当前位置:文档之家› 基于java的内存管理

基于java的内存管理

基于java的内存管理
基于java的内存管理

仲恺农业工程学院实验报告纸

计算机科学与工程(院、系)网络工程专业083 班组《操作系统》

实验四内存管理

一.实验目的:

1、掌握初步进程在内存中的映像所需要的内存需求。

2、内存的最先分配算法首先实现,再逐步完成最优和最坏的分配算法。二.实验内容:

1、在进程管理的基础上实现内存分配。

2、学生了解实验目的,画出流程框图。

3、复习单向链操作编程,编写全部程序。能够实现多种分配算法。

4、创建和撤消进程时,完成内存的分配和回收操作,必须可以显示空闲内

存块队列状态。注意回收内存时,空闲块的合并操作。

5、学生要在上一次实验的基础上对队列的删除、插入进一步熟练

三.实验步骤和过程

1.分区管理基本原理

给每一个内存中的进程划分一块适当大小的存储区,以连续存储各进程的程序和数据,使各进程得以并发执行。

2. 分区管理可以分为固定分区和动态分区两种方法

A.固定分区法就是把内存区固定地划分为若干个大小不等的区域。分

区划分的原则由一般系统操作员或操作系统决定。例如可划分为长

作业分区和短作业分区。分区一旦划分结束,在整个执行过程中每

个分区的长度和内存的总分区个数将保持不变

B.动态分区的基本思想:在作业作业执行前并不直接建立分区,分区

的建立是在作业的处理过程中进行的。且其大小可随作业或进程对

内存的要求而改变。

C.动态创建分区:在装入程序时按其初始要求分配,或在其执行过程

中通过系统调用进行分配或改变分区大小。

3. 动态分区时的分配与回收

动态分区时的分配与回收主要解决三个问题:

(1)对于请求表中的要求内存长度,分配程序从可用表或自由链中寻找出合适的空闲区。

(2)分配空闲区之后,更新可用表或自由链。

(3)进程或作业释放内存资源时,和相邻的空闲区进行链接合并,更新可用表或自由链。

(4)动态分区时的分配方法从可用表或自由链中寻找空闲区的常用方法有三种:

最先适应法(first fit algorithm):最先适应法要求可用表或自由链按起始地址递增的次序排列。该算法的最大特点是一旦找到大于或等于所要求内存长度的分区,则结束探索。然后,该算法从所找到的分区中划出所要求的内存长度分配给用户,并把余下的部分进行合并(如果有相邻空闲区存在)后留在可用表中,但要修改其相应的表项。

最佳适应算法(best fit algorithm):要求按空闲区大小从小到大的次序组成空闲区可用表或自由链。当用户作业或进程申请一个空闲区时,存储管理程序从表头开始查找,当找到第一个满足要求的空闲区时,停止查找。如果该空闲区大于请求表中的请求长度,则与最先适应法时相同。

将减去请求长度后的剩余空闲区部分留在可用表中。

最坏适应算法(worst fit algorithm):要求空闲区按其大小递减的顺序组成空闲区可用表或自由链。当用户作业或进程申请一个空闲区时,先

检查空闲区可用表或自由链的第一个空闲可用区的大小是否大于或等于所要求的内存长度,若可用表或自由链的第一个项所示空闲区长度小于所要求的,则分配失败,否则从空闲区可用表或自由链中分配相应的存储空间给用户,然后修改和调整空闲区可用表或自由链。

4、动态分区时的回收与拼接

当用户作业或进程执行结束时,存储管理程序要收回已使用完毕的空闲区,并将其插入空闲区可用表或自由链。在将一个新空闲可用区插入可用表或队列时,该空闲区和上下相邻区的关系是下述4种关系之一:

a)该空闲区的上下两相邻分区都是空闲区:将三个空闲区合并为一个空闲区。新空闲区的起始地址为上空闲区的起始地址,大小为三个空闲区之和。空闲区合并后,取消可用表或自由链中下空闲区的表目项或链指针,修改上空闲区的对应项。

b)该空闲区的上相邻区是空闲区:将释放区与上空闲区合并为一个空闲区,其起始地址为上空闲区的起始地址,大小为上空闲区与释放区之和。合并后,修改上空闲区对应的可用表的表目项或自由链指针。

c)该空闲区的下相邻区是空闲区:将释放区与下空闲区合并,并将释放区的起始地址作为合并区的起始地址。合并区的长度为释放区与下空闲区之和。同理,合并后修改可用表或自由链中相应的表目项或链指针。

d)两相邻区都不是空闲区:释放区作为一个新空闲可用区插入可用表或自由链。

5、基本流程图

6、运行环境

Widows7操作系统,eclipse平台!

7.程序设计及测试结果

1)本程序是没有窗口界面,比较容易实现,整个命令行执行结果如下截图:

2)主程序设计:

public static void main(String[] args) throws IOException {

memory mymemory = new memory(100);

System.out.println(" 内存管理程序演示");

while (true) {

System.out.println("输入数字来执行相对应的任务:1->增加进程(a,b,c);2->查看内存分配情况;3->撤销一个进程");

getintflag();

switch (flag) {

case 1:

mymemory.addunit(new unit("a", 2));

mymemory.addunit(new unit("b", 4));

mymemory.addunit(new unit("c", 6));

break;

case 2:

mymemory.printall();

break;

case 3:

mymemory.delunit(mymemory.getName());

}

}

}

四、实验总结与心得

本次实验中,主要目的是掌握初步进程在内存中的映像所需要的内存需求,内存的最先分配算法首先实现,再逐步完成最优和最坏的分配算法。

本实验主要编写单向链操作编程,实现各种分配算法,创建和撤销进程,完成进程的创建,分配内存,进程的撤销,回收内存,还有就是空闲块的合并操作等等。结合实验一的进程管理,进一步领悟内存管理的知识。

参考文献

[1] 孙钟秀,费翔林,骆斌. 操作系统教程[M]. 北京: 高等教育出版社, 2008.

[2] 耿祥义、张跃平Java面向对象程序设计[M] 清华大学出版社2010.

内存管理模型的设计与实现

操作系统课程实验报告 学生姓名:尹朋 班学号:111131 指导教师:袁国斌 中国地质大学信息工程学院 2015年1月4日

实习题目:内存管理模型的设计与实现 【需求规格说明】 对内存的可变分区申请采用链表法管理进行模拟实现。要求: 1.对于给定的一个存储空间自己设计数据结构进行管理,可以使用单个链 表,也可以使用多个链表,自己负责存储空间的所有管理组织,要求采用分页方式(指定单元大小为页,如4K,2K,进程申请以页为单位)来组织基本内容; 2.当进程对内存进行空间申请操作时,模型采用一定的策略(如:首先利用 可用的内存进行分配,如果空间不够时,进行内存紧缩或其他方案进行处理)对进程给予指定的内存分配; 3.从系统开始启动到多个进程参与申请和运行时,进程最少要有3个以上, 每个执行申请的时候都要能够对系统当前的内存情况进行查看的接口; 4.对内存的申请进行内存分配,对使用过的空间进行回收,对给定的某种页 面调度进行合理的页面分配。 5.利用不同的颜色代表不同的进程对内存的占用情况,动态更新这些信息。 【算法设计】 (1)设计思想: 通过建立一个链表,来描述已分配和空闲的内存分区。对于每一个分区,它可能存放了某个进程,也可能是两个进程间的空闲区。链表中的每一个结点,分别描述了一个内存分区,包括它的起始地址、长度、指向下一个结点的指针以及分区的当前状态。 在基于链表的存储管理中,当一个新的进程到来时,需要为它分配内存空间,即为它寻找某个空闲分区,该分区的大小必须大于或等于进程的大小. 最先匹配法:假设新进程的大小为M,那么从链表的首节点开始,将每一个空闲节点的大小与M相比较,直到找到合适的节点.这种算法查找的节点很少,因而速度很快. 最佳匹配算法:搜索整个链表,将能够装得下该进程的最小空闲区分配出去. 最坏匹配法:在每次分配的时候,总是将最大的那个空闲区切去一部分,分配给请求者.它的依据是当一个很大的空闲区被切割成一部分后,可能仍然是一个比较大的空闲区,从而避免了空闲区越分越小的问题. (2)设计表示: 分区结点设计: template class ChainNode { friend Chain; public:

JVM原理以及JVM内存管理机制

一、 JVM简介 JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。JVM工作原理和特点主要是指操作系统装入JVM是通过jdk中Java.exe来完成, 首先来说一下JVM工作原理中的jdk这个东西, .JVM 在整个jdk中处于最底层,负责于操作系统的交互,用来屏蔽操作系统环境,提供一个完整的Java运行环境,因此也就虚拟计算机. 操作系统装入JVM是通过jdk中Java.exe来完成。 通过下面4步来完成JVM环境. 1.创建JVM装载环境和配置 2.装载JVM.dll 3.初始化JVM.dll并挂界到JNIENV(JNI调用接口)实例 4.调用JNIEnv实例装载并处理class类。 对于JVM自身的物理结构,我们可以从下图了解:

JVM的一个重要的特征就是它的自动内存管理机制,在执行一段Java代码的时候,会把它所管理的内存划分 成几个不同的数据区域,其中包括: 1. 程序计数器,众所周知,JVM的多线程是通过线程轮流切换并 分配CPU执行时间的方式来实现的,那么每一个线程在切换 后都必须记住它所执行的字节码的行号,以便线程在得到CPU 时间时进行恢复,这个计数器用于记录正在执行的字节码指令的地址,这里要强调的是“字节码”,如果执行的是Native方法,那么这个计数器应该为null; 2.

3. Java计算栈,可以说整个Java程序的执行就是一个出栈入栈 的过程,JVM会为每一个线程创建一个计算栈,用于记录线程中方法的调用和变量的创建,由于在计算栈里分配的内存出栈后立即被抛弃,因此在计算栈里不存在垃圾回收,如果线程请求的栈深度大于JVM允许的深度,会抛出StackOverflowError 异常,在内存耗尽时会抛出OutOfMemoryError异常; 4. Native方法栈,JVM在调用操作系统本地方法的时候会使用到 这个栈; 5. Java堆,由于每个线程分配到的计算栈容量有限,对于可能会 占据大量内存的对象,则会被分配到Java堆中,在栈中包含了指向该对象内存的地址;对于一个Java程序来说,只有一个Java堆,也就是说,所有线程共享一个堆中的对象;由于Java堆不受线程的控制,如果在一个方法结束之后立即回收这个方法使用到的对象,并不能保证其他线程是否正在使用该对象;因此堆中对象的回收由JVM的垃圾收集器统一管理,和某一个线程无关;在HotSpot虚拟机中Java堆被划分为三代:o新生代,正常情况下新创建的对象会被分配到新生代,但如果对象占据的内存足够大以致超过了新生代的容量限 制,也可能被分配到老年代;新生代对象的一个特点是最 新、且生命周期不长,被回收的可能性高;

操作系统内存管理复习过程

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和 DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内

存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎

基于可重定位分区分配算法的内存管理的设计与实现

组号成绩 计算机操作系统 课程设计报告 题目基于可重定位分区分配算法的内存管理的设计与实现 专业:计算机科学与技术 班级: 学号+: 指导教师: 2016年12月23 日

一.设计目的 掌握内存的连续分配方式的各种分配算法 二.设计内容 基于可重定位分区分配算法的内存管理的设计与实现。本系统模拟操作系统内存分配算法的实现,实现可重定位分区分配算法,采用PCB定义结构体来表示一个进程,定义了进程的名称和大小,进程内存起始地址和进程状态。内存分区表采用空闲分区表的形式来模拟实现。要求定义与算法相关的数据结构,如PCB、空闲分区;在使用可重定位分区分配算法时必须实现紧凑。 三.设计原理 可重定位分区分配算法与动态分区分配算法基本上相同,差别仅在于:在这种分配算法中,增加了紧凑功能。通常,该算法不能找到一个足够大的空闲分区以满足用户需求时,如果所有的小的空闲分区的容量总和大于用户的要求,这是便须对内存进行“紧凑”,将经过“紧凑”后所得到的大空闲分区分配给用户。如果所有的小空闲分区的容量总和仍小于用户的要求,则返回分配失败信息 四.详细设计及编码 1.模块分析 (1)分配模块 这里采用首次适应(FF)算法。设用户请求的分区大小为u.size,内存中空闲分区大小为m.size,规定的不再切割的剩余空间大小为size。空闲分区按地址递增的顺序排列;在分配内存时,从空闲分区表第一个表目开始顺序查找,如果m.size≥u.size且m.size-u.size≤size,说明多余部分太小,不再分割,将整个分区分配给请求者;如果m.size≥u.size且 m.size-u.size>size,就从该空闲分区中按请求的大小划分出一块内存空间分配给用户,剩余的部分仍留在空闲分区表中;如果m.size

第四章 操作系统存储管理(练习题)

第四章存储管理 1. C存储管理支持多道程序设计,算法简单,但存储碎片多。 A. 段式 B. 页式 C. 固定分区 D. 段页式 2.虚拟存储技术是 B 。 A. 补充内存物理空间的技术 B. 补充相对地址空间的技术 C. 扩充外存空间的技术 D. 扩充输入输出缓冲区的技术 3.虚拟内存的容量只受 D 的限制。 A. 物理内存的大小 B. 磁盘空间的大小 C. 数据存放的实际地址 D. 计算机地址位数 4.动态页式管理中的 C 是:当内存中没有空闲页时,如何将已占据的页释放。 A. 调入策略 B. 地址变换 C. 替换策略 D. 调度算法 5.多重分区管理要求对每一个作业都分配 B 的内存单元。 A. 地址连续 B. 若干地址不连续 C. 若干连续的帧 D. 若干不连续的帧 6.段页式管理每取一数据,要访问 C 次内存。 A. 1 B. 2 C. 3 D. 4 7.分段管理提供 B 维的地址结构。 A. 1 B. 2 C. 3 D. 4 8.系统抖动是指 B。 A. 使用计算机时,屏幕闪烁的现象 B. 刚被调出内存的页又立刻被调入所形成的频繁调入调出的现象 C. 系统盘不干净,操作系统不稳定的现象 D. 由于内存分配不当,造成内存不够的现象 9.在 A中,不可能产生系统抖动现象。 A. 静态分区管理 B. 请求分页式管理 C. 段式存储管理 D. 段页式存储管理 10.在分段管理中 A 。 A. 以段为单元分配,每段是一个连续存储区 B. 段与段之间必定不连续 C. 段与段之间必定连续 D. 每段是等长的 11.请求分页式管理常用的替换策略之一有 A 。 A. LRU B. BF C. SCBF D. FPF 12.可由CPU调用执行的程序所对应的地址空间为 D 。 A. 名称空间 B. 虚拟地址空间 C. 相对地址空间 D. 物理地址空间 13. C 存储管理方式提供二维地址结构。 A. 固定分区 B. 分页

操作系统课程设计内存管理

内存管理模拟 实验目标: 本实验的目的是从不同侧面了解Windows 2000/XP 对用户进程的虚拟内存空间的管理、分配方法。同时需要了解跟踪程序的编写方法(与被跟踪程序保持同步,使用Windows提供的信号量)。对Windows分配虚拟内存、改变内存状态,以及对物理内存(physical memory)和页面文件(pagefile)状态查询的API 函数的功能、参数限制、使用规则要进一步了解。 默认情况下,32 位Windows 2000/XP 上每个用户进程可以占有2GB 的私有地址空间,操作系统占有剩下的2GB。Windows 2000/XP 在X86 体系结构上利用二级页表结构来实现虚拟地址向物理地址的变换。一个32 位虚拟地址被解释为三个独立的分量——页目录索引、页表索引和字节索引——它们用于找出描述页面映射结构的索引。页面大小及页表项的宽度决定了页目录和页表索引的宽度。 实验要求: 使用Windows 2000/XP 的API 函数,编写一个包含两个线程的进程,一个线程用于模拟内存分配活动,一个线程用于跟踪第一个线程的内存行为,而且要求两个线程之间通过信号量实现同步。模拟内存活动的线程可以从一个文件中读出要进行的内存操作,每个内存操作包括如下内容: 时间:操作等待时间。 块数:分配内存的粒度。 操作:包括保留(reserve)一个区域、提交(commit)一个区域、释放(release)一个区域、回收(decommit)一个区域和加锁(lock)与解锁(unlock)一个区域,可以将这些操作编号存放于文件。保留是指保留进程的虚拟地址空间,而不分配物理 存储空间。提交在内存中分配物理存储空间。回收是指释放物理内存空间,但在虚拟地址空间仍然保留,它与提交相对应,即可以回收已经提交的内存块。释放是指将物理存储和虚拟地址空间全部释放,它与保留(reserve)相对应,即可以释放已经保留的内存块。 大小:块的大小。 访问权限:共五种,分别为PAGE_READONLY,PAGE_READWRITE ,PAGE_EXECUTE,PAGE_EXECUTE_READ 和PAGE EXETUTE_READWRITE。可以将这些权限编号存放于文件中跟踪线程将页面大小、已使用的地址范围、物理内存总量,以及虚拟内存总量等信息显示出来。

java虚拟机详解 免费

深入理解JVM 1 Java技术与Java虚拟机 说起Java,人们首先想到的是Java编程语言,然而事实上,Java是一种技术,它由四方面组成: Java编程语言、Java类文件格式、Java虚拟机和Java应用程序接口(Java API)。它们的关系如下图所示: 图1 Java四个方面的关系 运行期环境代表着Java平台,开发人员编写Java代码(.java文件),然后将之编译成字节码(.class文件)。最后字节码被装入内存,一旦字节码进入虚拟机,它就会被解释器解释执行,或者是被即时代码发生器有选择的转换成机器码执行。从上图也可以看出Java平台由Java虚拟机和Java应用程序接口搭建,Java 语言则是进入这个平台的通道,用Java语言编写并编译的程序可以运行在这个平台上。这个平台的结构如下图所示:

在Java平台的结构中, 可以看出,Java虚拟机(JVM) 处在核心的位置,是程序与底层操作系统和硬件无关的关键。它的下方是移植接口,移植接口由两部分组成:适配器和Java操作系统, 其中依赖于平台的部分称为适配器;JVM 通过移植接口在具体的平台和操作系统上实现;在JVM 的上方是Java的基本类库和扩展类库以及它们的API,利用Java API编写的应用程序(application) 和小程序(Java applet) 可以在任何Java平台上运行而无需考虑底层平台, 就是因为有Java虚拟机(JVM)实现了程序与操作系统的分离,从而实现了Java 的平台无关性。 那么到底什么是Java虚拟机(JVM)呢?通常我们谈论JVM时,我们的意思可能是: 1. 对JVM规范的的比较抽象的说明; 2. 对JVM的具体实现; 3. 在程序运行期间所生成的一个JVM实例。 对JVM规范的的抽象说明是一些概念的集合,它们已经在书《The Java Virtual Machine Specification》(《Java虚拟机规范》)中被详细地描述了;对JVM的具体实现要么是软件,要么是软件和硬件的组合,它已经被许多生产厂商所实现,并存在于多种平台之上;运行Java程序的任务由JVM的运行期实例单个承担。在本文中我们所讨论的Java虚拟机(JVM)主要针对第三种情况而言。它可以被看成一个想象中的机器,在实际的计算机上通过软件模拟来实现,有自己想象中的硬件,如处理器、堆栈、寄存器等,还有自己相应的指令系统。 JVM在它的生存周期中有一个明确的任务,那就是运行Java程序,因此当Java程序启动的时候,就产生JVM的一个实例;当程序运行结束的时候,该实例也跟着消失了。下面我们从JVM的体系结构和它的运行过程这两个方面来对它进行比较深入的研究。 2 Java虚拟机的体系结构 刚才已经提到,JVM可以由不同的厂商来实现。由于厂商的不同必然导致JVM在实现上的一些不同,然而JVM还是可以实现跨平台的特性,这就要归功于设计JVM时的体系结构了。 我们知道,一个JVM实例的行为不光是它自己的事,还涉及到它的子系统、存储区域、数据类型和指令这些部分,它们描述了JVM的一个抽象的内部体系结构,其目的不光规定实现JVM时它内部的体系结构,更重要的是提供了一种方式,用于严格定义实现时的外部行为。每个JVM都有两种机制,一个是装载具有合适名称的类(类或是接口),叫做类装载子系统;另外的一个负责执行包含在已装载的类或接口中的指令,叫做运行引擎。每个JVM又包括方法区、堆、Java栈、程序计数器和本地方法栈这五个部分,这几个部分和类装载机制与运行引擎机制一起组成的体系结构图为:

JVM调优与JAVA内存管理总结

JVM调优总结 基本回收算法 1.引用计数(Reference Counting) 比较古老的回收算法。原理是此对象有一个引用,即增加一个计数,删除一个引用则减少一个计数。垃圾回收时,只用收集计数为0的对象。此算法最致命的是无法处理循环引用的问题。 2.标记-清除(Mark-Sweep) 此算法执行分两阶段。第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。此算法需要暂停整个应用,同时,会产生内存碎片。 3.复制(Copying) 此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。此算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不会出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。 4.标记-整理(Mark-Compact) 此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。 5.增量收集(Incremental Collecting) 实施垃圾回收算法,即:在应用进行的同时进行垃圾回收。不知道什么原因JDK5.0中的收集器没有使用这种算法的。 6.分代(Generational Collecting) 基于对对象生命周期分析后得出的垃圾回收算法。把对象分为年轻代、年老代、持久代,对不同生命周期的对象使用不同的算法(上述方式中的一个)进行回收。现在的垃圾回收器(从J2SE1.2开始)都是使用此算法的。 分代垃圾回收详述 如上图所示,为Java堆中的各代分布 Young(年轻代) 年轻代分三个区。一个Eden区,两个Survivor区。大部分对象在Eden区中生成。当Eden区满时,还存活的对象将被复制到Survivor区(两个中的一个),当这个Survivor区满时,此区的存活对象将被复制到另外一个Survivor区,当这个Survivor区也满了的时候,从第一个Survivor区复制过来的并且此时还存活的对象,将被复制“年老区(Tenured)”。需要注意,Survivor的两个区是对称的,没先后关系,所以

操作系统内存管理系统

操作系统存管理 1. 存管理方法 存管理主要包括虚地址、地址变换、存分配和回收、存扩充、存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求存空间少的程序,造成存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的存。

2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行存分区的共享。 分区式存储管理引人了两个新的问题:碎片和外碎片。 碎片是占用分区未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。 分区式存储管理常采用的一项技术就是存紧缩(compaction)。

2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有碎片。但它却引入了另一种碎片——外碎片。动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序的要求。若是大于要求,则将该分区分割成两个分区,其中一个分区为要

Elasticsearch Java虚拟机配置详解

JVM参数Elasticsearch默认值Environment变量 -Xms 256m ES_MIN_MEM -Xmx 1g ES_MAX_MEM -Xms and -Xmx ES_HEAP_SIZE -Xmn ES_HEAP_NEWSIZE -XX:MaxDirectMemorySize ES_DIRECT_SIZE -Xss 256k -XX:UseParNewGC + -XX:UseConcMarkSweepGC + -XX:CMSInitiatingOccupancyFraction 75 -XX:UseCMSInitiatingOccupancyOnly + -XX:UseCondCardMark (commented out) 首先你注意到的是,Elasticsearch预留了256M到1GB的堆内存。 这个设置适用于开发和演示环境。开发人员只需要简单的解压发行包,再执 行./bin/elasticsearch -f就完成了Elasticsearch的安装。当然这点对于开发来说非常棒,并且在很多场景下都能工作,但是当你需要更多内存来降低Elasticsearch负载的时候就不行了,你需要比2GB RAM更多的可用内存。

ES_MIN_MEM/ES_MAX_MEM是控制堆大小的配置。新的ES_HEAP_SIZE变量是一个更为便利的选择,因为将堆的初始大小和最大值设为相同。也推荐在分配堆内存时尽可能不要用内存的碎片。内存碎片对于性能优化来说非常不利。 ES_HEAP_NEWSIZE是可选参数,它控制堆的子集大小,也就是新生代的大小。 ES_DIRECT_SIZE控制本机直接内存大小,即JVM管理NIO框架中使用的数据区域大小。本机直接内存可以被映射到虚拟地址空间上,这样在64位的机器上更高效,因为可以规避文件系统缓冲。Elasticsearch对本机直接内存没有限制(可能导致OOM)。 由于历史原因Java虚拟机有多个垃圾收集器。可以通过以下的JVM参数组合启用: JVM parameter Garbage collector -XX:+UseSerialGC serial collector -XX:+UseParallelGC parallel collector -XX:+UseParallelOldGC Parallel compacting collector -XX:+UseConcMarkSweepGC Concurrent-Mark-Sweep (CMS) collector -XX:+UseG1GC Garbage-First collector (G1) UseParNewGC和UseConcMarkSweepGC组合启用垃圾收集器的并发多线程模式。UseConcMarkSweepGC自动选择UseParNewGC模式并禁用串行收集器(Serial collector)。在Java6中这是默认行为。 CMSInitiatingOccupancyFraction提炼了一种CMS(Concurrent-Mark-Sweep)垃圾收集设置;它将旧生代触发垃圾收集的阀值设为75.旧生代的大小是堆大小减去新生代大小。这告诉JVM当堆内容达到75%时启用垃圾收集。这是个估计的值,因为越小的堆可能需要越早启动GC。 UseCondCardMark将在垃圾收集器的card table使用时,在marking之前进行额外的判断,避免冗余的store操作。UseCondCardMark不影响Garbage-First收集器。强烈推荐在高并发场景下配置这个参数(规避card table marking技术在高并发场景下的降低吞吐量的负面作用)。在ElasticSearch中,这个参数是被注释掉的。 有些配置可以参考诸如Apache Cassandra项目,他们在JVM上有类似的需求。 总而言之,ElastciSearch配置上推荐: 1. 不采用自动的堆内存配置,将堆大小默认最大值设为1GB 2.调整触发垃圾收集的阀值,比如将gc设为75%堆大小的时候触发,这样不会影响性能。 3.禁用Java7默认的G1收集器,前提是你的ElasticSearch跑在Java7u4以上的版本上。JVM进程的内存结果 JVM内存由几部分组成: Java代码本身:包括内部代码、数据、接口,调试和监控代理或者字节码指令 非堆内存:用于加载类 栈内存:用于为每个线程存储本地变量和操作数

基于java的学生信息管理系统设计与实现

基于java的学生信息管理系统设计与实现 基于java的学生信息管理系统设计与实现摘要:利用计算机进行学生信息管理,不仅能够保证准确、无误、快速输出,而且还可以利用计算机对有关信息进行查询,检索迅速、查找方便、可靠性高、存储量大、保密性好。本设计就是一个为实现信息化管理而开发的信息管理系统,能够进行信息存储、查询、修改等能功。该系统由六个模块构成,包括学生管理系统的主界面模块、学生信息管理模块、课程信息管理模块、成绩信息管理模块、信息查询模块和数据库操作模块。通过这些模块的有机结合,能方便的对学生信息进行综合管理,从而实现了信息化管理的目的。由于本人的能力有限,设计过程中难免有不足之处,设计中的存在问题本人将在日后进一步修改,以便让程序的设计更加完善。 关键词:oracle;异常处理;关系模型 目录

1 引言 1.1背景及意义 学生信息管理系统是一个教育单位不可缺少的部分。一个功能齐全、简单易用的信息管理系统不但能有效地减轻学校相关工作人员的工作负担,它的内容对于学校的决策者和管理者来说都至关重要。所以学生信息管理系统应该能够为用户提供充足的信息和快捷的查询手段。但一直以来人们使用传统人工的方式管理文件档案、统计和查询数据,这种管理方式存在着许多缺点,如:效率低、保密性差、人工的大量浪费;另外时间一长,将产生大量的文件和数据,这对于查找、更新和维护都带来了不少困难。随着科学技术的不断提高,计算机科学日渐成熟其强大的功能已为人们深刻认识,它已进入人类社会的各个领域并发挥着越来越重要的作用。 作为计算机应用的一部分,使用计算机对学校的各类信息进行管理,具有手工管理无法比拟的优点。例如:检索迅速、查询方便、效率高、可靠性好、存储量大、保密性好、寿命长、成本低等。利用计算机进行学生信息管理,不仅能够保证准确、无误、快速输出,而且还可以利用计算机对有关信息进行查询,检索迅速、查找方便、可靠性高、存储量大、保密性好。要科学地实现信息化管理,开发一个适合学校的,能够进行信息存储、查询、修改等功能的信息管理系统是十分重要的。这些优点能够极大地提高学校信息管理的效率,也是一个单位科学化、正规化管理,与世界接轨的重要条件。 本系统是将现代化的计算机技术和传统的教学、教务工作相结合,按照学院的工作流程设计完成的。通过一个简化的学生信息管理系统,使学生信息管理工作系统化、规范化、自动化,从而达到提高学生信息管理效率的目的。本课题就是针对便于学生信息管理的问题而设计的一个管理系统。 1.2 实验技术选择 本课题设计主要运用的技术有两个:java项目开发和oracle对数据库的操作。这里主要介绍本课题为什么选用这两个开发技术: ⑴首先了解一下Java语言特点

windows操作系统内存管理方式综述

一页式管理 1 页式管理的基本原理将各进程的虚拟空间划分成若干个长度相等的页(page),页式管理把内存空间按页的大小划分成片或者页面(page frame),然后把页式虚拟地址与内存地址建立一一对应页表,并用相应的硬件地址变换机构,来解决离散地址变换问题。页式管理采用请求调页或预调页技术实现了内外存存储器的统一管理。 它分为 1 静态页式管理。静态分页管理的第一步是为要求内存的作业或进程分配足够的页面。系统通过存储页面表、请求表以及页表来完成内存的分配工作。静态页式管理解决了分区管理时的碎片问题。但是,由于静态页式管理要求进程或作业在执行前全部装入内存,如果可用页面数小于用户要求时,该作业或进程只好等待。而且作业和进程的大小仍受内存可用页面数的限制。 2 动态页式管理。动态页式管理是在静态页式管理的基础上发展起来的。它分为请求页式管理和预调入页式管理。 优点:没有外碎片,每个内碎片不超过页大小。一个程序不必连续存放。便于改变程序占用空间的大小(主要指随着程序运行而动态生成的数据增多,要求地址空间相应增长,通常由系统调用完成而不是操作系统自动完成)。 缺点:程序全部装入内存。 要求有相应的硬件支持。例如地址变换机构,缺页中断的产生和选择淘汰页面等都要求有相应的硬件支持。这增加了机器成本。增加了系统开销,例如缺页中断处理机,请求调页的算法如选择不当,有可能产生抖动现象。虽然消除了碎片,但每个作业或进程的最后一页内总有一部分空间得不到利用果页面较大,则这一部分的损失仍然较大。 二段式管理的基本思想 把程序按内容或过程(函数)关系分成段,每段有自己的名字。一个用户作业或进程所包含的段对应一个二维线形虚拟空间,也就是一个二维虚拟存储器。段式管理程序以段为单位分配内存,然后通过地址影射机构把段式虚拟地址转换为实际内存物理地址。 程序通过分段(segmentation)划分为多个模块,如代码段、数据段、共享段。其优点是:可以分别编写和编译。可以针对不同类型的段采取不同的保护。可以按段为单位来进行共享,包括通过动态链接进行代码共享。 三段页式管理的实现原理 1 虚地址的构成 一个进程中所包含的具有独立逻辑功能的程序或数据仍被划分为段,并有各自的段号s。这反映相继承了段式管理的特征。其次,对于段s中的程序或数据,则按照一定的大小将其划分为不同的页。和页式系统一样,最后不足一页的部分仍占一页。这反映了段页式管理中的页式特征。从而,段页式管理时的进程的虚拟地址空间中的虚拟地址由三部分组成:即段号s,页号P和页内相对地址d。虚拟空间的最小单位是页而不是段,从而内存可用区也就被划分成为着干个大小相等的页面,且每段所拥有的程序和数据在内存中可以分开存放。分段的大小也不再受内存可用区的限制。 2 段表和页表

内存管理(操作系统)操作系统课程设计

河南城建学院 《操作系统》课程设计说明书 设计题目:存储管理 专业:计算机科学与技术 指导教师:邵国金 班级:0814121 学号:081412112 姓名: 同组人: 计算机科学与工程学院 2015 年1 月9日

前言 本课程设计是编制页面置换算法FIFO、LRU、LFU、NUR和OPT的模拟程序,并模拟其在内存的分配过程。同时根据页面走向,分别采用FIFO、LRU、LFU、NUR和OPT算法进行页面置换,统计命中率;同时系统可以随意设置当前分配给作业的物理块数。 系统运行时,任意输入一个页面访问序列,可以设定不同的页面置换算法和物理块数,输出其页面淘汰的情况,计算其缺页次数和缺页率。系统结束后,比较同一个页面访问序列,可以得出在不同的页面置换算法和物理块数的情况下,其产生的缺页次数和缺页率。 使用FIFO算法,由于测试数据相同的页面比较少,所以采用FIFO算法时,需要置换的页面多,比较繁琐,没有优化效果,所以FIFO算法性能不好。使用LRU的算法,此组数据显示LRU的算法使用比较繁琐,总的来说,NUR、LFU、LRU 算法介于FIFO和OPT之间。通过系统模拟得出,OPT算法的性能高,LRU、NUR、LRU算法的性能次之,FIFO的算法性能最差,较少应用;由于OPT算法在实际上难于实现,所以实际应用一般用LRU算法。 本程序实现了操作系统中页式虚拟存储管理中缺页中断理想型淘汰算法,该算法在访问串中将来再也不出现的或是在离当前最远的位置上出现的页淘汰掉。这样,淘汰掉该页将不会造成因需要访问该页又立即把它调入的现象。该程序能按要求随机确定内存大小,随机产生页面数,进程数,每个进程的页数,给进程分配的页数等,然后运用理想型淘汰算法对每个进程进行计算缺页数,缺页率,被淘汰的序列等功能。

深入理解Java虚拟机笔记(带目录)

目录 1.虚拟机内存结构 (1) 2.对象在内存中的布局 (3) 3.判断对象是否死亡 (4) 4.引用的4中情况 (4) 5.垃圾收集算法 (5) 6.HotSpot虚拟机算法实现 (6) 7.如何在GC发生时让所有线程都要附近的安全点停下 (6) 8.垃圾收集器 (7) 9.GC日志 (9) 10.内存分配 (10) 11.Class类文件的结构 (10) 12.类的生命周期 (13) 13.类加载器 (15) 14.运行时栈帧的结构 (16) 15. 方法调用 (18) 16. 分派 (19) 17.虚方法表 (19) 18.Java内存模型(JMM) (19) 19.内存间的交互 (20) 20.volatile变量 (20) 21.原子性 (21) 22.可见性 (22) 23.有序性 (22) 24.先行发生原则 (22) 25.Java线程调度 (23) 26.线程的状态 (24) 27.线程安全 (25) 28.线程安全的实现方法 (26) 29.锁优化 (27) 30.编译优化技术 (29) 1.虚拟机内存结构 线程私有:虚拟机栈,本地方法栈,程序计数器 线程共享:堆,方法区(包括运行时常量池)

1.1程序计数器 当前程序锁执行的字节码行号指示器,记录下一条需要执行的 指令。 1.2虚拟机栈 生命周期与线程相同,每个方法在执行时都会创建一个栈帧。 方法执行的过程,就是栈帧入栈到出栈的过程。 栈帧用于存放局部变量表,操作数栈,动态链接,方法出口等 信息。 局部变量表存放了编译期可知的基本数据类型和对象引用。1.3 本地方法栈 为虚拟机使用到的Native方法服务。 目前HotSpot虚拟机将本地方法栈和虚拟机栈合二为一。 1.4堆 存放对象实例,所有线程共享。 1.5 方法区(永久代) 存放被虚拟机加载的类信息,常量,静态变量,即时编译器编 译后的代码等。

操作系统实验进程调度和内存管理java语言版本

源代码: 第一个类:divDTO publicclassdivDTO { privateintdivBase; privateintlength; privateintdivFlag; publicdivDTO(intdivBase,intlength,intdivFlag) { this.divBase=divBase; this.divFlag=divFlag; this.length=length; } publicdivDTO() { }

{ this.divBase=base; } publicintgetDivBase() { returnthis.divBase; } publicvoidsetLength(intlength) { this.length=length; } publicintgetLength() { returnthis.length; }

{ this.divFlag=flag; } publicintgetDivFalg() { returnthis.divFlag; } } 2.第二个类:PcbDTO publicclassPcbDTO { staticfinalintRunning=1; staticfinalintReady=2; staticfinalintWaiting=3; privateStringprocessName;

privateintrunTime; privateintprority; privateintprocessState; privateintbase; privateintlimit; privateintpcbFlag; publicPcbDTO(Stringname,inttime,intpro,intbase,intlimit) { this.processName=name; this.runTime=time; this.prority=pro; this.processState=0; this.limit=limit; this.base=base; } publicPcbDTO()

计算机操作系统试题库new

计算机操作系统试题 一填空: 1.操作系统为用户提供三种类型的使用接口,它们是命令方式和系统调用和图形用户界面。 2.主存储器与外围设备之间的数据传送控制方式有程序直接控制、中断驱动方式、DMA方式和通道控制方式。 3.在响应比最高者优先的作业调度算法中,当各个作业等待时间相同时,运行时间短的作业将得到优先调度;当各个作业要求运行的时间相同时,等待时间长的作业得到优先调度。 4.当一个进程独占处理器顺序执行时,具有两个特性:封闭性和可再现性。 5.程序经编译或汇编以后形成目标程序,其指令的顺序都是以零作为参考地址,这些地址称为逻辑地址。 6.文件的逻辑结构分流式文件和记录式文件二种。 7.进程由程度、数据和FCB组成。 9.操作系统是运行在计算机裸机系统上的最基本的系统软件。11.文件系统中,用于文件的描述和控制并与文件一一对应的是文件控制块。 12.段式管理中,以段为单位,每段分配一个连续区。由于各段长度不同,所以这些存储区的大小不一,而且同一进程的各段之间不要求连续。 13.逻辑设备表(LUT)的主要功能是实现设备独立性。

17.文件的物理结构分为顺序文件、索引文件和索引顺序文件。18.所谓设备控制器,是一块能控制一台或多台外围设备与CPU并行工作的硬件。 20分页管理储管理方式能使存储碎片尽可能少,而且使存利用率较高,管理开销小。 20.计算机操作系统是方便用户、管理和控制计算机软硬件资源的系统软件。 21.操作系统目前有五大类型:批处理操作系统、分时操作系统、实时操作系统、网络操作系统和分布式操作系统。 22.按文件的逻辑存储结构分,文件分为有结构文件,又称为记录式文件和无结构文件,又称流式文件。 23.主存储器与外围设备之间的信息传送操作称为输入输出操作。 24、在设备管理中,为了克服独占设备速度较慢、降低设备资源利用率的缺点,引入了虚拟分配技术,即用共享设备模拟独占设备。 25、常用的存管理方法有分区管理、页式管理、段式管理和段页 式管理。 26、动态存储分配时,要靠硬件地址变换机构实现重定位。 27、在存储管理中常用虚拟存储器方式来摆脱主存容量的限制。 28、在请求页式管理中,当硬件变换机构发现所需的页不在存时,产生缺页中断信号,中断处理程序作相应的处理。 30、在段页式存储管理系统中,面向用户的地址空间是段式划分,面向物理实现的地址空间是页式划分。

Java虚拟机的内存结构

我们都知道虚拟机的内存划分了多个区域,并不是一张大饼。那么为什么要划分为多块区域呢,直接搞一块区域,所有用到内存的地方都往这块区域里扔不就行了,岂不痛快。是的,如果不进行区域划分,扔的时候确实痛快,可用的时候再去找怎么办呢,这就引入了第一个问题,分类管理,类似于衣柜,系统磁盘等等,为了方便查找,我们会进行分区分类。另外如果不进行分区,内存用尽了怎么办呢?这里就引入了内存划分的第二个原因,就是为了方便内存的回收。如果不分,回收内存需要全部内存扫描,那就慢死了,内存根据不同的使用功能分成不同的区域,那么内存回收也就可以根据每个区域的特定进行回收,比如像栈内存中的栈帧,随着方法的执行栈帧进栈,方法执行完毕就出栈了,而对于像堆内存的回收就需要使用经典的回收算法来进行回收了,所以看起来分类这么麻烦,其实是大有好处的。 提到虚拟机的内存结构,可能首先想起来的就是堆栈。对象分配到堆上,栈上用来分配对象的引用以及一些基本数据类型相关的值。但是·虚拟机的内存结构远比此要复杂的多。除了我们所认识的(还没有认识完全)的堆栈以外,还有程序计数器,本地方法栈和方法区。我们平时所说的栈内存,一般是指的栈内存中的局部变量表。下面是官方所给的虚拟机的内存结构图

从图中可以看到有5大内存区域,按照是否被线程所共享可分为两部分,一部分是线程独占区域,包括Java栈,本地方法栈和程序计数器。还有一部分是被线程所共享的,包括方法区和堆。什么是线程共享和线程独占呢,非常好理解,我们知道每一个Java进行都会有多个线程同时运行,那么线程共享区的这片区域就是被所有线程一起使用的,不管有多少个线程,这片空间始终就这一个。而线程的独占区,是每个线程都有这么一份内存空间,每个线程的这片空间都是独有的,有多少个线程就有多少个这么个空间。上图的区域的大小并不代表实际内存区域的大小,实际运行过程中,内存区域的大小也是可以动态调整的。下面来具体说说每一个区域的主要功能。

相关主题
文本预览
相关文档 最新文档