 ECLK/64 是由定时器的分频器产生的,这种情况下,脉冲累加器将不能进行引脚电平持续时间的累加。 0:定时器/计数器被禁止,有利于降低功耗。 1:定时器/计数器使能,正常工作。 TSWAI:等待模式下计时器关闭控制位。 【注意】定时器中断不能用于使 MCU 退出等待模式。 0:在中断等待模式下允许 MCU 继续运行。 1:当 MCU 进入中断等待模式时,禁止计时器。 TSFRZ:在冻结模式下计时器和计数器停止位。 0:在冻结模式下允许计时器和计数器继续运行。 1:在冻结模式下禁止计时器和计数器,用于仿真调试。 【注意】TSFRZ 不能停止脉冲累加。

TFFCA:定时器标志快速清除选择位。 0:定时器标志普通清除方式。 1:对于 TFLGl($0E)中的各位,读输入捕捉寄存器或者写输出比较寄存器会自动清除相应的标志位 CnF。对于 TFLG2($0F)中的各位,任何对 TCNT 寄存器($04、$05)的访问均会清除 TOF 标志;任何对PACN3 和 PACN2 寄存器($22,$23)的访问都会清除PAFLG 寄存器($21)中的 PAOVF 和 PAIF 位。任何对 PACN1 和PACN0 寄存器($24,$25)的访问都会清除 PBFLG 寄存器($21)中的 PBOVF 位。 【说明】这种方式的好处是削减了另外清除标志位的软件开销。此外,必须特别注意避免对标志位的意外清除 可在任何时候读或写。 TOI:定时器/计时器溢出中断使能。 0:中断被禁止。 1:当 TOF 标志被置位时发出硬件中断请求。 【注意】TOF标志位在TFLG中 TCRE:定时器/计数器复位使能。

单片机60s定时器程序c语言

单片机60s定时器程序c语言 #include /////变量定义 sbit led0=P1^0; sbit led1=P1^1; sbit led2=P1^2; sbit led3=P1^3; int tion=0; int tey[]={0XC0,0XF9,0XA4,0XB0,0X99,0X92,0X82,0XF8,0X80,0X90}; int cx=0; int kx=0; ///子函数 void time(int x); //延时函数定义 void LED(); //显示函数定义 ///////////// ////////主函数/// ///////// void main() {TMOD=0X1; TH0=0X3C; TL0=0XB0; IE=0X82; TR0=1; while(1) {LED();}} //延时子函数// void time(int x) {for(x=0;x<200;x++);} //显示子函数// void LED() {led0=0; led1=1; led2=1; led3=1; P0=0XBF; time(1); led1=0; led2=1; led0=1;

led3=1; P0=tey[kx]; time(1); led2=0; led1=1; led0=1; led3=1; P0=tey[cx]; time(1); led3=0; led0=1; led1=1; led2=1; P0=0xBF; time(1); } //中断函数// void teyond()interrupt 1 {TH0=0X3C; TL0=0XB0; tion++; if(tion==20) {tion=0; cx++; P0=tey[cx]; if(cx==10) {cx=0; kx++; P0=tey[kx]; if(kx==6) {cx=0; kx=0; TR0=0;}}}}

相关主题
文本预览
相关文档 最新文档