当前位置:文档之家› 通信原理实验习题解答

通信原理实验习题解答

通信原理实验习题解答
通信原理实验习题解答

实验一

1. 根据实验观察和纪录回答:

(1)不归零码和归零码的特点是什么?

(2)与信源代码中的“1”码相对应的AMI码及HDB3码是否一定相同?

答:

1)不归零码特点:脉冲宽度τ等于码元宽度Ts

归零码特点:τ<Ts

2)与信源代码中的“1”码对应的AMI码及HDB3码不一定相同。因信源代码中的“1”码对应的AMI码“1”、“-1”相间出现,而HDB3码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。举例:

信源代码 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1

AMI 1 0 0 0 0 -1 1 0 0 0 0 -1 0 0 0 0 0 1

HDB3 1 0 0 0 1 -1 1 -1 0 0 -1 1 0 0 0 1 0 -1

2. 设代码为全1,全0及0111 0010 0000 1100 0010 0000,给出AMI及HDB3码的代码和波形。

答:

信息代码 1 1 1 1 1 1 1

AMI 1 -1 1 -1 1-1 1

HDB3 1 -1 1 -1 1 -1 1

信息代码0 0 0 0 0 0 0 0 0 0 0 0 0

AMI0 0 0 0 0 0 0 0 0 0 0 0 0

HDB3 0 0 0 1-10 0 1-1 0 0 1 -1

信息代码0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

AMI0 1 -1 1 0 0 -1 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0 0

HDB30 1 -1 1 0 0 -1 0 0 0-1 0 1 -1 1 0 0 1 -1 0 0 0 –1 0

3. 总结从HDB3码中提取位同步信号的原理。

答:

HDB 3中不含有离散谱f S (f S 在数值上等于码速率)成分。整流后变为一个占空比等于0.5的单极性归零码,其连0个数不超过3,频谱中含有较强的离散谱f S 成分,故可通过窄带带通滤波器得到一个相位抖动较小的正弦信号,再经过整形、移相后即可得到合乎要求的位同步信号。

4. 试根据占空比为0.5的单极性归零码的功率谱密度公式说明为什么信息代码中的连0码越长,越难于从AMI 码中提取位同步信号,而HDB 3码则不存在此问题。

答:

τ = 0.5 T S 时单极性归零码的功率谱密度为:

)mf f (|)mf (PG |f 2)

f (|)o (PG |f |)f (G |)p 1(p f 2)f (P s

1m 2

s 2

s 22s 2s s -++-=∑∞

=δδ 式中S

S T 1f =在数值上等于码速率,P 为“1”码概率 G (f )为τ = 0.5 T S 的脉冲信号的富氏变换

)fs

2f (sa f 21)f (G S π= S S S S f 12/2sin f 21)2(sa f 21)f (G πππ

π=?==

Θ )f f (p 2)f (P S 22S S -=∴δπ

将HDB 3码整流得到的占空比为0.5的单极性归零码中连“0”个数最多为3 ,而将AMI 码整流后得到的占空比为0.5的单极性归零码中连“0”个数与信息代码中连“0”个数相同。所以信息代码中连“0”码越长,AMI 码对应的单极性归零码中“1”码出现概率越小,f S 离散谱强度越小,越难于提取位同步信号。而HDB 3码对应的单极性归零码中“1”码出现的概率大,f S 离散谱强度大,于提取位同步信号。

实验二

1. 设绝对码为全1、全0或1001 1010,求相对码。

答:

绝对码 11111,00000,10011010

相对码10101,00000,11101100

或01010,11111,00010011

2. 设相对码为全1、全0或1001 1010,求绝对码。

答:

绝对码11111,00000,10011010

相对码00000,00000,01010111

或10000,10000,11010111

3. 设信息代码为1001 1010,载频分别为码元速率的1倍和1.5倍,画出2DPSK 及2PSK信号波形。

4. 总结绝对码至相对码的变换规律、相对码至绝对码的变换规律并设计一个由相对码至绝对码的变换电路。

答:

①绝对码至相对码的变换规律

“1”变“0”不变,即绝对码的“1”码时相对码发生变化,绝对码的“0”码时相对码不发生变化。——此为信号差分码。

②相对码至绝对码的变换规律

相对码的当前码元与前一码元相同时对应的当前绝对码为“0”码,相异时对应的当前绝对码为“1”码。

5. 总结2DPSK信号的相位变化与信息代码之间的关系以及2PSK信号的相位变化与

信息代码之间的关系。

答:

2DPSK 信号的相位变化与绝对码(信息代码)之间的关系是:

“1变0不变”,即“1”码对应的2DPSK 信号的初相相对于前一码元内2DPSK 信号的末相变化180o,“0”码对应的2DPSK 信号的初相与前一码元内2DPSK 信号的末相相同。

2PSK 信号的相位变化与相对码(信息代码)之间的关系是:

“异变同不变”,即当前码元与前一码元相异时则当前码元内2PSK 信号的初相相对于前一码元内2PSK 信号的末相变化180o。相同时则码元内2PSK 信号的初相相对于前一码元内2PSK 信号的末相无变化。

实验三

1. 总结模拟锁相环锁定状态及失锁状态的特点。

答:

模拟环锁定状态的特点:输入信号频率与反馈信号频率相等,鉴相器输出电压为直流。

模拟环失锁状态的特点:鉴相器输出电压为不对称的差拍电压。

2. 设K 0=18 Hz/V ,根据实验结果计算环路同步带Δf H 及捕捉带Δf P 。

答:

代入指导书中的“3式”计算,例:

ΔV 1=12V ,则Δf H =18×6=108Hz

ΔV 2=8V ,则Δf P =18×4=72Hz

3. 由公式11

6825o )(C R R K K d n +=ω及n C R ωζ21168=计算环路参数ωn 和ζ,式中 K d =6V/rad ,K o =2π×18 rad/s ·v ,R 25 =2×104 Ω,R 68 =5×103 Ω,C 11=2.2×10-6 F 。

(f n =ωn /2π应远小于码速率,ζ应大于0.5 )。

答:

rad 111102.2)105102(5.6182634n =???+???=

-πω Hz 6.172f n n ==π

ω 远小于码速率170.5(波特)

6.01112

102.21056

3=????=-?

4. 总结用平方环提取相干载波的原理及相位模糊现象产生的原因。

答:

平方运算输出信号中含有2f C 离散谱,模拟环输出信号频率等于2f C ,二分频,滤波后得到相干载波。

÷2电路有两个初始状态,导致提取的相干载波有两种相反的相位状态。

实验四

1. 设绝对码为1001101,相干载波频率等于码速率的1.5倍,根据实验观察得到的规律,画出CAR-OOT 与CAR 同相、反相时2DPSK 相干解调MU 、LPF 、BS 、BK 、AK 波形示意图,总结2DPSK 克服相位模糊现象的机理。

答:

当相干载波为-cos ω C t 时,MU 、LPF 及BK 与载波为cos ω C t 时的状态反相,但AK 仍不变(第一位与BK 的起始电平有关)。2DPSK 系统之所能克服相位模糊现象,是因为在发端将绝对码变为了相对码,在收端又将相对码变为绝对码,载波相位模糊可使解调出来的相对码有两种相反的状态,但它们对应的绝对码是相同的。

实验五

1. 数字环位同步器输入NRZ 码连“1”或连“0”个数增加时,提取的位同步信号相位抖动增大,试解释此现象。

答:

输入NRZ 码连“1”或连“0”个数增加时,鉴相器输出脉冲的平均周期增大,数字环路滤波器输出的控制信号平均周期增大,即需经过更长的时间才对DCO 的相位调整一次。而DCO 输出的位同步信号重复频率与环路输入的NRZ 码的码速率之间有一定的误差,当对DCO 不进行相位调整时,其输出信号的上升沿与码元中心之间的偏差将不断增大,相位调节时间间隔越长这种偏差越大,即位同步信号相位抖动越大。

2. 设数字环固有频差为Δf ,允许同步信号相位抖动范围为码元宽度T S 的η倍,求同步保持时间t C 及允许输入的NRZ 码的连“1”或“0”个数最大值。

答:

t C 时间内由固有频差产生的相位误差为π4△f t C ,Ts η时间可等效为相位值为πη2,故

f 2t 2t f 4c c ?==?∴η

πηπ

即在t C 时间内不对DCO 进行相位调节,位同步信号抖动范围小于C T π。

设允许输入的NRZ 码的连“1”或连“0”最大个数为M ,鉴相N 次后DLF 才有一个输出信号即对DCO 进行一次相位调节,则 f t mNTs c ?=

=2η f NTs m ?=

3. 数字环同步器的同步抖动范围随固有频差增大而增大,试解释此现象。

答:

固有频差越大,DCO 输出位同步信号与环路输入信号之间的相位误差增大得越快,而环路对DCO 的相位调节时间间隔,平均值是不变的(当输入信号一定时),故当固有频差增大时,位同步信号的同步抖动范围增大。

4. 若将AMI 码或HDB 3码整流后作为数字环位同步器的输入信号,能否提取出位同步信号?为什么?对这两种码的信息代码中的连“1”个数有无限制?对AMI 码的信息代码中连“0”个数有无限制?对HDB 3码的信息代码中连“0”个数有无限制?为什么? 答:

能。因为将AMI 码或HDB 3码整流后得到的是一个单极性归零码,其上升沿收使鉴相器输出高电平,从而使位同步正常工作。

对这种码的信息代码连“1”个数无限制,因连“1”代码对应AMI 码及HDB 3码为宽度等于码元宽度一半的正脉冲或负脉冲,整流后全为占空比为0.5的正脉冲,脉冲上升沿个数等于信息代码“1”码个数。

对AMI 码的信息代码中连“0”个数有限制,因AMI 码连“0”个数等于信息代码连“0”个数,不产生脉冲,也就没有上升沿。

对HDB 3码的信息代码中连“0”个数无限制,因为不管信息代码连“0”个数有多

大,HDB3码中连“0”个数最多为3。即鉴相器在四个码元内至少工作一次。

6. 试解释本实验使用的数字锁相环快速捕捉机理,并与超前滞后型数字环比较。

答:

本实验中可对DCO的分频比任意调节,一次调节就可使环路锁定,而在超前滞后型数字环中每次调节只能使DCO的分频比增大1或减1,需多次调节才能使环路锁定。

实验六

2. 本实验中同步器由同步态转为捕捉态时÷24信号相位为什么不变?

答:

因判决器无输出,与门4无输出,故÷24(24分频)电路无复位脉冲,其输出的÷24信号相位保持不变。

3. 同步保护电路是如何使假识别信号不形成假同步信号的?

答:

假识别信号与或门输出信号不同步,与门1输出中无假识别信号。因而,假识别信号不能通过与门4,所以单稳输出信号仅与中负同步码对应的识别信号有关,而与假识别无关,这样假识别信号就不能形成假同步信号。

实验七

1.本实验系统中,为什么位同步信号在一定范围内抖动时并不发生误码?位同步信号的这个抖动范围大概为多少?在图7-5所示的实际通信系统中是否也存在此现象?为什么。

答:

本实验系统中信道是理想的,无噪声且无码间串扰,只要位同步抖动范围不超过码元宽度就不会发生误码(当BD处于NRZ码中间时)。

图7-5所示实际通信系统中则不存在这种现象。在那里即使位同步信号无任何抖动,由于信道噪声不可能为零,必然有误码。而位同步信号抖动范围越大误码率越大。

2.帧同步信号在对复用数据进行分接时起何作用,用实验结果加以说明。

答:

帧同步信号可以确保分接器对时分复用信号进行正确分接。

实验八

1.画出2DPSK系统七个模块的信号连接图,标出信号流向。

答:

其中手工接线有五根:解调模块CM提供给位同步模块(接位同步模块的S-IN点);位同步模块BS-OUT分别接解调模块BS-IN点和帧同步模块BS-IN点;解调模块AK-OUT分别接帧同步模块S-IN点和终端模块S-IN点。

2.位同步信号的上升沿为什么要处于2DPSK解调器或2FSK解调器的低通滤波器输出信号的码元中心?

答:

通常低通滤波器输出信号在码元中间幅度最大,噪声容限大,因而位同步信号上升沿对准码元中间可使误码率最小。

4.此2DPSK实验系统中,若不能正确传输两路数据,排除故障的最优步骤是什么?

答:

依照信号流程检查各单元,找出故障产生点,予以排除。

0)检查电源输出和接线;

1)信源单元帧同步识别码设置是否正确(K1应设置为×1110010);

2)载波同步单元的锁相环是否完全锁定(调节可变电容使Ud处于同步带中间)3)2DPSK解调单元MU、LPF波形以及Vc电压设置是否正确(调节电位器使MU、LPF波形符合要求,Vc处于LPF中值);

4)位同步单元锁相环是否正确锁定(调节可变电容使BS-OUT抖动足够小);

实验九

2. 设PCM通信系统传输两路话音,每帧三个时隙,每路话音各占一个时隙,另一个时隙为帧同步时隙,使用TP3057编译码器。求:

(1) 编码器的抽样信号频率及时钟信号频率,以及两个抽样信号之间的相位关系。

(2) 时分复用信号码速率、帧结构。

(3) 采用PCM基带传输,线路码为HDB3码,设计此通信系统的详细方框图以及PCM 编译码电路。

(4) 采用PCM/2DPSK频带传输,设计此通信系统的详细方框图。

答:

(1)抽样信号频率为8KHz ,时钟信号频率为192KHz ;

实验十

1. 画出抽样频率分别为8K/4K/2KHz时,理想话音抽样器的输出信号频谱示意图(话音信号频率范围为0.3K~3.4KHz)。

答:

** 阴影表示频谱混叠

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

无线通信原理实验题目

无线通信原理实验题目之二: 实验报告 2.2:两径模型的仿真实验二(**) 实验工具:Mathworks Matlab 实验目的:了解两径模型中的路径损耗,熟练操作matlab 软件;实现内容: 实验代码: clc; Pt = 1;%发送功率归一化0dB ht = 50; %发送天线的高度 hr = 2; %接收天线的高度 db_ht=10*log10(ht); %运用log10,化为db单位 f = 900000000; %频率 c = 300000000; %波速 lam = c/f; %波长即λ R = -1; Gl = 1; %发射天线增益

Gr =1; %接收天线增益 d = 1:100000; %1m~100km db_d = 10*log10(d); %运用log10,化为db单位 l=sqrt((ht-hr)^2 + d.^2) x=sqrt((ht+hr)^2 + d.^2) deltax = x - l; %即时延△x deltafai = 2*pi*deltax/lam; %即△φ Pr = Pt*((lam/(4*pi))^2)*((abs(sqrt(Gl)./l + R*sqrt(Gr)*exp(-j*deltafai)./x)).^2); %接收功率 dc = 4*ht*hr/lam; %临界距离 db_Pr = 10*log10(Pr)-10*log10(Pr(1)); %运用10log10,化为db单位,并归一化起点 plot(db_d,db_Pr,'r'); %Gr=1时,接收功率与距离的关系,红色 hold on; grid on; %网格 plot([db_ht db_ht],[-100 40],'--g'); %绘制临界距离dc,用虚线 plot([10*log10(dc) 10*log10(dc)],[-100 40],'--b'); %绘制临界距离dc,用虚线 legend('两径模型的功率下降','发射天线高度ht','临界距离dc');%对各关系曲线的备注xlabel('10log10(d)'); ylabel('接收功率Pr(dB)'); title('两径模型,接收信号功率'); hold on; plot([0,db_ht],[0,0],'k'); hold on; b1=2*db_ht; x1=10*log10(dc); y1=-2*x1+b1; plot([db_ht,x1],[0,y1],'k'); hold on; b2=y1+4*x1; x2=(-100-b2)/(-4); plot([x1,x2],[y1,-100],'k'); 运行结果:

通信原理实验3

实验三FSK调制及解调实验 一、实验目的 1、掌握用键控法产生FSK信号的方法。 2、掌握FSK非相干解调的原理。 二、实验器材 1、主控&信号源、9号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 FSK调制及解调实验原理框图 2、实验框图说明 基带信号与一路载波相乘得到1电平的ASK调制信号,基带信号取反后再与二路载波相乘得到0电平的ASK调制信号,然后相加合成FSK调制输出;已调信号经过过零检测来识别信号中载波频率的变化情况,通过上、下沿单稳触发电路再相加输出,最后经过低通滤波和门限判决,得到原始基带信号。 四、实验步骤 实验项目一FSK调制 概述:FSK调制实验中,信号是用载波频率的变化来表征被传信息的状态。本项目中,通过调节输入PN序列频率,对比观测基带信号波形与调制输出波形来验证FSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【FSK数字调制解调】。将9号模块的S1拨为0000。调节信号源模块的W2使128KHz载波信号的峰峰值为3V,调节W3使256KHz载波信号的峰峰值也为3V。 3、此时系统初始状态为:PN序列输出频率32KH。 4、实验操作及波形观测。 (1)示波器CH1接9号模块TH1基带信号,CH2接9号模块TH4调制输出,以CH1为触发对比观测FSK调制输入及输出,验证FSK调制原理。 (2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。 答:PN序列输出频率增大后,载波个数会增多。 实验项目二FSK解调 概述:FSK解调实验中,采用的是非相干解调法对FSK调制信号进行解调。实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证FSK解调原理。观测解调输出的中间观测点,如TP6(单稳相加输出),TP7(LPF-FSK),深入理解FSK解调过程。 1、保持实验项目一中的连线及初始状态。 2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、TH8(FSK解调输出),验证FSK解

通信原理实验报告2

通信原理 实验报告 课程名称:通信原理 实验三:二进制数字信号调制仿真实验实验四:模拟信号数字传输仿真实验姓名: 学号: 班级: 2012年12 月

实验三二进制数字信号调制仿真实验 一、实验目的 1.加深对数字调制的原理与实现方法; 2.掌握OOK、2FSK、2PSK功率谱密度函数的求法; 3.掌握OOK、2FSK、2PSK功率谱密度函数的特点及其比较; 4.进一步掌握MATLAB中M文件的调试、子函数的定义和调用方法。 二、实验内容 1. 复习二进制数字信号幅度调制的原理 2. 编写MATLAB程序实现OOK调制; 3. 编写MATLAB程序实现2FSK调制; 4. 编写MATLAB程序实现2PSK调制; 5. 编写MATLAB程序实现数字调制信号功率谱函数的求解。 三、实验原理 在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢程度。由于数字符号是按码元间隔不断产生的,经过将数字符号一一映射为响应的信号波形后,就形成了数字调制信号。根据映射后信号的频谱特性,可以分为基带信号和频带信号。 通常基带信号指信号的频谱为低通型,而频带信号的频谱为带通型。 调制信号为二进制数字基带信号时,对应的调制称为二进制调制。在二进制数字调制中,载波的幅度、频率和相位只有两种变化状态。相应的调制方式有二进制振幅键控(OOK/2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)。 下面分别介绍以上三种调制方法的原理,及其MATLAB实现: 本实验研究的基带信号是二进制数字信号,所以应该首先设计MATLAB程序生成二进制数字序列。根据实验一的实践和第一部分的介绍,可以很容易的得到二进制数字序列生成的MATLAB程序。 假定要设计程序产生一组长度为500的二进制单极性不归零信号,以之作为后续调制的信源,并求出它的功率谱密度,以方便后面对已调信号频域特性和基带信号频域特性的比较。整个过程可用如下程序段实现: %定义相关参数 clear all; close all; A=1 fc=2; %2Hz; N_sample=8; N=500; %码元数 Ts=1; %1 Baud/s dt=Ts/fc/N_sample; %波形采样间隔 t=0:dt:N*Ts-dt; Lt=length(t);

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信原理实验报告4

通信原理实验报告 姓名:王梓骅学号:PB16001824 一、实验目的 ①掌握数字频带传输系统调制解调的仿真过程掌握数字频带传输系统误码率仿真 分析方法 ②掌握二维平面图形的绘制方法,能够使用这些方法进行常用的数据可视化处理二、实验原理 数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式。以BPSK 为例,仿真说明数字频带传输的整个过程 假定:信道为加性高斯白噪声信道,其均值为0、方差为,采用矩形成形;发射端BPSK调制信号为: s(t)= A cos(2p f c t)b k ="1" -A cos(2p f c t)b k="0" kT£t<(k+1)T ì í ? ?? 2

经信道传输,接收端输入信号为: 经相干解调,匹配滤波,定时恢复后输出: x k =A +n k b k ="1"-A +n k b k ="0" ìí ?? ? 当1,0独立等概出现时,BPSK 系统的最佳判决门限电平。故判决规则为 在取样时刻的判决值大于0,判1,小于0,判0。 QPSK 信号可以看作两个载波正交2PSK 信号的合成。用调相法产生QPSK 调制器框图如图12所示,QPSK 的调制器可以看作是由两个BPSK 调制器构成,输入的串行二进制信息序列经过串并变换,变成两路速率减半的序列,电平发生器分别产生双极性的二电平信号I (t )和Q (t ),然后对cosAtω和sinAtω进行调制,相加后即可得到QPSK 信号。 由于QPSK 信号可以看作是两正交2PSK 信号的叠加,故用两路正交的相干载波去解调,这样能够很容易地分离出这两路正交的2PSK 信号。相干解调后的两路并行码元a 和b 经过“并/串”转换后成为串行数据输出。 三、实验内容 1) 分别编写 BPSK 与 QPSK 调制解调系统的 Matlab 仿真程序,要求: ① 发送滤波器与接收滤波器均为根升余弦滚降滤波器; ② 信道噪声为加性高斯白噪声 2) 绘制 BPSK 与 QPSK 调制下的误码率与信噪比曲线图,并与理论曲线进行对比 四、实验数据 ①BPSK 调制解调调制信号的波形:(Ber=0.006) ()()() d y t s t n t =+* d U =

无线通信原理实验报告—李晓-52112113

现代无线通信原理实验 李晓21班13号52112113 实验一Okumura-Hata无线传播模型仿真实验 实验内容 使用Matlab编程计算Okumura-Hata传播路径损耗,绘制Okumura-Hata传播模型损耗---频率曲线图。 实验条件 频率范围:300 ~1500MHz,基站天线高度为30m,移动台天线高度为1.5m。传播距离分别为d=2km和5 km,以频率为变量,通信距离为参变量编程绘出城市准平滑地形、郊区、农村环境下的Okumura-Hata传播模型损耗-频率曲线图。实验要求 在一个图中显示6条曲线; 所有曲线均为蓝色线,d=2km用实线,d=5km用虚线;城区用“o”、郊区用“* ”及乡村用“□”标注曲线上的点; 在曲线图的空白处对曲线进行标注; 图要有横纵坐标标示,横坐标为频率(Mhz),纵坐标为损耗中值(dB) 图形的题头为学生本人姓名和学号。 实验仿真图

200 400600 8001000120014001600 90100 110 120 130 140 150 160 频率(MHz) 损耗中值(d B ) 姓名:李晓 班级:二十一班 学号:52112113 城市: d1=2km 城市: d2=5km 郊区: d1=2km 郊区: d2=5km 乡村: d1=2km 乡村: d2=5km 实验图反映了随着频率,距离以及地点的变化而变化的损耗中值。 实验分析 由图看出 ①路径损耗都随传输距离的增大而增大; ②城市的路径损耗最大,郊区次之,乡村最小,说明障碍物越多对信号传输损耗的就越强; ③随 频 率 的 增 大,路径损耗越强。 附录 Okumura-Hata 传播模型路径损耗计算公式 式中 fc — 工作频率(MHz ) ()() ()69.5526.16log 13.82log 44.9 6.55log log p c te re te cell terrain L dB f h h h d C C α=+--+-++

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

通信原理实验 思考题

通信原理实验思考题 第三章数字调制技术 实验一FSK传输系统实验 实验后思考题: 1.FSK正交调制方式与传统的FSK调制方式有什么区别?有哪些特点? 答:传统的FSK调制方式采用一个模拟开关在两个独立振荡器中间切换,这样产生的波形在码元切换点的相位是不连续的。而且在不同的频率下还需采用不同的滤波器,在应用上非常不方便。采用正交调制的优点在于在不同的频率下可以自适应的将一个边带抑制掉,不需要设计专门的滤波器,而且产生的波形相位也是连续的,从而具有良好的频谱特性。 2.TPi03 和TPi04 两信号具有何关系? 答:正交关系 实验中分析: P28 2. 产生两个正交信号去调制的目的。 答:在FSK 正交调制方式中,必须采用FSK 的同相支路与正交支路信号;不然如果只采一路同相FSK 信号进行调制,会产生两个FSK 频谱信号,这需在后面采用较复杂的中频窄带滤波器。用两个正交信号去调制,可以提高频带利用率,减少干扰。 4.(1)非连续相位 FSK 调制在码元切换点的相位是如何的。 答:不连续的,当包含 N(N 为整数)个载波周期时,初始相位相同的相邻码元的波形(为整数)个载波周期时,和瞬时相位是连续的,当不是整数时,波形和瞬时相位 也是可能不连续的。 P29 1.(2)解调端的基带信号与发送端基带波形(TPi03)不同的原因? 答:这是由于解调端与发送端的本振源存在频差,实验时可根据以下方法调整:将调模块中的跳线KL01置于右端,然后调节电位器WL01,可以看到解调端基带信号与发送端趋于一致。 2.(2)思考接收端为何与发送端李沙育波形不同的原因? 答:李沙育图形的形状与两个输入信号的相位和频率都有关。 3. 为什么在全0或全1码下观察不到位定时的抖动? 答:因为在全0或全1码下接收数据没有跳变沿,译码器无论从任何时刻开始译码均能正确译码,因此译码器无须进行调整,当然就看不到位定时的抖动了。 实验二BPSK传输系统实验 实验后思考题: 1.写出眼图正确观察的方法。 答:眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。 观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”。从“眼图”上可以观察出码间串扰和噪声的影响,从而估计

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

无线通信原理与应用复习题.docx

一、选择题 1?用光缆作为传输的通信方式是_A ____ A有限通信B明显通信C微波通信D无线通信 2.下列选项屮_A—不属于传输设备 A电话机B光缆C微波接收机D同轴电缆 3?网状网拓扑结构中如果网络节点数为6,则连接网络的链路数为_D ________ A10 B 5 C6 D15 4.目前我国的电信网络是_C_级网络结构 A7 B5 C 3 D2 5.国际电信联盟规定话音信号牌的抽样频率为_D_ A3400HZ B5000HZ C6800HZ D8000HZ 6?下列_C_号码不属于我国常用的特殊号码业务。 A110 B122 C911 D114 7.PCM30/32路系统采用的是_B _____ 多路复用技术。 A频分多路复用技术B时分多路复用技术C波分多路复用技术D码分多路复用技术8?我国7号信令网采用的是_C_级网络结构。 A7 B5 C3 D2 9.下列哪两种数字数据编码方式会积累直流分量(多选)_A,C_ A单极性不归零码B双极性不归零C单极性归零码D双极性归零码 10.下列哪种数据交流形式不属于分组交换_A_ A电路交换B ATM交换CIP交换D MPLS交换 11?传统微波频段,频率范围为_D _____ A30~300HZ B30K~300KHZ C300K~3000KHZ D300M~300GHZ 12.下列哪种传输方式不属于无线电波的多径传输方式_B _____ A地波B宁宙射线C对流层反射波D B由空间波 13.关于微波通信补偿技术屮,下列哪项不属于常用的分集接收技术_D_ A频率分集B空间分集C混合分集D时间分集 14.卫星通信的工作频段屮,C频段的工作频段为6/4GHZ,下列哪项关于C频段的表述是正 确的___ C ___ A工作频段为4~6GHZ B工作频段为1.5GHZ C上行频率为6GHZ,下行频率为4GHZ D上彳丁频率为4GHZ,下彳丁频率为6GHZ 15.为保证同步卫星的可通信区域,地球站天线的仰角应为_B ______ AO B5 C大于0 D大于5 正在建设的我国第二代北斗系统是由_A_颗卫星组成 A35 B5 C3 D30 17.ADSL技术采用的是—A_复用技术 A频分复用技术B时分复用技术C波分复用技术D码分复用技术 18.下列哪种xDSL技术是上、下行速率对称的_C— A VDSL B ADSL C SDSL D RADSL 19.ADSL信道传输速率是_C ____ A上行最高1.6Mbits/s,下彳丁最高13Mbits/s B上彳丁最高2.3Mbits/s,下彳丁最高2.3Mbits/s C上行最高IMbits/s,下行最高12Mbits/s D上行最高2Mbits/s,下行最高2Mbits/s

通信原理实验四

实验四数字解调与眼图 一、实验目的 1. 掌握2DPSK 相干解调原理。 2. 掌握2FSK 过零检测解调原理。 二、实验内容 1. 用示波器观察2DPSK 相干解调器各点波形。 2. 用示波器观察2FSK 过零检测解调器各点波形。 三、实验步骤 本实验使用数字信源单元、数字调制单元、载波同步单元、2DPSK 解调单元及2FSK 解调单元,它们之间的信号连结方式如图3-5 所示,其中实线是指已在电路板上布好的,虚线是实验中要连接的。实际通信系统中,解调器需要的位同步信号来自位同步提取单元。本实验中尚未用位同步提取单元,所以位同步信号直接来自数字信源。在做2DPSK 解调实验时,位同步信号送给2DPSK 解调单元,做2FSK 解调实验时则送到2FSK 解调单元。 1. 复习前面实验的内容并熟悉2DPSK 解调单元及2FSK 解调单元的工作原理,接通实验箱电源。 2. 检查数字信源模块、数字调制模块及载波同步模块是否工作正常,使载波同步模块提取的相干载波CAR-OUT 与2DPSK 信号的载波CAR 同相(或反相)。 3. 2DPSK 解调实验 (1)将数字信源单元的BS-OUT 连接到2DPSK 解调单元的BS-IN 点,以信源单元的FS 信号作为示波器外同步信号,将示波器的CH1 接数字调制单元的BK,CH2(请用衰减X10 探头)接2DPSK 解调单元的MU。MU 与BK 同相或反相,其波形应接近图4-3 所示的理论波形。 图4-5 2DPSK解调信号理论波形 (2)示波器的CH2 接2DPSK 解调单元的LPF,可看到LPF 与MU 同相。当一帧内BK 中“1”码“0”码个数相同时,LPF 的正、负极性信号电平与0 电平对称,否则不对称。

通信原理实验报告89077

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

通信原理题目

第一章绪论 填空 1、在八进制中(M=8),已知码元速率为1200B,则信息速率为3600b/s 。 2、在四进制中(M=4),已知信息速率为2400b/s,则码元速率为1200B 。 3、数字通信与模拟通信相比较其最大特点是_占用频带宽和__噪声不积累_。 4、数字通信系统的有效性用传输频带利用率衡量,可靠性用差错率衡量。 5、模拟信号是指信号的参量可连续取值的信号,数字信号是指信号的参量可离散取值的信号。 消息:指通信系统传输的对象,它是信息的载体。是信息的物理形式 信息:是消息中所包含的有效内容。 信号:是消息的传输载体! 信息源的作用就是把各种消息转换成原始信号。 发送设备:产生适合在信道中传输的信号,使发送信号的特性和信道特性相匹配,具有抗信道干扰的能力,可能包含变换、放大、滤波、编码、调制等过程。 简答 1、码元速率与信息速率的关系?R b=R B log2M R b信息传输速率R B码元速率M是进制T B码元长度R B=1/T B 2、按传输信号的复用方式,通信系统如何分类? 答:按传输信号的复用方式,通信系统有三种复用方式,即频分复用、时分复用和码分复用。频分复用是用频谱搬移的方法使不同信号占据不同的频率范围;时分复用是用抽样或脉冲调制方法使不同信号占据不同的时间区间;码分复用则是用一组包含正交的码字的码组携带多路信号。 3、解释半双工通信和全双工通信,并用实际通信系统举例说明? 半双工,双向不同时通信,如:对讲机;双工,双向同时通信,如:移动通信系统 4、简述数字通信系统的基本组成以及各部分功能,画出系统框图。 信源:把各种消息转换成原始信号。 信道:用来将来自发送设备的信号传送到发送端。 信宿:传送消息的目的地。 信源编码/译码:提高信息传输的有效性,二是完成模/数转换。 信道编码/译码:作用是进行差错控制。 加密解密:为了保证所传信息的安全。 数字调制解调:把数字基带信号的频谱搬移到高频处,形成适合在信道传输的带通信号。 第二章确知信号 填空 1、确知信号:是指其取值在任何时间都是确定的和可预知的信号,通常可以用数学公式表示它在任何时间的取值。

通信原理实验报告——xxx

通信原理 实验报告 实验名称:实验一码型变换实验 姓名:xxxx 专业班级:电信xxxxx班 学号:xxxxxxxxxxxxx 中南大学物理与电子学院 X2013年下学期 xx月xx号

码型变换实验: 一、实验目的 1、了解几种常用的数字基带信号。 2、掌握常用数字基带传输码型的编码规则。 3、掌握常用CPLD实现码型变换的方法。 二、实验内容 1、观察NRZ码、RZ码、AMI码HDB3码CMI 码BPH码的波形。 2、观察全0码或者全1码时各码型的波形。 3、观察HDB3码、AMI码的正负极性波形。 4、观察RZ码、AMI码、HDB3码、CMI码、 BPH码经过码型反变换后的输出波形。5、自行设计码型变换电路,下载并观察波 形。 三、实验器材 1、信号源模块 2、编码、译码模块 3、20M双示踪示波器 4、连接线 四、实验结果分析 1、CMI、RZ、BPH码遍解码电路观测

信号源: S1:01110010 S2:01010101 S3:00110011 CMI码: DOUT1波形:1110010 NRZ-OUT输出波形:01010101001100110111 RZ码: DOUT1:11001101

NRZ-OUT输出波形:001100110111001001 DOUT1:10111001001010101

NRZ-OUT输出波形:010110010110011 2、AMI、HDB3码编解码电路观测 S1:01110010 S2:00011000 S3:01000011 AMI码: DOUT1:

DOUT2: AMI-OUT:101001100100110111010011001

通信原理实验二

实验二 数字调制 一、 实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK 、2FSK 、2DPSK 信号的方法。 3、掌握相对码波形与2PSK 信号波形之间的关系、绝对码波形与2DPSK 信号波形之间的关系。 4、了解2ASK 、2FSK 、2DPSK 信号的频谱与数字基带信号频谱之间的关系。 二、实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK 、2FSK 、2PSK 、2DPSK 信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK 、2FSK 、2DPSK 信号的频谱。 三、实验步骤 本实验使用数字信源单元及数字调制单元。 1、熟悉数字调制单元的工作原理。接好电源线,打开实验箱电源开关。 2、用数字信源单元的FS 信号作为示波器的外同步信号,示波器CH1 接信源单元的(NRZ-OUT)AK ,CH2 接数字调制单元的BK ,信源单元的K1、K2、K3 置于任意状态(非全0),观察AK 、BK 波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。 图 2-1 AK 和BK 信号 结论:从图中结果,总结AK 信号和BK 信号的关系为:-1b =n n n a b ⊕,反过来,-1=b n n n a b ⊕。由于异或1相当于取反,异或0相当于保持。所以当-1=0n b 时,b =n n a ,而当-1=1n b 时,b =n n a 。最终的BK 波形由b n 的首个参考相位决定。

3、示波器CH1 接2DPSK,CH2 分别接AK 及BK,观察并总结2DPSK 信号相位变化与绝对码的关系以及2DPSK 信号相位变化与相对码的关系。 图 2-2 AK和2DPSK信号 结论:2DPSK信号在AK码元为“1”时反相。 图 2-3 BK和2DPSK信号 结论:2DPSK信号在BK信号的前后码元不一致时反相。 4、示波器CH1 接AK、CH2 依次接2FSK 和2ASK;观察这两个信号与AK 的关系。 图 2-4 AK信号和2FSK信号 结论: 2FSK信号中,在AK信号码元为“1”是,对应已调波有载波振幅,码元为“0”时,无已调载波波振幅。

通信原理实验报告systemview-数字信号的基带传输

通信原理实验报告 实验名称:数字信号的基带传输 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性;

(3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1)数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器 是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波 器。 升余弦滤波器满足的传递函数为: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=???=+0 1)(0t kT h b 00≠=k k

相关主题
文本预览
相关文档 最新文档