当前位置:文档之家› 用于氢燃料电池电堆的集流板的制作方法

用于氢燃料电池电堆的集流板的制作方法

用于氢燃料电池电堆的集流板的制作方法
用于氢燃料电池电堆的集流板的制作方法

图片简介:

本技术涉及一种用于氢燃料电池电堆的集流板,包括集流板本体,集流板本体为金属板状,集流板本体由集流面和接线端两部分构成,集流面用于与电堆的石墨极板接触以收集电堆的电流,接线端用于与测试导线连接,集流面采用非平面结构,并通过非平面结构的凸起部分与石墨极板接触,接线端设置有螺丝孔和快插结构,快插结构与测试导线上的快插接头配合,以实现测试时快速插拔;本技术同现有技术相比,可以在很大程度上避免缺陷或者杂物周围造成的大面积悬空,增加了有效接触面积,且该结构对材料、加工精度、组装车间的清洁度的要求大大降低,节省了生产成本,同时实现了测试时快速插拔,增加了测试效率。

技术要求

1.一种用于氢燃料电池电堆的集流板,包括集流板本体,所述集流板本体为金属板状,其特征在于:所述集流板本体由集流面(1)和接线端(2)两部分构成,所述集流面(1)用于与电堆的石墨极板接触以收集电堆的电流,所述接线端(2)用于与测试导线连接,所述集流面(1)采用非平面结构,并通过非平面结构的凸起部分与石墨极板接触,所述接线端(2)设置有螺丝孔(3)和快插结构(4),所述快插结构(4)与测试导线上的快插接头配合,以实现测试时快速插拔。

2.如权利要求1所述的用于氢燃料电池电堆的集流板,其特征在于:所述集流面(1)的表

面设计有凹凸结构,所述凹凸结构的凸起部分与石墨极板接触以收集电流。

3.如权利要求2所述的用于氢燃料电池电堆的集流板,其特征在于:所述凹凸结构呈阵列分布于集流面(1)的表面,所述凹凸结构为若干个横截面呈圆形的圆锥台凸起(5)或横截面呈椭圆形的椭圆锥台凸起(6)。

4.如权利要求2所述的用于氢燃料电池电堆的集流板,其特征在于:所述凹凸结构呈阵列分布于集流面(1)的表面,所述凹凸结构采用若干个小梯形方块、圆凸点、麻点,或采用喷砂表现形式。

技术说明书

一种用于氢燃料电池电堆的集流板

[技术领域]

本技术涉及燃料电池技术领域,具体地说是一种用于氢燃料电池电堆的集流板。

[背景技术]

氢燃料电池电堆(简称电堆)中,集流板一般采用金属铜板,加工成所需形状,集流板的结构分为集流面和接线端两部分,集流面用于与电堆的石墨极板接触,收集电堆的电流,接线端用于与外部导线连接,为负载供电。为减小接触电阻,目前现有的集流板与石墨极板接触的集流部分一般对石墨极板和集流板都要求有很高的平整度,如果石墨极板或者集流板加工时有表面缺陷,或者组装时有灰尘等杂物混入,则会导致缺陷处或者杂物处周围很大面积悬空,造成接触面减小,接触电阻增大。为减小此种情况发生,对材料、加工精度、组装车间的清洁度都有非常高的要求。

此外,与导线连接的接线端,常规做法是打一个或者几个通孔,与导线连接使用螺丝连接。此种方式接线可靠,但是由于电堆生产过程中会经过多次测试,需要多次装卸螺丝,操作复杂,不利于测试过程,特别是在小功率电堆中,电流不大,装卸螺丝的必要性不大,显得有些繁琐。

[技术内容]

本技术的目的就是要解决上述的不足而提供一种用于氢燃料电池电堆的集流板,能够在很大程度上避免缺陷或者杂物周围造成的大面积悬空,增加了有效接触面积,且实现了测试时快速插拔,增加了测试效率。

为实现上述目的设计一种用于氢燃料电池电堆的集流板,包括集流板本体,所述集流板本体为金属板状,所述集流板本体由集流面1和接线端2两部分构成,所述集流面1用于与电堆的石墨极板接触以收集电堆的电流,所述接线端2用于与测试导线连接,所述集流面1采用非平面结构,并通过非平面结构的凸起部分与石墨极板接触,所述接线端2设置有螺丝孔3和快插结构4,所述快插结构4与测试导线上的快插接头配合,以实现测试时快速插拔。

进一步地,所述集流面1的表面设计有凹凸结构,所述凹凸结构的凸起部分与石墨极板接触以收集电流。

进一步地,所述凹凸结构呈阵列分布于集流面1的表面,所述凹凸结构为若干个横截面呈圆形的圆锥台凸起5或横截面呈椭圆形的椭圆锥台凸起6。

进一步地,所述凹凸结构呈阵列分布于集流面1的表面,所述凹凸结构采用若干个小梯形方块、圆凸点、麻点,或采用喷砂表现形式。

本技术同现有技术相比,与电堆石墨极板接触的集流面不使用平面结构,而是采用非平面结构,即在表面加工成凹凸结构,该结构使得在有表面缺陷或者杂物情况下,可以在很大程度上避免缺陷或者杂物周围造成的大面积悬空,增加了有效接触面积;且该结构对材料、加工精度、组装车间的清洁度的要求大大降低,节省了生产成本,同时也增加了集流板的韧性和抗振动时的抗冲击能力。此外,本技术与导线连接部分,除螺丝孔外,增加了快插结构,只需在测试导线上增加快插接头,即可在测试时快速插拔,增加了测试效率,具有组装简单,生产效率高的优点,值得推广应用。

[附图说明]

图1是本技术的结构示意图一;

图2是图1的俯视结构示意图;

图3是本技术的结构示意图二;

图4是图3的俯视结构示意图;

图中:1、集流面 2、接线端 3、螺丝孔 4、快插结构 5、圆锥台凸起 6、椭圆锥台凸起。[具体实施方式]

下面结合附图对本技术作以下进一步说明:

如附图所示,本技术提供了一种用于氢燃料电池电堆的集流板,包括集流板本体,集流板本体为金属板状,集流板本体由集流面1和接线端2两部分构成,集流面1用于与电堆的石墨极板接触以收集电堆的电流,接线端2用于与测试导线连接,集流面1采用非平面结构,并通过非平面结构的凸起部分与石墨极板接触,接线端2设置有螺丝孔3和快插结构4,快插结构4与测试导线上的快插接头配合,以实现测试时快速插拔。其中,集流面1的表面设计有凹凸结构,凹凸结构的凸起部分与石墨极板接触以收集电流。该凹凸结构呈阵列分布于集流面1的表面,可以为若干个横截面呈圆形的圆锥台凸起5(如附图1和附图2所示)或横截面呈椭圆形的椭圆锥台凸起6(如附图3和附图4所示),也可以采用若干个小梯形方块、圆凸点、麻点,或采用喷砂表现形式。

本技术所述的用于氢燃料电池电堆的集流板,包括集流面,集流面采用非平面结构,其中一种方案是表面设计凹凸结构。集流面的凹凸结构的凸起部分与石墨极板接触,用于收集电流。该凹凸结构在理想情况下,虽然减小了接触面积,但是在实际应用中,在有表面缺陷或者杂物情况下,这种结构可以在很大程度上避免缺陷或者杂物周围造成的大面积悬空,增加了有效接触面积,从而对材料、加工精度、组装车间的清洁度的要求大大降低,节省了生产成本。接线端为与导线连接部分,接线端除螺丝孔外,增加了一个快插结构;螺丝孔用于产品生产时的接线,稳定可靠;只需在测试导线上增加快插接头,即可在测试时快速插拔,增加了测试效率,即快插结构主要用于测试时快速连接,增加测试的便捷性和测试效率,在一些振动不大的场合,也可以用于生产的连接。

本技术与传统集流板的不同点在于:(1)集流面不同,传统集流面采用平面结构,而本技术采用非平面结构。通常集流板上总压力是固定的,虽然理想情况下非平面结构的接触面积小,但接触面上的压强增大,而经验值中接触电阻与压力成反比,接触部分接触电阻减小,抵消了因接触面减小后带来的电阻增大,总接触电阻不变。非平面结构有多种形式,本方案是采用圆锥台凸起或椭圆锥台凸起,但是本技术并不局限于这种结构,还可以采用若干个小梯形方块、圆凸点、麻点,或采用喷砂表现形式。该处理方式的好处是,不但理想情况下未增加接触电阻,还在非理想情况下避免了因材料缺陷或者杂物周围造成的大面积悬空造成的接触电阻增大,对材料、加工精度、组装车间的清洁度的要求大大降低,节省了生产成本;另外也增加了集流板的韧性和抗振动时的抗冲击能力。

(2)接线端不同,传统接线端开孔,使用螺丝与外部导线连接,本技术保留了螺丝孔,增加了快插结构,测试设备的导线可增加对应的接插件,测试时快速连接,增加测试效率。在一部分小功率且振动不大的场合的应用中,快插结构也可以直接用在产品中,具有组装简单,生产效率高的优点。

本技术并不受上述实施方式的限制,其他的任何未背离本技术的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本技术的保护范围之内。

(完整版)工厂设计说明书

说明书目录第一章总论 第一节设计依据和范围 第二节设计原则 第三节建筑规模和产品方案 第四节项目进度建议 第五节主要原辅料供应情况 第六节厂址概述 第七节公用工程和辅助工程 第二章总平面布置及运输 第一节总平面布置 第二节工厂运输 第三章劳动定员 第四章车间工艺 第一节工艺流程及相关工艺参数 第二节物料衡算 第三节车间设备选型配套明细表 第五章管道设计 第一节管道计算与选用 第二节管道附件与选用 第三节管路布置 第六章项目经济分析 第一节产品成本与售价 第二节经济效益 第三节投资回收期

第一章总论 第一节设计依据和范围 一、设计依据 设计依据食品工厂建设的国家标准,拟建工厂所在地理位置、地势环境、水源充足、原料来源,交通运输、消费市场等进行设计。工厂的设计符合经济建设的总原则、长远规划和地区发展,符合各行业开发发展政策,同时也符合本行业的法规政策。 二、建筑制图标准 建筑制图标准符合中华人民共和国建设部颁布的 《房屋建筑制图统一标准》GB/T 50001-2001、 《总图制图标准》GB/T 50103-2001、 《建筑制图标准》GB/T 50104-2001、 《建筑结构制图标准》GB/T 50105-2001、 《给水排水制图标准》GB/T 50106-2001 《暖通空调制图标准》GB/T 50114 《建筑中水设计规范》GB50336—2002 三、生产用水 工厂应有足够的生产用水,水压和水温均应满足生产需要;水质应符合GB5749的规定。如需配备贮水设施,应有防污染措施,并定期清洗、消毒。 非饮用水不与产品接触的冷却用水、制冷用水、消防用水、蒸汽用水等必须用单独管道输送,不得与生产(饮用)用水系统交叉连接,或倒吸入生产用水系统中。这些管道应有明显的颜色区别。 蒸汽用水直接或间接用于加工产品的蒸汽用水,不得含有影响人体健康或污染产品的物质。 四.厂区道路 厂区路面应坚硬(如混凝土或沥青路面)无积水。停车场及其他场地的地面为混凝土。其他地带应绿化,应有良好的排水系统。

国内外燃料电池电堆及组件

国内外燃料电池电堆及组件 电堆是发生电化学反应的场所,也是燃料电池动力系统核心部分,由多个单体电池以串联方式层叠组合构成。将双极板与膜电极交替叠合,各单体之间嵌入密封件,经前、后端板压紧后用螺杆紧固拴牢,即构成燃料电池电堆。电堆工作时,氢气和氧气分别由进口引入,经电堆气体主通道分配至各单电池的双极板,经双极板导流均匀分配至电极,通过电极支撑体与催化剂接触进行电化学反应。 图1氢燃料电池电堆构成 国外乘用车厂大多自行开发电堆,并不对外开放,例如丰田、本田、现代等。也有少数采用合作伙伴的电堆来开发发动机的乘用车企业,例如奥迪(采

用加拿大巴拉德定制开发的电堆)和奔驰(采用奔驰与福田的合资公司AFCC 的电堆)。乘用车因为空间限制,目前只能采用高压金属板电堆的技术方案。目前国外可以单独供应车用燃料电池电堆的知名企业主要有加拿大的Ballard 和Hydrogenics,欧洲和美国正在运营的燃料电池公交车绝大多数采用这两家公司的石墨板电堆产品,已经经过了数千万公里、数百万小时的实车运营考验,这两家加拿大电堆企业都已经具备了一定产能,Ballard还与广东国鸿设立了合资企业生产9SSL电堆。 此外还有一些规模较小的电堆开发企业,例如英国的Erlingklinger,荷兰的Nedstack等,在个别项目有过应用,目前产能比较有限。 国内能够独立自主开发电堆并经过多年实际应用考验的只有大连新源动力和上海神力两家企业,大连新源动力采用的是金属板和复合板的技术路线,与上汽合作,开发了荣威950乘用车和上汽V80客车。上海神力成立于1998年,是中国第一家专业的燃料电池电堆研发生产企业,目前两家都建成了燃料电池电堆中试线,正处于从小批量到产业化转化的关键阶段。另外有一些新兴的燃料电池电堆企业,例如弗尔塞、北京氢璞、武汉众宇等,也开发出燃料电池电堆样机和生产线,正处于验证阶段。

产品包装生产线课程设计(方案三)。

课程设计说明书 课程名称:机械原理课程设计 设计题目:产品包装生产线(方案三) 院(系):船舶与海洋工程学院 专业:机械设计制造及其自动化 班级: 12级机械四班 班号: 1213104 设计者:刘胜男 学号:121310402 指导老师:杨绪剑 设计时间:2014.06.30-2014.07.07 哈尔滨工业大学(威海)

产品包装生产线(方案3) 1.设计课题概述 如下图所示,输送线1上为小包装产品,其尺寸为长?宽?高 200200600??=,采取步进式输送方式,送第一包产品至托盘A 上(托盘A 上平面与输送线1的上平面同高)后,托盘A 下降00mm 2,第二包产品送到后,托盘A 上升00mm 2,然后,把产品推入输送线2。原动机转速为2400rpm ,产品输送数量分三档可调,每分钟向输送线2分别输送 8 ,16 , 24 件小包装产品。 图1功能简图 2.设计课题工艺分析 由题目和功能简图可以看出,推动产品在输送线1上运动的是执行机构1,在A 处使产品上升,下降的是执行构件2,在A 处把产品推到下一个工位的是执行构件3,三个执行构件的运动协调关系如图所示。 T3 T2 T 1 执行构件 运动情况 执行构件1 进 退 进 退 进 退 进 退 执行构件2 停 降 停 升 停 降 停 升 执行构件3 停 进 退 停 图2 运动循环图 图1中T 1为执行构件1的工作周期,T 2是执行构件2的工作周期,T 3是执A 21280

行构件3的工作周期。由图2可以看出,执行构件1是作连续往复移动的,而执行构件2则有一个间歇往复运动,执行构件3作一个间歇往复运动。三个执行构件的工作周期关系为:2T 1= T 2。执行构件3的动作周期为其工作周期的1/4。 3.设计课题运动功能分析及运动功能系统图 根据前面的分析可知,驱动执行构件1工作的执行机构应该具有运动功能如图3所示。该运动功能把一个连续的单向转动转换为连续的往复移动,主动件每转动一周,从动件(执行构件1)往复运动两次,主动件的转速分别为4、8、12 rpm 。 图3 执行机构1的运动功能 由于电动机转速为2400rpm ,为了在执行机构1的主动件上分别得到4、8、12 rpm 的转速,则由电动机到执行机构之间的传动比i z 有3种分别为: 20012 2400300824006004 2400332211====== ===n n i n n i n n i z z z 总传动比由定传动比i c 与变传动比i v 组成,满足以下关系式: i z1 = i c i v1 i z2=i c i v2 i z3=i c i v3 三种传动比中i z1最大,i z3最小。由于定传动比i c 是常数,因此3种变传动比中i v1最大,i v3最小。若采用滑移齿轮变速,其最大传动比最好不要大于4,即: i v1≤4 令: i v1=4 则有: 1504 60011===v z c i i i 故变传动比的其他值为: 3 41502002150 3003322======c z v c z v i i i i i i

氢燃料电池应用于无人机行业面临的几大核心问题

氢燃料电池应用于无人机行业面临的几大核心问题 来源:宇辰网 自4月10日,无人机企业科比特航空发布HYDrone-1800的多旋翼无人机以来,整个行业就沸腾起来,不断争论氢燃料动力系统目前是否能应用在工业级无人机行业。笔者就此总结了目前关于氢燃料电池大家争论的几个核心问题: 1.氢燃料电池技术是否成熟 2.氢气的来源问题 3.氢气的存储及安全问题 带着这些问题,笔者查阅了一些文章,采访了多位电力系统的专家,在这里粗浅地谈一下氢燃料电池在无人机行业的应用情况。 首先,氢燃料电池不是什么新技术 不管在国内还是国外,不管是航空还是汽车,氢燃料电池都不算是新技术了。 早在20世纪60年代,氢燃料电池就已经成功地应用于航天领域。往返于太空和地球之间的“阿波罗”飞船就安装了这种体积小、容量大的装置。

进入70年代以后,随着人们不断地掌握多种先进的制氢技术,氢燃料电池就被运用于发电和汽车。波音公司于2008年4月3日成功试飞一架以氢燃料电池为动力源的小型飞机。 2008年奥运会期间,上海大众提供了20辆帕萨特领驭氢燃料电池汽车,作为奥运之行的“绿色车队”。 在2015年初的美国拉斯维加斯消费电子展(CES)上,丰田宣布14年底量产的氢燃料电池汽车Mirai将于晚些时候正式商用,并宣布免费开放与燃料电池相关的全部专利;2015年东京车展上,本田发布了氢燃料电池车Clarity,号称续航700km。除此外,雷克萨斯、奔驰等一众国际豪华汽车品牌纷纷推出了自己的氢燃料电池车。 虽然车展样车和实用性技术还有一定的差距,但氢能被认为是连接化石能源向可再生能源过渡的重要桥梁,实现能源可持续供给和循环的重要能源载体之一。 那么,氢能源的工作原理是什么 氢燃料电池是使用氢这种化学元素,制造成储存能量的电池。其基本原理是电解水的逆反应,把氢和氧分别供给阴极和阳极,氢在阳极变成氢离子(质子)通过电解质转移到阴极,同时放出电子通过外部的负载到达阴极,与氧气发生反应生成水。

拖二全自动平面口罩生产线说明书

一拖二全自动平面口罩机生产线使用说明书 1. 适用于生产一次性平面口罩。 2. 此产线生产出来的口罩是否医用与机器无关,口罩只要经过消毒并解析,此产线生产出来的口罩是可以用来做外科医用口罩的。 3. 通过更换模具可以生产不同尺寸和不同款式的口罩。 4.平面口罩生产线采用铝合金结构,光洁度好,不生锈。 用户接受两天现场培训或者通过视频教学,就能自主完成机器调试与生产操作。 机器功能 1. 原材料自动输送 2. 原材料定形自动输送 3. 自动切断鼻梁条 4. 口罩长度方向边缘焊接 5. 折边 6. 口罩宽度方向边缘焊接 7. 成型剪切

8.下料 全自动高速平面型耳带口罩生产线,包括自动送原材料,自动输送,切断鼻梁条,口罩边缘焊接,折叠、超音波熔合、成型、切断等全制程自动化,完成从卷料原材料到口罩成品的整个生产过程。 1、高速全自动一拖二平面口罩机生产线由一台本体机和一台耳带机连接。本体机输出口罩 本体后由输送带结构将口罩本体片输送到翻转机构处,通过翻转机构将口罩盘翻转到连接耳带机的输送带上,再通过输送带将口罩片输送到耳带机的正面第一个口罩盘上方,最后通过气缸下压把口罩片放置到耳带机的口罩盘内,后续由耳带机完成口罩的耳带熔接,包边等动作,从而完成一个耳带口罩产品的生产。 2、高速全自动一拖二平面口罩机生产线主要用于平面式口罩自动成型:整卷布料放卷后经过滚轮驱动,布料通过自动折边、包边;鼻梁条整卷牵引开卷,定长裁切后导入至包边布料中,双边通过超声焊接至封口,再经过超声侧向封口,通过切刀裁切成型;通过流水线将口罩输送至两个口罩耳带熔接工位,通过超声焊接最终口罩成型;当口罩制成后,通过流水线输送至平带线收集。 3、产线特点: 1、整台设备全自动化。 2、稳定性高,故障率低,美观坚固不生锈。 3、电脑PLC编程控制,伺服驱动,自动化程度高。 4、原材料自动张力控制,保证原材料张力均衡。 5、光电(光纤)检测原料,避免失误减少浪费。 4、机械特点:

氢燃料电池控制策略培训课件

氢燃料电池控制策略

目录 30KW车用氢燃料电池控制策略 ............................ 错误!未定义书签。目录 (2) 1控制策略的依据 (4) 230KW车用氢燃料电池控制策略 (5) 2.1P&ID (6) 2.2模块技术规范 (7) 2.3用户接口 ................................................... 错误!未定义书签。 2.4系统量定义 (9) 2.5电堆电芯(CELL)电压轮询检测策略 (11) 2.5.1Cell巡检通道断线诊断处理 .................. 错误!未定义书签。 2.5.2Cell巡检通道断线诊断结果处理........... 错误!未定义书签。 2.6Cell电压测算............................................. 错误!未定义书签。 2.7电堆健康度SOH评估............................... 错误!未定义书签。 2.7.1特性曲线电阻段对健康度的评估方法.. 错误!未定义书签。 2.8ALARM和FAULT判定规则 (11) 2.9工作模式(CRM和CDR)策略 (12) 2.10电堆冷却液出口温度设定值策略 (12) 2.11空气流量需求量计算 (12) 2.12阳极氢气循环回路控制策略 .................... 错误!未定义书签。

2.13阴极空气传输回路控制策略 (15) 2.14冷却液传输回路控制策略 ........................ 错误!未定义书签。 2.15阳极吹扫(Purge)过程 (18) 2.16防冻(Freeze)处理过程 (18) 2.17泄漏检查(LeakCheck)机理 (19) 2.17.1在CtrStat17下的LeakCheck (19) 2.17.2CtrState2下的泄漏检查 (19) 2.18注水入泵(Prime)过程 (20) 2.19状态及迁移 (20) 2.19.1状态定义 (20) 2.19.2状态迁移图 (21) 2.19.3状态功能 (22) 2.19.4迁移条件 ................................................ 错误!未定义书签。 2.20CAN通讯协议。........................................ 错误!未定义书签。3未确定事项 ..................................................... 错误!未定义书签。

产品包装生产线课程设计(方案三)。

产品包装生产线课程设计(方案三)。

课程设计说明书 课程名称:机械原理课程设计 设计题目:产品包装生产线(方案 三) 院(系):船舶与海洋工程学院 专业:机械设计制造及其自动化 班级: 12级机械四班 班号: 1213104 设计者:刘胜男 学号:121310402

指导老师:杨绪剑 设计时间:2014.06.30-2014.07.07 哈尔滨工业大学(威海) 产品包装生产线(方案3) 1.设计课题概述 如下图所示,输送线1上为小包装产品,其尺寸为长?宽?高 600? =,采取步进式输送方式,送第一包产品至托盘A上(托盘A上? 200 200 平面与输送线1的上平面同高)后,托盘A下降00mm 2,第二包产品送到后, 托盘A上升00mm 2,然后,把产品推入输送线2。原动机转速为2400rpm,产 品输送数量分三档可调,每分钟向输送线2分别输送 8 ,16 , 24 件小包 装产品。 2.设计课题工艺分析

由题目和功能简图可以看出,推动产品在输送线1上运动的是执行机构1,在A处使产品上升,下降的是执行构件2,在A处把产品推到下一个工位的是执行构件3,三个执行构件的运动协调关系如图所示。 图2 运动循环图 图1中T1为执行构件1的工作周期,T2是执行构件2的工作周期,T3是执行构件3的工作周期。由图2可以看出,执行构件1是作连续往复移动的,而执行构件2则有一个间歇往复运动,执行构件3作一个间歇往复运动。三个执行构件的工作周期关系为:2T1= T2。执行构件3的动作周期为其工作周期的 1/4。 3.设计课题运动功能分析及运动功能系统图 根据前面的分析可知,驱动执行构件1工作的执行机构应该具有运动功能如图3所示。该运动功能把一个连续的单向转动转换为连续的往复移动,主动件每转动一周,从动件(执行构件1)往复运动两次,主动件的转速分别为4、8、12 rpm。 图3 执行机构1的运动功能

日产2500吨白水泥熟料生产线原料粉磨车间工艺设计毕业设计说明书(可编辑)

日产2500吨白水泥熟料生产线原料粉磨车间工艺设计 毕业设计说明书 2500t/d特种水泥熟料生产线原料粉磨车间工艺设计 摘要:拟设计一条日产2500t干法白水泥生产线,设计部分重点是生料粉磨配套系统工艺设计。在设计中参考了很多国内外比较先进的大型水泥厂,用了很多理论上的经验数据。其中主要设计内容有:1.配料计算、物料平衡计算、储库计算;2.全厂主机及辅机的选型;3.全厂工艺布置;4.窑磨配套系统工艺布置;5.计算机CAD绘图;6.撰写设计说明书。 白水泥与普通硅酸盐水泥在成分上的主要区别是白水泥中铁含量只有普通水泥的十分之一左右。设计采用石灰石与叶腊石两种原料。物料平衡计算时考虑到需控制铁含量,按照经验公式(石灰石饱和系数、硅酸率、铝氧率)计算并参考其他白水泥厂,得出恰当的率值为:KH0.9、IM3.85、SM18。全厂布局由水泥生产的流程决定。设计中采用立磨粉磨系统。立磨设备工艺性能优越,单机产量大,操作简便,能粉磨料粒度大、水分高的原料,对成品质量控制快捷,可实行智能化、自动化控制等优点。设计采用窑尾废气烘干物料,节约能源。总之原则上最大限度地提高产量和质量,降低热耗,符合环保要求,做到技术经济指标先进合理。 关键词:白水泥;干法生产线;回转窑;立磨 2500t / d special cement clinker production line and supporting system for kiln grinding process design

Abstract: Designing a 2500 t/d white cement production line, which was focused on the design part of the raw material grinding design supporting system. In the design, many more advanced large-scale cement home and abroad are referenced. Main content of the design were: 1. burden calculation, the material balance calculation, calculation of reservoir; 2. The whole plant selection of main and auxiliary machinery; 3. the entire plant process layout; 4. the system grinding process kiln Arrangement; 5. computer CAD drawing; 6.writing design specifications. The main difference in composition of white cement and ordinary Portland cement is the content of white cement in the iron was only one-tenth of the ordinary cement. Controlling the iron content was considered when calculated material balance. According to the experience formula KH, IM, SM and refer to other white cement plant, drawn the appropriate ratio value: KH 0.9, IM 3.85, SM 18. The layout of the entire plant was up to the cement production process.Vertical roller mill grinding system was used in key plant design. Vertical grinding process equipment performance was superiority, single output, easy to operate, grinding people particle size, moisture and high raw materials, finished product quality control fast and it can take advantages of intelligent and automated control.In principle, the aim of the design is increase production and quality, reduce heat consumption, be accord with environmental requirements. so, technical and economic indicators should

氢燃料电池电堆系统控制方案

AIR OUT AIR IN H2IN DI-WEG IN DI-WEG OUT 图1 1号电堆模块系统图 H2PURGE1 24V H2PURGE2

WEXPT 图2 车用1号电堆系统系统图

表1 模块附件表:

表2 车载系统附件表:

2.1 模块 ●冷却液与压缩空气热交换器 因冷却液的温度适应电堆要求,该热交换器的作用,一是压缩空气温度过高时降温(起中冷器作用),二是压缩空气温度较低时加热。考虑到要适应低温环境,最好采用。 ●氢气入口压力调整器 电堆的氢气入口压力调整,由PT-H3、EPV-H4、PT-H4组成,通过程序采集压力和控制比例阀来实现。为了控制准确和简单管路,将PT-H2、EV-H2、PT-H3、EPV-H4、PT-H4做到一个阀组(manifold)上。 ●阳极压力保护 为防止氢气入口压力调整器失效,而使阳极产生高压毁坏电堆。采用安全阀SRV-H5保护。 ●外增湿器 外增湿器采用膜增湿器,用电堆的出口湿空气来增湿电堆得入口干空气。具体是否采用,要看电堆的需求。 ●氢气循环 氢气循环,一是使阳极的氢气的湿度均匀,二是加热入口的氢气。 ●氢气吹扫(排放)阀 氢气吹扫阀,是用1个还是在电堆氢气出口的2端各用1个。 要看电堆的阳极结构,因氢气回流后,多少会有一些液态水,若

不能及时吹扫掉,会影响水平较低段的节电池性能,也不利于防冻处理。 ●电堆空气出口压力 电堆出口压力,采用电磁比例阀EPV-A6和电堆出口压力表PT-A5形成回路来控制。为防止憋压,比例阀为常开阀。 ●电堆高压输出正负极对结构接地(搭铁)绝缘电阻检测 电堆高压输出正负极对结构接地的绝缘电阻小时,会危害电堆的安全。在模块中需要加入检测单元。绝缘电阻的要求,单节电池为1200欧,150节为180千欧。 ●电机调速器的电源 因空压机的功率一般大于1kW,采用电堆的高压电源,在启动或停止的过程中需要外电源供电。启动和停止时由预充电电源PS-HV6供电。 氢气循环泵,因功率一般小于500W,且只在电堆工作时运行,采用外部24VDC单独供电。 ●节电池电压巡检单元 节电池电压巡检单元,与电堆的结构做到一起,自带MPU,与模块控制器采用通讯联系(CAN和RS485)。这样会使检测电缆最短,提高可靠性和美观。 ●模块控制器 控制器的MCU选用飞思卡尔的MC9S12CE,硬件和壳体,若能采购满足要求的现成控制器,则采购;实验调试完成后,沿用

《电气原理及PLC》课程设计 包装生产线PLC控制

《电气控制与PLC》课程设计 一、设计课题 包装生产线的PLC控制 二、设计目的 通过包装生产线PLC控制的设计实践,了解一般电气控制系统设计过程、设计要求、应完成的工作内容和具体设计方法。通过设计也有助于复习、巩固以往所学的知识,达到灵活应用的目的。电气设计必须满足生产设备和生产工艺的要求,因此,设计之前必须了解设备的用途、结构、操作要求和工艺过程,在此过程中培养从事设计工作的整体观念。 课程设计应强调能力培养为主,在独立完成设计任务的同时,还要注意其他几方面能力的培养与提高,如独立工作能力与创造力;综合运用专业及基础知识的能力,解决实际工程技术问题的能力;查阅图书资料、产品手册和各种工具书的能力;工程绘图的能力;书写技术报告和编制技术资料的能力。 三、工作原理 包装生产线示意图和控制时序图如图所示,包装物品是放在传送带1上,由于放置的时间是任意的,所以有些包装离得很远,而有的包装靠在一起。传送带1的电动机转动一圈,旋转编码器E6A发出一个脉冲,根据一个包装所能产生的脉冲数,并对这些脉冲进行计数,这样不管包装密集还是分开的,都能精确地求得包装的个数。当光电检测器(SPl)接通,且旋转编码器E6A发出4个脉冲,即有一个包装传送到传送带2。当有4个包装物品传送到传送带2时,电动机M1正转驱动挡板上升,阻止后面的包装。挡板上升到位时,碰到限位开关SQ3,M1停转,挡板停止上升。电动机M2正转,驱动推动器向前,将4个包装推出传送带2。当推动器到达前部位置时,前部限位开关SQ2接通,M2反转,驱动推动器后退,当推动器返回到位时,碰到后部限位开关SQl,M2停转,推动器回到初始位置同时M1反转驱动挡板下降,下降到位碰到下部限位开关SQ4,M1停转,挡板回到初始位置。

氢燃料电池的特点及应用

氢燃料电池的特点及应用 2009-04-08 16:06出处:比特网论坛作者:lijing【我要评论】[导读]燃料电池技术被认为是取代蓄电池和发电机作为通信行业后备电源的最有前景的技术。美国瑞莱昂(RELION)公司生产的燃料电池作为通信用后备电源进行了详尽的现场测试和数据整理。文中介绍了该测试组的试验情况,这些试验点都是以RELION公司提供的燃料电池作为通信基站的备用电源,进行了历时6个月的现场测试。 企业数据中心每周热点文章 下载数据中心白皮书赢取指纹U盘下载刀片服务器解决方案赢取ThinkPad笔记本灵活多变的数据中心机柜解决方案(视频) IT管理人员眼中的动态架构 Gartner 电源管理的节能展望云运算开放宣言各方看法不一 料电池技术被认为是取代蓄电池和发电机作为通信行业后备电源的最有前景的技术。美国瑞莱昂(RELION)公司生产的燃料电池作为通信用后备电源进行了详尽的现场测试和数据整理。文中介绍了该测试组的试验情况,这些试验点都是以RELION公司提供的燃料电池作为通信基站的备用电源,进行了历时6个月的现场测试。 1 现在通信站后备电源的解决方案 现在的通信站通常都是由市电供电,采用铅酸蓄电池作为主要的后备电源,其初次投资比较低。但蓄电池的维护及管理成本较高,特别是在环境不好的情况下,成本更高;并且蓄电池使用寿命短;如不能有效监控其工作状况,常常导致蓄电池在真正需要的时候不能有效供电,造成通信中断。 2 燃料电池技术 燃料电池是电化学装置,能够将氢和氧的化学能转变为电能,并且没有污染,无有害物质排放。PEM型燃料电池(质子交换膜燃料电池)由两个电极(阴极和阳极)组成,通过聚合膜联系起来。 气态氢被送到膜的阳极,空气被送到阴极,氢原子在阳极侧被剥离电子,带正电荷的质子穿过膜到达阴极。为使该反应发生,须使用铂金催化剂。氢的电子通过外部回路从阳极到达阴极,产生了电流,在阴极,电子、质子和空气中的氧结合产生水,是燃料电池的主要副产品,如图1所示。 图1 燃料电池的工作原理图 3 燃料电池的优势 (1)无污染。燃料电池对环境无污染。它是通过电化学反应,而不是采用燃烧(汽、柴油)或储能(蓄电池)方式——最典型的传统后备电源方案。燃烧会释放象COx、NOx、SOx气体

汽车大梁生产线全液压铆接机液压系统设计说明书

前言 液压系统的设计是整机设计的一部分,通常设计液压系统的步骤的内容大致如下: (1):明确设计要求,进行工况分析; (2):确定液压系统的主要性能参数; (3):拟订液压系统系统图; (4):计算和选择液压件; (5):估算液压系统的性能; (6):绘制工作图,编写技术文件。 明确设计要求,就是明确待设计的液压系统所要完成的运动和所要满足的工作性能。具体应明确下列设计要求:(1)主系统的类型,布置方式,空间位置; (2)执行元件的运动方式,动作循环及其范围; (3)外界负载的大小,性质几变化范围,执行元件的速度机器变化范围; (4)各液压执行元件动作之间的顺序,转换和互锁要求; (5)工作性能如速度的平稳性,工作的可靠性,装换精度,停留时间等方面的要求;

(6)液压系统的工作环境,如温度及变化范围,湿度,震动,冲击,污染,腐蚀或易燃等。 (7)其他要求,如液压装置的重量,外形尺寸,经济性等方面的要求。 一、总体设计思路 (1)该铆接机是汽车大梁铆接生产线中的铆接设备,该机由液压站(包括油箱、电动机、液压发生器等)电器控制箱、铆钳、铆接动力液压缸、悬吊装置、小车等部分组成。 2)液压装置采用液压站的行式,板式液压阀装在一个集成块的四个侧面上,进排油管路布置在集体成块下面,输出、回油管路不止在集成块顶面;增压器为分离结构。集成块体兼做增压器高压小缸,大缸单独制作,小缸和大缸同过螺钉连为一体,液压装置结构紧凑,装配维护方便。 3)液压回路:该液压系统中采用了三种回路:

①调压回路,系统中采用了单级调压回路,在泵1的出口处设置并联的溢流阀来控制泵出口的最高工作压力,从而达到系统工作时所需的压力。 ②设有增加回路,系统采用了但作用增加器的增压回路,系统选用的低压油泵,如果只用泵的输出的最高工作压力,且无法完成铆接时所需的高压工作压力,如果采用高压油泵,从工作要求上考虑时,可行的,但是从经济高度上考虑是不划算的,所以系统中没了单作用增加器的增压回路,以提高铆接中所需的工作压力,这样不管是从工作角度,还是从经济角度上考虑,都是非常合理的。 ③采用了调速阀的节流调速回路,由于液压系统中的流量是不稳定,从而导致液压缸的液压杆的运动速度也不稳定,所以回路中设有调速阀来调速,这样就确保了铆接中运动的平稳,从而大大提高了铆接的综合性能。

包装生产线PLC控制系统设计

目录 一、课程设计题目名称 二、课程设计目的 三、设计任务及要求 四、设计分工 五、I/O地址分配地址及其相关的硬件配置要求 六、系统主电路原理图、PLC的输入输出外部接线图 七、PLC的控制程序,并阐述程序设计、调试思路 八、系统主画面和命令语言程序,阐述监控系统所具 有的功能 九、调试过程中的问题和解决方法 十、课程设计心得 十一、参考文献 一、课程设计题目名称:包装生产线PLC控制系统

设计。 二、课程设计目的:通过对包装生产线PLC控制系统设计,即系统的硬件设计、PLC控制程序设计、监控程序设计及调试,使我们对PLC系统集成、PLC复杂控制程序设计、与电气控制系统结合、人机界面设计及监控实现等建立起整体印象,强化工程意识,提高应用能力。巩固和加强PLC控制程序书写的技巧和知识,进一步掌握电气原理图和PLC的输入/输出外部接线图的绘制。 三、设计任务及要求 如上图所示包装物品由传送带1随时运来,运送时间不固定,因此包装物品的间隔是不确定的,有的包装距离

较远,有的包装则靠在了一起。在传送带1的电动机轴上安装一个旋转编码器E6A,电动机转动1圈,旋转编码器发出1个脉冲。每个包装物品的宽度是 4个脉冲,当光电检测器 SP1检测到包装物品,且旋转编码器发出4个脉冲时,表示有1个包装物品通过传送带1到达传送带2。这样就可以通过对旋转编码器发出的脉冲数的计数,实现对包装物品的准确计数。 控制任务和要求: ①按下启动按钮 SF1后,传送带 1和传送带 2运转,传送包装物品到传送带 2(传送带1、2均由三相笼型异步电动机驱动)。 ②当传送带2上有3个物品后,挡板电动机MA1正转,驱动挡板上升,阻止后面的包装物品继续运送到传送带2上。 ③当挡板上升到位,上限位开关BG3动作,挡板停止上升,推动器电动机MA2正转,将3个包装物品向前推出。 ④当推动器到达前限位开关,BG2动作,打包机打

氢燃料电池备用电源

氢能备用电源市场前景可观近年来,壳牌石油公司和通用汽车公司在美国大力研发新能源汽车,并在华盛顿特区、纽约等地广泛设立氢燃料加油站。 氢能在污染排放、生产成本和资源丰富性方面具有其他能源无法比拟的优势,但这种被称为“终极能源”的能源,为何在我国遭遇了产业困境? 3月7日,冬寒尚未褪去,现代汽车蔚山工厂氢燃料电池汽车(以下简称“氢燃料汽车”)生产工厂却已满载春意,工作人员忙着将17辆ix35氢燃料汽车装载到货按照计划,这17辆氢燃料汽车将横渡大洋,落户欧洲。其中15辆运往丹麦,2辆运往瑞典。到4月份,丹麦和瑞典有关政府机构或公共机关的一些官员,就可以乘坐氢燃料汽车进行办公。 同作为新能源汽车,电动汽车经历了数十年的推广,成效并不令人满意。亚洲、欧洲和北美的汽车行业高管们有意将目光投向了氢燃料汽车。据悉,宝马、福特和丰田等车企均计划在未来几年内量产并全球出售氢燃料汽车。 值得一提的是,此次现代生产的氢燃料汽车,是世界上首次成功实现批量生产的氢燃料汽车。这对于“氢燃料汽车”产业以及整个“氢能源”行业来说,无疑是一利好消息。

随着氢燃料汽车逐步向商业化进程迈进,氢能源的利用已越来越进入公众的视野。江苏中靖新能源科技有限公司(以下简称“中靖新能源”)高级副总裁袁音向《能源》记者表示,氢能源可称为“终极能源”,因其在污染、排放、使用、生产成本、可再生和资源丰富性等众多方面都具有其他能源所无法比拟的优势。 氢能源行业根据能源开发和使用的技术,更是将能源大致分为了三类:传统技术能源(化石资源、不可再生资源,如煤、石油)、中间过渡技术能源(如内燃机、核能)、终极技术能源—氢。 氢能源大有前途,但相比于国外企业的高调发展,国内企业却没有想象中的热情。在认准氢能源发展前景的新兴民营企业、高校和科研单位看来,我国应不失时机地抓住氢能源发展机遇。 资金的缺失 氢能源有两大类使用方法。第一类被称为“热化学”方法,即燃烧。另一类被称为“电化学”方法。氢燃料电池技术则属于后者,被认为是利用氢能、解决未来人类能源危机的终极方案。 “氢燃料电池是目前市场热衷度最高的氢能源利用技术。利用氢气和氧化剂在电池内的化学反应直接生产电能,具有无污染、节能、高效、安静、安全等特性,可用于新型汽车、发电站、潜艇和家庭直接

氢氧燃料电池性能测试实验分析报告

氢氧燃料电池性能测试实验报告 冯铖炼 实验目的 1. 了解燃料电池工作原理 2. 通过记录电池的放电特性,熟悉燃料电池极化特性 3. 研究燃料电池功率和放电电流、燃料浓度的关系 4. 熟悉电子负载、直流电源的操作 , 匚作原理 氢氧燃料电池以氢气作燃料为还原剂, 氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将 化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、 氧气在电极上的催化 剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电, 在氧电极上由于缺少电子 而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。 工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分 解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接 在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。 这正是水的电 解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂 全部储藏在电池内的装置氢氧燃料电池的反应物都在 电池外部它只是提供一个反应的容器 学号: 1141440057 指导老师: 索艳格 姓名:

氢气和氧气都可以由电池外提供燃料电池是一种化学电池, 它利用物质发生化学反应时释出的能量, 直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是, 于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间 的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成, 2013年正发展为直接使 用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气),。氢在负极 分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载 就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。 这 正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有 异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,-所以也可称它为一种"发电机"。 i 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。 发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢一氧燃料电池有酸式和碱式两种: 'I 若电解质溶液是碱、盐溶液则 负极反应式为:,2H2 + 4OH- - 4e~二4场0 正极反应式为:+ 2H2 O + 4广二4OH ■ 若电解质溶液是酸溶液则 负极反应式为:2H2 _ 4牴 —4H 正极反应式为:°2 + 4广+ 4H*二2H2O 总反应方程式为: 2H2 + 02二2H2 O 在碱溶液中,不可能有H+出现,在酸溶液中,不可能出现 0H —。 实验步骤 ① 连接电子负载,测量开路电压 它工作时需要连续地向其供给反应物质 燃料和氧化剂,这又和其他普通化学电池不大一样。由 在正、负极上

《氢燃料电池安全指南》(2019版)燃料电池堆及系统安全

3燃料电池堆及系统安全 3.1燃料电池堆安全 3.1.1燃料电池堆设计 3.1.1.1燃料电池堆分类 目前车用的燃料电池主要是质子交换膜燃料电池堆(PEMFC),质子交换膜燃料电池堆根据极板使用的材料不同,分为金属极板燃料电池堆和石墨极板燃料电池堆等。 3.1.1.2燃料电池堆功率 燃料电池堆体积比功率决定了后期电堆和系统的组合方式以及电堆的热管理设计。较小体积比功率电池堆有利于热的扩散,对整体电堆和系统热管理设计有益。较大体积比功率电池堆有利于系统设计和制造过程简单化和电池堆体积的减小。 不断 升燃料电池堆体积比功率是长期、系统的工作,建议要在确保安全性、可靠性和关键电性能指标的前 下, 升燃料电池堆的比功率和功率。 3.1.1.3燃料电池堆关键材料 燃料电池堆使用的材料对工作环境应有耐受性,燃料电池堆的工作环境包括振动、冲击、多变的温湿度、电势以及腐蚀环境;在易发生腐蚀、摩擦的部位应采取必要的防护措施。 (1)质子交换膜 质子交换膜是质子交换膜燃料电池的核心部件,其主要作用是分隔阳极和阴极,阻止燃料和空气直接混合发生化学反应,并传导质子、阻止电子在膜内传导;质子交换膜的质子传导率越高,膜的内阻越小,燃料电池的效率越高。质子交换膜材料要具有足够的化学、电化学、热稳定性和一定的机械稳定性,保证燃料电池在工作过程中能够耐受气流冲击、电流冲击和自由基攻击而不发生降解,保证燃料电池内部不会发生气体窗口窜漏、短路等危险。 对于全氟磺酸膜类质子交换膜,要有较好的热稳定性、化学稳定性和良好的机械稳定性,避免其在高温时发生化学降解,防止燃料电池在高温和高电位时出现化学降解导致气体窜漏引发氢氧混合。气体串漏对燃料电池的安全性有较大影响,要优先选用机械强度高的质子交换膜。质子交换膜厚度和燃料电池安全性密切相关,燃料电池质子交换膜厚度的选择建议充分考虑由于降低隔膜厚度带来的安全风险。 (2)气体扩散层 21/53

机械原理课程设计(产品包装生产线)

Harbin Institute of Technology 课程设计说明书(论文) 课程名称:机械原理 设计题目:产品包装生产线(方案3) 院系:机电工程学院 班级:1208107 设计者:刘运昌 学号:1120810705 指导教师:翟文杰 设计时间:2014.6.23--2014.6.29

哈尔滨工业大学 产品包装生产线(方案3) 一、设计课题概述 如图1所示,输送线1上为小包装产品,其尺寸为长*宽*高=600*200*200,采取步进式输送方式,送第一包产品至托盘A上(托盘A上平面与输送线1的上平面同高)后,托盘A下降200mm,第二包产品送到后,托盘A上升200mm,然后把产品推入输送线2。原动机转速为1430rpm,产品输送量分三档可调,每分钟向输送线2分别输送8、16、24件小包装产品。 图1功能简图 二、设计课题工艺分析 由题目和功能简图可以看出,推动产品在输送线1上运动的是执行机构1, 图2 运动循环图 图1中T1为执行构件1的工作周期,T2是执行构件2的工作周期,T3是执行构件3的工作周期。由图2可以看出,执行构件1是作连续往复移动的,而执行构件2则有一个间歇往复运动,执行构件3作一个间歇往复运动。三个执行构

件的工作周期关系为:2T1= T2=T3。执行构件3的动作周期为其工作周期的1/8. 三、设计课题运动功能分析及运动功能系统图 根据前面的分析可知,驱动执行构件1工作的执行机构应该具有运动功能如图3所示。该运动功能把一个连续的单向转动转换为连续的往复移动,主动件每转动一周,从动件(执行构件1)往复运动一次,主动件的转速分别为8、16、24 rpm。 图3 执行机构1的运动功能 由于电动机转速为1430rpm,为了在执行机构1的主动件上分别得到8、16、24 rpm的转速,则由电动机到执行机构之间的传动比i z有3种分别为: 总传动比由定传动比i c与变传动比i v组成,满足以下关系式: i z1 = i c i v1 i z2=i c i v2 i z3=i c i v3 三种传动比中i z1最大,i z3最小。由于定传动比i c是常数,因此3种传动比中i v1最大,i v3最小。若采用滑移齿轮变速,其最大传动比最好不要大于4,即: i v1=4 则有: i c=错误!未找到引用源。 故定传动比的其他值为: i v2=错误!未找到引用源。.00 i v3=错误!未找到引用源。

氢燃料电池系统在通信系统备用电源中的应用

氢燃料电池系统在通信系统备用电源中的应用 一、通信备用电源系统简介 通信基站一般用市电供电,为保证基站正常工作,需要给基站配备备用电源系统如铅酸蓄电池组和移动油机,在断电时,备用电源系统为基站中的负载供电,保证设备的正常运行。 铅酸蓄电池的优点是比较安全且采购成本较低,其缺点是体积大、笨重、造成一次和二次环境污染、备电时间有限且有不确定性、对环境温度要求苛刻。 当铅酸蓄电池因放电时间较长将要退服或出现故障时,移动油机成为现实可用的备用电源,但移动油机后勤保障复杂,需有人值守,有噪声污染及废气污染。 鉴于铅酸蓄电池和移动油机的种种缺点,加之能源危机和人们环保意识的提高,寻求新的备用电源的呼声越来越高,氢燃料电池是最理想的替代者之一。 二、氢燃料电池的原理 氢燃料电池是一种高效电化学能量转换器,把氢气(燃料)和氧气(来自空气)中的化学能直接转化成电能。只要有燃料和空气不断输入,燃料电池就能源源不断地产生电能,因此,燃料电池兼具电池和油机的特点。 燃料在燃料电池的阳极被氧化,生成质子和电子;质子通过电解质迁移到阴极,电子通过外电路迁移到阴极为外界负载提供电能;迁移到阴极的质子、电子和阴极处来自空气中的氧气结合生成水。燃料电池的主要优点包括:高效率(不受“卡诺循环”的限制)、零或超低排放、机械结构简单、扩展容易、安静、安全、可靠、能用可再生能源为燃料、只要有燃料就可连续不断地发电。 三、氢燃料电池与现有备用电源的比较 1、与铅酸电池的比较 和铅酸电池相比,燃料电池的主要优点包括: 适应环境温度范围宽广,基站温度可设定在32℃或更高,这样每年可节约大量空调电费。 只要保证氢气的供应就可持续供电,在发生大的自然灾害时可以保持长时间的通信畅通,为此而保护的生命、财产是难以用金钱来衡量的。 按设定电压稳定输出电能,而不像铅酸电池在剩余电量达到最低值前,放电电压衰减很快且难以预测。 重量轻,不需特殊的承重处理。 占地面积小,安置位置灵活,既可安置在室外也可安置在室内。 寿命设计一般是累计使用时间1500小时、累计开关次数超过600次、储存寿命10年,而铅酸电池几年就要更换。 安全性高,燃料电池系统中有多种传感器,系统可自动采取应对措施,如:当氢气泄漏时,燃料电池控制系统会自动关闭气源,避免泄漏持续;可远程监控,及时发现问题。世界上还没有燃料电池发生氢气燃爆事故。 2、与移动油机的比较 与移动油机比较,氢燃料电池最大优点是: 自动控制,可实现无人值守,通过遥测、遥控手段来监控系统的运行状态及氢气的剩余量,实现远程管理。 低噪音、无废气排放。燃料电池系统机械运动部件较少,所以系统比较安静,其排放物为水,对环境友好。 四、通信备用氢燃料电池系统的应用 1、系统的接入 燃料电池系统可以布置于室内和室外,但作为通信备用电源系统,根据现有通信机房的

相关主题
文本预览
相关文档 最新文档