当前位置:文档之家› 涂层液体性能检测相关国家标准

涂层液体性能检测相关国家标准

涂层液体性能检测相关国家标准
涂层液体性能检测相关国家标准

涂层液体性能检测相关国家标准

防腐涂料的性能及检测方法

防腐涂料的性能及检测方法 防腐涂料是油漆涂料中必不可少的一种涂料,对物体起到防腐蚀的作用,保护物体的使用寿命,在农业、工业等各个领域发挥着越来越重要的作用。下面介绍防腐涂料的性能以及检测方法: 防腐涂料性能 1、耐水性 耐水性是指防腐涂料涂膜抵抗水的破坏能力的量度。其测试是在规定的条件下,将涂膜试板浸泡在水中,观察其有无发白、失光、起泡、脱落等现象。以及恢复原状态的难易程度。这将直接影响涂膜的使用寿命。其检测方法可按GB/T1733《漆膜耐水性测定法》中规定进行。 2、耐盐水性 耐盐水性是指防腐涂料涂膜对盐水侵蚀的抵抗能力。可以用耐盐水试验判断涂膜产品的防护性能。其检测方法可按GB/T1763-89《漆膜耐盐水试剂性测定法》或GB16834-89《船舶漆耐盐水性的测定》中规定进行。 3、耐石油制品性 耐石油制品性是指防腐涂料涂膜抵抗石油制品(即汽油、润滑油、和溶剂等)的破坏能力的量度。其检测方法可按GB/T1734-93《漆膜耐汽油性测定法》或HG/T3343《漆膜耐油性测定法》中规定进行。 4、耐湿热性 耐湿热性是指防腐涂料涂膜抵抗湿热环境破坏的能力。在涂膜耐腐蚀性的检测中,耐湿热性的检测往往与耐盐雾性试验同时进行。其检测方法可按GB/T1740-89《漆膜耐湿热性测定法》或GB/T19893-92《色漆和清漆耐湿热性的测定连续冷凝浸水法》中规定进行。5、耐盐雾性 耐盐雾性是指防腐涂料涂膜抵抗盐雾侵蚀的能力。是涂膜耐腐蚀性关健指标,也是模拟大气中的盐雾腐蚀加速试验方法。其检测方法可按GB/T1771《色漆和清漆耐中性盐雾性能的测定》中规定进行。 6、耐化学试剂性 耐化学试剂性是指防腐涂料涂膜抵抗酸、碱和盐及其它化学药品破坏的能力。其检测方

第一章 粉末涂料及其涂层性能检验

第一章粉末涂料及其涂层性能检验 第一节粉末涂料性能检验 一、取样 二、粒度 (一)筛余物 (二)激光粒度仪对粉末涂料的粒度的测定 (三)筛分法测定粒度分布 三、在容器中状态 四、密度 (一)表观密度的测定 (二)装填密度的测定 五、安息角 六、流出性 七、粉末涂料流动性 八、不挥发物含量 九、粉末涂料烘烤时质量损失的测定 十、软化温度 十一、熔融流动性 (一)水平流动性 (二)倾斜流动性 十二、胶化时间 十三、爆炸下限浓度 十四、贮存稳定性 十五、粉末涂料的电性能 (一)粉末涂料的介电常数 (二)电荷/质量比(q/m) 十六、沉积效率 十七、粉末涂料相容性 十八、粉末雾化及输送特性 十九、重金属含量的测试 二十、粉末涂料及涂层的热特性测定 第二节粉末涂层性能检验 一、标准试板底材及处理

二、涂膜制备 三、涂膜厚度 四、粉末涂料的固化条件测试 (一)炉温跟踪仪测试粉末涂料固化温度的方法(二)粉末涂料固化时间的测定 (三)粉末涂料固化程度的测定 五、涂料试样状态调节和试验的温湿度 六、边角覆盖率 七、涂膜外观 八、光泽 九、色差 十、柔韧性 十一、弯曲试验 十二、附着力(划格法) 十三、硬度 (一)铅笔硬度 (二)划痕硬度 (三)压痕硬度 十四、杯突试验 十五、耐冲击性 十六、耐湿热性 十七、耐中性盐雾性能 十八、耐液体介质性 十九、耐水试验 二十、耐人工气候老化性 二十一、涂层自然气候曝露试验 二十二、有色涂膜和清漆涂层老化的评级方法二十三、涂层气孔率(均匀性试验) 二十四、抗割穿性 二十五、耐溶剂擦试性测定 (一)手工擦拭法 (二)仪器擦拭法 二十六、耐磨性

提高镀层与基体结合强度的途径

提高镀层与基体结合强度的途径 前言 镀层的结合力是指镀层与基体金属或中间镀层的结合强度,即单位表面积的镀层从基体金属或中间镀层上剥离时所需要的力。镀层结合力不好,多数是因为镀前处理不当所致。此外,镀液成分和工艺规范不当或基体金属与镀层金属的热膨胀系数悬殊,均会对镀层结合力有明显影响。通过对镀层与基体结合机理的探讨,提出了提高基体金属与镀层结合力的方法。 1 镀层的形成 镀液中的金属离子在阴极上获得电子被还原为金属原子,并均匀覆盖在作为阴极的零部件表面(界面),形成镀层。其过程一般分为三个步骤: (1)金属的水化离子由溶液内部移动到阴极界面处,即液相中物质的传递步骤。 (2)金属水化离子脱水,并与阴极上的电子反应还原成金属原子。实际上是电子在阴极上与金属离子间的跃迁,完成了电子从阴极界面向电解液界面的转移,使脱水的离子获得电子,形成失水的吸附原子,即电子跃迁。(3)金属原子排列成一定构型的金属晶体,即生成新相步骤。结晶又分形核和生长两个过程。形核和生长的速率决定了晶粒尺寸大小,若形核速率大于生长速率,则生成的晶粒数量多,尺寸小;反之晶粒数量少,尺寸大。 2 结合机理 2.1 电化学行为产生的结合 电解液中金属离子经过电化学作用还原为金属原子,继而形成镀层。与基体牢固地结合在一起,这就是电化学行为产生的镀层与基体的结合。电化学结合又分为金属键结合与固溶体结合。 2.1.1 金属键结合 镀层金属与基体金属的原子间存在着强烈的相互作用,这种作用力称为化学键。在金属晶体中的原子与自由电子之间通过强烈的静电吸引力结合在一起所形成的化学键称为金属键。金属键合的强度取决于两种界面的晶体结构和晶面性质,而镀层结合强度则主要取决于键合的强度。 2.1.2 固溶体结合 所谓固溶体是指溶质原子溶入金属溶剂的晶格中所组成的合金相。在镀层与基体两种金属的界面之间,固溶体仍能保持与基体金属相同的晶体结构,但由于合金中少量组元原子的溶入,会引起晶格畸变和晶格常数的变化。 固溶体根据溶人原子所处的位置可形成间隙固溶体和置换固溶体。影响固溶体类型的基本元素是原子的尺寸、晶格的点阵形式和晶格常数、元素的电化学性质等。 2.2 机械镶嵌产生的结合 利用基体材料表面粗糙度造成的镶嵌作用来实现镀层金属与基体的结合,称为机械镶嵌作用产生的结合,简称机械结合,主要有: (1) 由于基体材料表面加工痕迹形成的许多较小间距的微小峰谷或活化工序刻蚀后的微坑凹凸不平,两者之间形成相互交错咬合。在单纯机械结合情况下,薄膜的结合力一般都较低。

涂层表面附着力测试标准

标题涂层表面附着力测试标准 文件类别规范文件文件号目标[质]字05第10 版本号 1 修改标记无修改次数无 编制/日期审核/日期批准/日期 执行主体监督主体 1.目的:指导涂层表面附着力测试工作,规范和统一涂层表面附着力检验标准; 2.范围:应用?涂层厚度大于50μm; 3.定义:符合BS?3900-E6、ISO2409、DIN53?151和ASTM?D3359-B测试方法; 4.流程:无 5.内容: 设备要求:划线器刀口由碳钨合金材料制成,齿数x齿间距?6齿x2mm;胶带用3M 600号2cm宽胶带;操作步骤 -用划格器在涂层上切出十字格子图形,切口直至基材; -用毛刷对角线方向各刷五次,用胶带贴在切口上再拉开; -观察格子区域的情况,可用放大镜观察; 划格结果附着力按照以下的标准等级 ISO等级:0 ASTM等级:5B 切口的边缘完全光滑,格子边缘没有任何剥落 ISO等级:1 ASTM等级:4B 在切口的相交处有小片剥落,划格区内实际破损 不超过5% ISO等级:2 ASTM等级:3B 切口的边缘和/或相交处有被剥落,其面积大于 5%,但不到15% 版本号1实施日期页次:共 2 页第 1 页

ISO等级:3 ASTM等级:2B 沿切口边缘有部分剥落或整大片剥落,及/或者部 分格子被整片剥落。被剥落的面积超过15%,但 不到35% ISO等级:4 ASTM等级:1B 切口边缘大片剥落/或者一些方格部分部分或全 部剥落,其面积大于划格区的35%,但不超过65% ISO等级:5 ASTM等级:0B超过上一等级 ? 测试结果判定:如果没有客人特殊要求,目标的产品要求达到ISO等级:1、ASTM等级:4B以上级别可以接受。 签发人签名 部门,现将《涂层表面附着力测试标准》抄发你部门(组织),请严格执行。 签发人/日期: 执行人签名现收到签发的《涂层表面附着力测试标准》,本人明白制度的详细内容,并保证本部门(人)严格贯彻执行。 执行人/日期: 版本号 1实施日期页次:共 2 页第 2 页

涂层标准(中文)最终版

MSC.1/Circ.1198 附件2 所有类型船舶专用海水压载舱和散货船双舷侧处所 保护涂层性能标准 (草案) 1 目的 为实施MSC.[…(82)]通过的SOLAS第II-1/3-2条,本标准规定了对第II-1/3-2条所述日期或以后签订合同、安放龙骨或交船的不小于500总吨的所有类型船舶专用海水压载舱和船长不小于150m的散货船双舷侧处所*内保护涂层的技术要求。 2 定义 下列定义适用于本标准: 2.1 压载舱为A.798 (19) 和A.744(18) 决议所定义的那些压载舱; 2.2 露点为空气被所含潮气饱和时的温度; 2.3 DFT为干膜厚度; 2.4 灰尘为呈现在准备涂漆表面上的松散的颗粒性物质,是由于喷射清理或其他表 面处理工艺产生的,或由于环境作用产生的; 2.5边缘打磨系指二次表面处理前对边缘的处理; 2.6 “良好”状况系指A.744 (18) 决议定义的有少量点锈的状况; 2.7 硬涂层系指在固化过程中发生化学变化的涂层或非化学变化、在空气中干燥的 涂层。硬涂层可用于维护目的,类型可以是无机的也可以是有机的; 2.8 NDFT为名义干膜厚度。90/10规则意指所有测量点的90%测量结果应大于或等 于NDFT,余下10%测量结果均应不小于0.9×NDFT; 2.9 底漆系指车间底漆涂装后在船厂涂装的涂层系统的第一道涂层; 2.10 车间底漆系指预先涂在钢板表面的底漆,通常在自动化车间喷涂(在涂层系统 第一道涂层之前); 2.11 预涂系指对关键区域边缘、焊缝、不易喷涂区域等位置的预先涂刷,以保证良 好的涂料附着力和恰当的涂层厚度; *本标准仅适用于钢质的所有类型船舶专用压载水舱和散货船双舷侧处所。

涂层镀层的检测方法

涂层镀层的检测方法 无损检测技术是一门理论上综合性较强,又非常重视实践环节的很有发展前途的学科。它涉及到材料的物理性质,产品设计,制造工艺,断裂力学以及有限元计算等诸多方面。 在化工,电子,电力,金属等行业中,为了实现对各类材料的保护或装饰作用,通常采用喷涂有色金属覆盖以及磷化、阳极氧化处理等方法,这样便出现了涂层、镀层、敷层、贴层或化学生成膜等概念,我们称之为“覆层”。 覆层的厚度测量已成为金属加工工业已用户进行成品质量检测必备的最重要工序。是产品达到优质标准的必备手段。目前,国内外已普遍按统一的国际标准测定涂镀层厚度,覆层无损检测的方法和仪器的选择随着材料物理性质研究方面的逐渐进步而更加至关重要。 有关覆层无损检测方法,主要有:楔切法、光截法、电解法、厚度差测量法、称重法、X 射线莹光法、β射线反射法、电容法、磁性测量法及涡流测量法等。这些方法中除了后五种外大多都要损坏产品或产品表面,系有损检测,测量手段繁琐,速度慢,多适用于抽样检验。 X射线和β射线反射法可以无接触无损测量,但装置复杂昂贵,测量范围小。因有放射源,故,使用者必须遵守射线防护规范,一般多用于各层金属镀层的厚度测量。 电容法一般仅在很薄导电体的绝缘覆层厚度测试上应用。 磁性测量法及涡流测量法,随着技术的日益进步,特别是近年来引入微处理机技术后,测厚仪向微型、智能型、多功能、高精度、实用化方面迈进了一大步。测量的分辨率已达0.1μm,精度可达到1%。又有适用范围广,量程宽、操作简便、价廉等特点。是工业和科研使用最广泛的仪器。超声波物位计,超声波液位计,超声波测厚仪。 采用无损检测方法测厚既不破坏覆层也不破坏基材,检测速度快,故能使大量的检测工作经济地进行。以下分别介绍几种常规测厚的方法。 磁性测量原理 一、磁吸力原理测厚仪 利用永久磁铁测头与导磁钢材之间的吸力大小与处于两者之间的距离成一定比例关系可测量覆层的厚度,这个距离就是覆层的厚度,所以只要覆层与基材的导磁率之差足够大,就

涂层性能测试方法

涂层性能测试方法 1盐雾试验 盐雾试验是将试验样板(件)放置于盐雾箱中,在一定温度、湿度条件下,保持电解质溶液成雾状,进行循环腐蚀的实验室技术。 1.1盐雾试验注意事项 (1)供试验用样板底材,必须彻底清除锈迹和润滑油脂。无论是经喷砂、打磨还是磷化过的底材,谨防暴露于潮湿空气中,以防底材表面形成水膜造成再度生锈或因此而降低涂层与底材间的附着力。特别强调的是严禁用手指触摸底材有效部位,因为手指上的油脂、汗渍会沾污板面,造成涂层局部起泡和生锈。 (2)盐雾试验的关键是配制电解质溶液的浓度,多种组分的溶质要按比例严格称量,以确保pH值的准确性。不然会直接影响检测结果。 (3)制备涂层后的样板(件),需用涂料封边和覆盖底材裸露部位,否则,造成锈痕流挂、污染板面,给评定等级工作带来困难。 (4)定期查板(件)时,应保持板面呈湿润状态,尽量缩短板面暴露于空气中的时间。 (5)完成试验后,应立即对板面做出客观评价,包括:起泡、变色、生锈、脱落。也可按客户要求增加附着力、划痕单边锈蚀距离的检测评定。 (6)板面如需要划痕,则应一次性划透涂膜,并露出底材。不应重复施刀,以免造成划痕处涂层翻边和加宽单边锈蚀距离。根据经验,板面划痕通常为交叉状(X),而圆柱工件则可划成平行线(Ⅱ)。但划痕距板(件)缘应大于20mm,并依据GB/T9286—1998标准推荐的方法,使用单刃切割器。 值得注意的是划痕处单边锈蚀距离的测定方法。根据作者多年工作经验,在试验过程中,周期性查板(件)应保持原始锈蚀状态记录单项等级评定结果。当试验结束后进行综合等级评定时,首先选择划痕单边锈蚀最严重部位进行测量,然后用一工具小心剥离锈斑,尽量保持不要破坏涂层,用水冲净后再测量锈蚀距离,测量结果可能有3种情况:①因涂层沿 中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

镀层的结合力

镀层的结合力 镀层结合力是指镀层与基体金属或中间镀层的结合强度,即单位表面积的镀层从基体金属或中间镀层上剥离所需要的力。 镀层结合力不好,多数原因是镀前处理不良所致。此外,镀液成分和工艺规范不当或基体金属与镀层金属的热膨胀系数悬殊,均对镀层结合力有明显影响。 GB/T 5270--200X((金属基体上的覆盖层(电沉积层和化学沉积层)附着强度试验方法》规定了测试方法。评定镀层与基体金属结合力的方法很多,但大多为定性方法,定量测试方法由于诸多困难,仅在试验研究中应用。通常用于车间检验的定性测量方法,是以镀层金属和基体金属的物理-力学性能的不同为基础,即当试样经受不均匀变形、热应力或外力的直接作用后,检查镀层是否有结合不良现象。具体方法可根据镀种和镀件选定。 (一)定性检测方法 1.弯曲试验 弯曲试验是在外力作用下使试样弯曲或拐折,由于镀层与基体金属(或中间镀层)受力程度不同,两者间产生分力,当该分力大于其结合强度时,镀层即从基体(或中间镀层)上剥落。任何剥离、碎裂、片状剥落的迹象均认为是结合力不好。 此法适用于薄型零件、线材、弹簧等产品的镀层结合力试验。弯曲试验通常有以下几种: (1)将试样沿一直径等于试样厚度的轴,反复弯曲l800,直至试样断裂,镀层不起皮、不脱落为合格。 (2)将试样沿一直径等于试样厚度的轴,弯曲l800,然后放大四倍检查弯曲部分,镀层不起皮、不脱落为合格。 (3)将试样固定在台钳中,反复弯曲试样,直至基体断裂,镀层不起皮、不脱落,或放大四倍检查,镀层与基体不分离均为合格。 (4)直径为1mm以下的线材,将其绕在直径为线材直径3倍的轴上;直径为1mm以上的线材,绕在直径与线材相同的金属轴上,均绕成l0个~l5个紧密靠近的线圈,镀层不起皮、不脱落为合格。 2.锉刀、戈q痕试验 锉刀法是将镀件夹在台钳上,用一种粗齿扁锉锉其锯断面,锉动的方向是从基体金属向镀层,锉刀与镀层表面大约成450角。结合力好的镀层,试验中不应出现剥离。此法不适用于很薄的镀层以及锌、镉之类的软镀层。 . 划痕试验是用一刃口磨成300锐角的硬质划刀,划两条相距为2mm的平行线。划线时,应施以足够的压力,使划刀一次就能划破镀层达到基体金属。如果两条划线之间的镀层有任何部分脱离基体金属,则认为结合力不好。本试验的另一划法是:划边长为1mm的正方形格子,观察格子内的镀层是否从基体上剥落。 3.热震试验(ASTM B571) 将受检试样在一定温度下进行加热,然后骤然冷却,便可以测定许多镀层的结合力,这是基于镀层金属与基体金属(或中间镀层)的热膨胀系数不同而发生变形差异。将试样放在炉中加热至表10—1—1中所规定的温度,温度误差±I0℃,时间一般为0.5h~1h,然后放入室温水中骤冷,检查镀层是否起泡、脱落。 表10—1—1 热震试验的温度

徐工特约:镀层结合力的实质及影响因素

徐工特约:镀层结合力的实质及影响因素一:镀层结合力的实质 1.万有引力 任何两个物体之间都存在相互作用的吸引力。当然,原子之间也有这种相互作用的力。我们把这种相互作用的力叫做万有引力。这种作用力与物体之间的距离大小的平方成反比。原子之间也有同样的道理。假如某基材上的油污没有除尽,镀层与基材之间的距离差拉大了,镀层与基材之间的万有引力比较小,所以结合力差,镀层容易脱皮,起泡。 2.形成金属键之间的作用力 金属键的定义为:金属离子靠共同的自由电子而结合到一起的作用力,我们把它叫做金属键。例如,我们电镀时,添加剂添加过多,镀层中夹杂有机物过多,很难与基材形成金属键或金属键形成不够强或镀层的脆性就比较大,高温烘烤时容易出现脆性引起的凸起麻点,像起小泡一样。 3.机械镶嵌作用力 例如我小时候,我的家庭条件比较差,到了冬季,因怕冷不愿洗头,一个月后,头发很蓬乱,我妈妈拿起梳子给我梳头,这个时候用很大的力梳子才能前进,那真的是叫做疼。阻碍梳子这么大的阻力是因为头发不光滑及蓬乱引起的,梳子和头发不仅存在阻力,蓬乱的头发加大了梳子与头发之间的机械镶嵌作用。同样,电镀同一个产品,基材光滑部分镀层与基材之间的结合力肯定没有基材粗糙部分与镀层之间的结合力好。镀层与镀层之间的结合力也可这样理解。在我们的论坛里,有位朋友说他的镀亮锡工件,基材光滑部分总是脱皮,粗糙部分没有问题。大家是不是可以从这方面考虑这个问题呢?那是必然的。 二:影响镀层结合力的因素 1.基体材质:不同材质上镀同一镀层,产生的结合力大小不一样,我个人认为可能是不同材质与同一镀层之间产生的金属键作用不一样,具体是什么原因,目前还没有定论。 2.镀层的光亮性:从事电镀行业的人都知道,在光亮镍上面镀酸铜,结合力很差。这是为什么呢?其原因有两个:1.是部分光亮电镀必然靠添加剂镀层才光亮,光亮镀层表面会产生一层添加剂膜层,阻碍了下一镀层与本镀层的结合。2.光亮镀层表面必然光滑,机械镶嵌较弱,也影响它们之间的结合。 3.金属还原性越强,在其表面镀上其他镀层结合力越差。原因是其还原能力强,其表面活化后在空中停留或水洗中越容易氧化,表面越容易形成一层氧化膜,这种膜层不仅阻碍了镀层与基材之间形成金属键,还减小了万有引力。 4.工艺条件也会影响结合力:例如光亮镍中湿润剂不够,氢气容易停留在产品表面或渗入基体,产品容易有氢气泡形成。例如镀锌温度低,镀层脆性大,镀液因扩散,对流及电迁移不够及时引起的阴极极化比较强,也容易产生起泡。同时,温度过低,添加剂的吸附能力比脱附能力强,夹杂在镀层比较多,镀层的脆性比较大,也容易脱皮或起泡。 5.渗氢也容易影响结合力:例如,某铁工件酸洗过度,基材铁与酸中的氢离子发生置换反应过强,氢原子或氢气渗入基材较多,当镀上镀层后,产品基体中的氢气或氢原子在

04.025-2005 涂层附着力试验方法-划格法

涂层附着力试验方法-划格法(试行)范围 本规范规定了金属或非金属基材油漆涂层附着力特性的试验方法,此方法不适用于总厚度大于250μm的涂层,合成纤维涂层,以及粗糙表面的涂层。本标准由范围,规范性引用文件,试验目的,试验设备,取样或样板制作,试验过程等内容组成。 1 试验目的 通过从基材上脱落的油漆涂层来评定涂层附着力。 5.1 试样地尺寸要求能在三个不同的地方进行试验,且划痕距试板边缘至少为5mm 5.2 试板准备 5.2.1 清洁试板表面,保证涂层表面无油、蜡或其它残余物 5.2.2 试板表面的流挂、气泡或其它明显缺陷区域,不作为试验部位 5.2.3试验前,试板应在温度23±2℃,相对湿度为(50±5)%环境下静置16小时 2 试验过程 6.1刀具选用: 根据涂层的厚度选用不同刀锯的划格器: 膜厚:0~60μm,刀具间距1mm 膜厚:61~120μm,刀具间距2mm 膜厚:121~250μm,刀具间距3mm 6.2操作步骤 6.2.1 为了避免在试验期间试板的变形,应将试板放在刚性平面上。 6.2.2将切割工具放在样板表面的标准平面上,在工具上施加均匀压力,用均匀速度在漆膜上完成相应数量的划痕,保证划痕深入到基材;用同样方法呈90度交叉划痕,形成一个个方格。 6.2.3 用刷子轻刷划格部位,清除漆屑。 6.2.4 用专用胶带粘贴到被划伤的涂层表面,用手指把胶带再划格处上方的部位压平,保证胶带和涂层接触良好,胶带的长度至少超过划格处20mm。 6.2.5拿住胶带的末端在0.5秒到1秒内,以接近60度的角度迅速地剥离,揭下胶带。 6.2.6 检查格子区域涂层剥落情况(可用放大镜观察),按标准判定级别。 6.3 在试样上至少进行三个不同位置的试验,相互间距与试样边缘的距离不小于5mm,如果三次结果不一致,差值超过一个等级时,在三个以上不同位置重复以上实验或者另取试样进行试验。 3 结论描述 1

2021涂料及涂层的性能检测方法

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021涂料及涂层的性能检测方法

2021涂料及涂层的性能检测方法导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 (1)涂料性能的测试。涂料性能是指涂料的黏度、密度、遮盖力、固体含量、流平性、干燥性。现将检测方法分述如下。 ①涂料黏度的测定液体涂料的黏度是分子间相互作用而产生阻碍其分子间相对运动的能力,即表示流体流动时产生的内摩擦力。 涂料最常用的黏度是涂-4杆黏度计。主要测试范围为15Os以下的涂料。 将涂料倒入杯中。测定时,将手指堵住漏斗嘴,涂料倒满时,将手指从漏嘴处移开,并同时开动秒表,流出全部涂料所用的时间(s)即涂料的黏废。测定温度为(25±1)℃。作两次测验,其误差不大于2%~3%。 黏度换算表见表6-9。 表6-9黏度换算表 绝对黏度(25℃)/P 恩格勒黏度(20℃)/s

涂-4杯黏度(25℃)/s 绝对黏度(25℃)/P 恩格勒黏度(20℃)/s 涂-4杯黏度(25℃)/s 0.50 8.1 19 2.25 36.3 55 1.00 16.2 30 3.00 44.1 74 1.40 22.5

电镀镀层结合力不够的五大原因

归根起来大抵有以下五大原因。 一、电镀药液被污染 在工厂电镀生产中,由于各种原因导致金属氧化物、金属杂质、不溶性悬浮物、有机杂质等有害杂质进入电镀液,这些杂质积累过多导致电镀镀液性和镀层质量受到影响。因此,需要定期清理杂质,处理电镀液。 二、基材前处理不良 如果镀液没有问题,可能需要再次检查基材表面是否有灰层或液体残留物,以及其他化学物质。因为镀品没有清理好,轻则影响电镀层的平整度、抗腐蚀和结合力,重则导致镀层沉积、疏松不连续、甚至镀层剥落,是产品丧失实际使用价值。因此,确保电镀前处理工艺良好也是一项重要的工作。 三、工艺控制不到位 工艺的控制对电镀涂层的质量具有至关重要的作用。如果镀液和前处理都没有问题,就需要检查工艺控制是否有问题了。槽内的温度、电流的密度、药水的pH值、电镀时间等工艺控制都必须和产品相匹配。因此,工艺控制必须力求准确。

四、生产进度太赶 一个产品往往是由很多零部件加工组装而成。众所周知,为完成这些零部件的加工常常需要跨过多个车间,不巧电镀就属于末尾的一道工序。于是,我们经常看到这样一个场景:零部件还没来到电镀车间,装配车间的兄弟们已经等着零件装配了。 这样就造成了工期太紧,大家为了完成任务连续加班赶工期,导致电镀时间达不到工艺要求,加上夜间工作光线影响检查,最终影响电镀质量。 五、产品设计不合理 产品设计人员和生产人员是两批完全不同的人。产品设计人员在零件图纸的设计中更多的注重产品零件的形状、尺寸、加工精度等条件,而对产品的加工工艺考虑不多,更不用说电镀工艺了。因此,也给电镀工作带来了一些不必要的麻烦,这对电镀产品的质量也有一定的影响。

涂料性能检测内容及方法

2.1.7涂料的检验项目及检验方法 1、固体份 标准《 GB/T1725-79(89)》 测定方法 仪器设备: 瓷坩埚:25ml,玻璃干燥器(内放变色硅胶),温度计:0-300℃,天平:感量为0.01g,鼓风恒温烘箱 方法步骤: 称取2-4g 涂料,精确至0.01g,然后置于已升温至规定温度的鼓风恒温烘箱内焙烘一定的时间后,取出放入干燥器中冷却至室温后,称重,再放入烘箱内按规定温度焙烘规定时间后,于干燥器中冷却至室温后,称重(同时取样2组以上) 计算: 固体份=烘烤后的样重/取样重量3100% 2、粘度(涂-4杯) 标准《GB/T1723-93》 仪器设备:涂-4粘度计,温度计,秒表,玻璃棒 操作方法: 测定之前,须用纱布蘸溶剂将粘度计内部擦拭干净,在空气中干燥或用冷风吹干,注意漏嘴应清洁通畅。 清洁处理后,调整水平螺钉,使粘度计处于水平位置,在粘度漏嘴下面放置150ml盛器,用手堵住漏嘴孔,将试样倒满粘度计中,用玻璃棒将气泡和多余的试样刮入凹槽,然后松开手指,使试样流出,同时立即开动秒表,当试样流丝中断时止,停止秒表读数(秒),即为试样的条件粘度。 两次测定值之差不应大于平均值的3%。 测定时试样温度为25±1℃ 涂-4粘度计的校正:用纯水在25±1℃条件下,按上述方法测定为11.5±0.5秒,如不在此范围内,则粘度计应更换。 3、细度(μm)标准《GB/T 1724-79(89)》 仪器:刮板细度计 测定方法: 细度在30微米及30微米以下的,用量程为50微米的刮板细度计,30-70微米时用量程为100微米的刮板细度计。

刮板细度计使用前必须用溶剂仔细洗净擦干。 将试样充分搅匀后,在细度计上方部分,滴入试样数滴; 双手持刮刀,横置在磨光平板上端(在试样边缘外),使刮刀与表面垂直接触,在3秒钟内,将刮刀由沟槽深部向浅的部位(向下)拉过,使漆样充满板上,不留有余漆。 刮刀拉过后,立即(不超过5秒种)使视线与沟槽平面成15-30度角观察沟槽中颗粒均匀显露处,记下读数;如有个别颗粒显露在刻度线时,不超过三个颗粒时可不计。 平行试验三次,结果取两次相近读数的算术平均值。 2.1.8涂料性能检测 一般涂料产品的贮存稳定性检测,以涂料在购进入库之前(产品取样按GB 3186—88执行),应对其进行相应的检查和验收,以避免在涂装过程中可能产生的质量事故,以致造成生产延误和一系列的经济损失。 一般涂膜的制备:国家标准《GB1727-79(88)漆膜一般制备法》中分别列出刷涂法、喷涂法、浸涂法和刮涂法的涂膜制备方法。但在制备时需要依赖操作人员的技术熟练程度,涂膜的均匀性较难保证。采用仪器制备涂膜在当前普遍推行,方法有旋转涂漆法和刮涂器法。 检测项目分别叙述如下。 一、外观 一般涂料产品的贮存期为6—12个月,由于颜料密度较大,存放过程中难免会发生沉降,此时特别需要检查沉降结块程度。一般可用刮刀来检查,若沉降层较软,刮刀容易插入,则沉降层容易被搅起重新分散开来,待检查其他性能合格后,涂料可以继续使用。 检测通过目测观察涂料有五分层、发浑、变稠、胶化、返粗及严重沉降现象。对于存放时间较长或已达到或超过贮存期的涂料品种,也应作相应检查。 图2-8 测力仪 涂料的沉降结块性也是评价涂料贮存稳定性的手段,可用测力仪(图2—8)

压载舱涂层保护标准

压载舱涂层保护标准(PSPC)2006年12月8日,国际海事组织正式通过《所有类型船舶专用海水压载舱和散货船双舷侧处所保护涂层性能标准(PSPC)》,标准的出台无疑一石激起千层浪,有媒体这样描述“现在,一场真正的危机正在降临。尤其对大量中小船厂来说,将不啻是一次生死大考”。“面对压载舱涂层保护新标准,谁能最快适应,谁将占得先机。中国造船界如果决策不力,动作迟缓,有可能再次拉大与世界造船强国的差距。”这是媒体及有关造船专家的呼声! 一、标准适用范围和时间 该标准将强制适用于不小于500总吨的所有国际航行船舶上布置的专用海水压载舱和150米及以上的散货船的双舷侧处。 具体实施时间要求为:对在2006年12月8日之后签订合同的船长90米以上的散货船和150米以上的油船提前实施该标准。强制适用于2008年7月1日以后签定建造合同的所有国际航行船舶;或无建造合同,在2009年1月1日或以后安放龙骨或处于类似建造阶段的船舶;或于2012年7月1日或以后交船的船舶。 二、标准的技术要求 1、涂层应具有15年的使用寿命(4.1涂层性能标准)。 2、“大合拢接头焊缝和涂层损坏总面积小于2%时可以采用人工打磨的方式处理,超过2%则必须采用真空喷砂处理(4.4涂层基本要求)”。 3、“水溶性盐限制要求含量控制在≤50 mg/m2 NaCI(4.4涂层基本要求)”。 4、颗粒大小为“3”、“4” or “5”的灰尘分布量为1级(4.4涂层基本要求)。 5、粗糙度要求:全面或局部喷射处理,Sa 2 ?级,粗糙度介于30-75 mm。在下列情况下不应进行喷砂:1相对湿度超过85%;或2钢板的表面温度高于露点温度少于3°C。在表面处理结束时,在进行底漆涂装前,应依据涂料商的建议检查钢板表面的清洁度和粗糙度。 三、技术难点和途径 压载舱涂层保护标准(PSPC)的实施不仅涉及到涂料和涂层本身,更涉及到造船硬件设施、造船模式和造船工艺流程、涂料及涂装工艺、实验测试设备、涂料和涂层检验及认可、验证及检查机构、检查人员资质及其认可机构等诸方面,所带来的难点和影响主要表现在以下几个方面。 1.涂装工艺设施不足 企业要满足压载舱涂层保护标准(PSPC)的要求,必须改进生产工

涂料性能检测方法

第9章涂料、染料和颜料的检验 9.1 涂料的检验 涂料,即俗称的“油漆”,是涂于物体表面能形成具有保护、装饰或特殊性能的固态膜的一类液体或固体的总称。这种材料可以用不同工艺经过施工涂布在被涂物表面,干燥固化后,形成一层高分子聚合物薄膜即涂膜,粘附牢固且具有一定强度。 涂料的分类方法有很多,目前,在我国涂料工业中按成膜物质(基料)分类,可将涂料分为17类,如醇酸树脂涂料、环氧树脂涂料、聚氨酯涂料、酚醛树脂涂料、丙烯酸树脂涂料等。 涂料除了具有装饰外观、防止腐蚀的作用外,还具有许多特殊功能,如防火涂料、防霉涂料、示温涂料、飞机的防雷达波涂料以及示芥子毒气涂料等等不胜枚举,是一种用途广泛的精细化工产品。因此,对涂料产品的检验显得尤为重要。 9.1.1 涂料产品的取样 为了得到适当数量的涂料的代表性样品,GB3186—82对产品类型、盛样容器及取样器械等进行了规定,并制订了色漆、清漆和有关涂料产品的取样方式。本节对它们分别作如下介绍。 1. 产品类型 GB 3186—82中根据涂料产品的状态,将产品分为以下五种类型: A型:单一均匀液相的流体,如清漆和稀释剂。 B型:两个液相组成的流体,如乳液。 C型:一个或两个液相与一个或多个固相一起组成的流体,如色漆和乳胶漆。 D型:粘稠状,由一个或多个固相带有少量液相所组成,如腻子、厚浆涂料和用油或清漆调制的颜料色浆,也包括粘稠的树脂状物质。 E型:粉末状,如粉末涂料。 2. 盛样容器和取样器械 (1)盛样容器 对涂料产品,采用下列适当大小的洁净的广口容器盛样:1)内部不涂漆的金属罐;2)棕色或透明的可密封玻璃瓶;3)纸袋或塑料袋。 (2)取样器械 为了使产品尽可能混合均匀,取出有代表性的样品,应采用不和样品发生化学反应的取样器械,并且取样器械应便于使用和清洗(无深凹的沟槽、尖锐的内角、难于清洗及检查其清洗程度的部位)。 对于涂料产品,常用的取样器械包括以下两类: 1)搅拌器:包括不锈钢或木制搅棒器和机械搅拌器两类。 2)取样器:常用QYG—I型、QYG—Ⅱ型、QYG—Ⅲ型、QYG—Ⅳ型取样管及QYQ—I 型贮槽取样器,如图9-1所示。也可采用效果类似的取样器。 3. 取样数目 产品交货时,应记录产品的桶数,按随机取样方法,对同一生产厂生产的相同包装的产

钕铁硼电镀前处理对镀层结合力的影响

电镀前处理对烧结钕铁硼磁性材料 镀层结合力的影响综述
摘要:本文主要介绍了钕铁硼磁性材料的腐蚀机理,以及电镀前处理工艺对镀层质量的影响。重点研 究了酸洗、喷砂这两种前处理技术对钕铁硼基体表面形貌的改变和对不同镀层的结合力影响。 关键词:钕铁硼磁性材料、腐蚀机理、酸洗、喷砂、镀层结合力 NdFeB磁性材料是80年代发展起来的第3代新型功能材料, 磁性材料是一种不需要消耗电能就可 以持续提供磁能的物体,它具有能量转换功能,是重要的功能材料。NdFeB磁体以其极高的“磁能 积”轰动于世,成为目前世界上磁性能最强的磁体。NdFeB磁体在磁性材料发展史上具有重要地位, 在微波通讯、音像、仪器仪表、电机工程、计算机磁分离、磁疗等领域得到广泛应用,成为新技术应 用的重要物质基础[1]。由于材料中Nd含量高,材料的化学性质极为活泼,所以材料在潮湿的空气中 极易氧化,与酸发生强烈的反应。NdFeB合金的晶界处存在富Nd相,极易产生晶间腐蚀,严重时, 产生大量Nd的氧化物和氢化物使材料粉化。又因具有选择腐蚀性,导致磁性能下降。另外NdFeB磁 性材料是通过粉末冶金烧结成型的产品,结构疏松,孔隙率高,表面状况较差,脆性大。NdFeB尽 管具有优异的磁性能,但却存在耐腐蚀性能差的缺点,限制了它的进一步推广应用。目前该问题已经 成为NdFeB产业的一个共性问题。因此,对NdFeB磁性材料的腐蚀机理及表面防护技术的研究具有 十分重要的意义[2]。
1. 腐蚀机理
1.1 NdFeB磁性材料的相组成[3]
烧结钕铁硼磁体主要采用粉末冶金法进行生产,它至少同时存在以下4种不同的相: (1)基体相(主相):Nd2Fe14B相。它是在1200℃左右通过包晶反应形成的,是合金中唯一 的磁性相。NdFeB磁体的优异的磁性能主要归功于Nd2Fe14B相的高饱和磁化强度(μ0Ms=1.6T)

重防腐涂料的标准

重防腐涂料的标准 重防腐涂料作为防腐涂料的骄子,自20世纪60~70年代开始应用以来,得到了迅速发展,应用范围越来越广,尤其是这样那样的防腐难题进一步推动了重防腐涂料技术的革命,重防腐涂料从生物工程、石油、化工等行业吸取营养,嫁接高技术,使重防腐涂料发挥着越来越大的作用,发展前景十分诱人。重防腐涂料标准的重要标志即厚膜化。今天我要为大家介绍的是有关重防腐涂料标准的相关知识。 重防腐涂料介绍 重防腐涂料:它的英文名称为heavy-duty coating,指相对常规防腐涂料而言,能在相对苛刻腐蚀环境里应用,并具有能达到比常规防腐涂料更长保护期的一类防腐涂料。厚膜化是重防腐涂料的重要标志。一般防腐涂料的涂层干膜厚度为100μm或150μm左右,而重防腐涂料干膜厚度则在200μm或300μm以上,还有500μm~1000μm,甚至高达2000μm。防腐涂料,一般分为常规防腐涂料和重防腐涂料,是油漆涂料中必不可少的一种涂料。常规防腐涂料是在一般条件下,对金属等起到防腐蚀的作用,保护有色金属使用的寿命; 重防腐涂料特点 ①能在苛刻条件下使用,并具有长效防腐寿命,重防腐涂料在化工大气和海洋环境里,一般可使用10年或15年以上,即使在酸、碱、盐和溶剂介质里,并在一定温度条件下,也能使用5年以上。 ②厚膜化是重防腐涂料的重要标志。一般防腐涂料的涂层干膜厚度为100μm或150μm左右,而重防腐涂料干膜厚度则在200μm或300μm以上,还有500μm~1000μm,甚至高达2000μm。 重防腐涂料种类 【环氧树脂漆】厚膜型环氧富锌底漆,环氧云铁防锈漆,环氧玻璃鳞片,环氧煤沥青漆,环氧地坪漆。 【氯乙烯油漆】底漆,面漆,机床漆,锤纹漆,防火漆,防腐漆,清漆,过氯乙烯腻子。 【氯化橡胶油漆】氯化橡胶各色面漆,氯化橡胶铝粉防锈底漆,氯化橡胶防锈底漆,氯化橡胶铁红铝粉防锈漆,氯化橡胶船底防污漆。 【丙烯酸油漆】丙烯酸聚氨酯罩光清漆,各色丙烯酸聚氨酯磁漆,丙烯酸道路划线漆。 【氟碳漆】各色氟碳防腐涂料,金属氟碳漆,氟碳外墙涂料。 【醇酸油漆】云母氧化铁醇酸防锈漆,各色醇酸船壳漆,各色醇酸磁漆。

涂层附着力检测方法的详细介绍

涂层附着力的检测方法 摘要:介绍了防腐蚀涂料涂层附着力的机理,并对附着力检测的标准划格法、划X法以及拉开法的测试方法和程序,作了详细说明。 关键词:涂层、附着力、划格法、拉开法 1.涂层附着力 涂装工程中,对于防腐蚀涂料的涂层附着力检测是涂层保护性能相当重要的指标,越来越被业主和监理所重视。除了在试验室内的检测外,防腐蚀涂料的选用过程中,对涂料产品进行的样板附着力测试,以及施工过程中现场附着力的检测,也越来越普遍。 有机涂层与金属基底间的附着力,与涂层对金属的保护有着密切的关系,它主要是由附着力与有机涂层下金属的腐蚀过程所决定的。有机涂层下金属的腐蚀主要是由相界面的电化学腐蚀引起的,附着力的好坏对电化学腐蚀有明显的影响。良好的附着力能有效地阻挡外界电解质溶液对基体的渗透,推迟界面腐蚀电池的形成;牢固的界面附着力可以极大地阻止腐蚀产物——金属阳离子经相间侧面向阴极区域的扩散,这些阳离子扩散是为了平衡阴极反应所生成的带负电荷的氢氧根离子,这虽然是一个相当缓慢的过程,但是一旦附着力降低,阳离子从相间侧面向阴极扩散的扩散则容易得多。 有机涂层的附着力,应该包括两个方面,首先是有机涂层与基底金属表面的黏附力(adhesion),其次是有机涂层本身的凝聚力(Cohesion)。这两者对于涂层的防护作用来说缺一不可。有机涂层在金属基底表面的附着力强度越大越好;涂层本身坚韧致密的漆膜,才能起到良好的阻挡外界腐蚀因子的作用。涂层的不能牢固地黏附于基底表面,再完好的涂层也起不到作用;涂层本身凝聚力差,漆膜容易开裂而失去保护作用。这两个方面缺一不可,附着力不好,再完好的涂层也起不到作用;而涂层本身凝聚力差,则漆膜容易龟裂。这两者共同决定涂层的附着力,构成决定涂层保护作用的关键因素。 有关涂层附着力的研究有相当多的理论学说,影响涂层附着力有基本因素主要有两个,涂料对底材的湿润性和底材的粗糙度。涂层对金属底材的湿润性越强,附着力越好;一定的表面粗糙度对涂层起到了咬合锚固(Anchor Pattern)的作用。 检测涂层与底材之间的附着力有多种方法,很多机构制订了相应的标准,同时也制备了很多的仪器工具来进行附着力的检测。 适用于现场检测附着力的方法主要有两大类,用刀具划X或划格法,以及拉开法。这两种方法除了可以在实验室内使用外,更适合于在施工现场中应用。主要的应用标准如表1。 表1 涂层附着力的检测方法和标准 美国材料试验协会制订的ASTM D3359-02是目前最新版的有关划X法的标准。它适用于干膜厚度高于125微米的情况,对最高漆膜厚度没有作出限制.而相对应的划格法通常适用于250微米以下的干膜厚度。 测试所要有的工具比较简单,锋利的刀片,比如美工刀、解剖刀;25mm(1in.)的半透

《国家标准》GB9286-98百格测试标准

1 范围 1.1 本标准规定了在以直角网格图形切割涂层穿透至底材时来评定涂层从底材上脱离的抗性的一种试验方法。用这种经验性的试验程序测得的性能,除了取决于该涂料对上道涂层或底材的附着力外,还取决于其他各种因素。所以不能将这个试验程序看作是测定附着力的一种方法。 注1:虽然本试验主要规定用于实验室,但也适用于现场试验。 1.2 所规定的方法可用作通过/不通过,或在适宜的场合,可用作一种六级分级试验(见8.3)。当用于多层涂层体系时,可用来评定该涂层体系中各道涂层从每道其他涂层脱离的抗性。 1.3 本试验可在涂有罩面漆的物体上和/或特制试样上进行。 虽然本试验方法适用于硬质底材(钢)和软质底材(木材和塑料)上的涂料,但这些不同底材需要采用一种不同的试验步骤(见第7章)。 本试验方法不适用于涂膜厚度大于250μm的涂层,也不适用于有纹理的涂层。 注2:当应用于设计成凹凸不平的图案表面的涂层时,该方法所得的结果会有较大的偏差。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 1727—92 漆膜一般制备法 GB 3186—82(89)涂料产品的取样(neq ISO 1512:1978等) GB/T 9271—88 色漆和清漆标准试板(eqv ISO 1514:1984) GB 9278—88 涂料试样状态调节和试验的温湿度(eqv ISO 3270:1984) GB/T 13452.2—92 色漆和清漆漆膜厚度的测定(eqv ISO 2808:1974) 3 需要的补充资料 对于任何特定应用而言,本标准中规定的试验方法,需要用补充资料来加以完善。这些补充资料的项目在附录A中列出。 4 仪器 4.1 切割刀具 确保切割刀具有规定的形状和刀刃情况良好是特别重要的。 4.1.1 下面列出一些适宜的切割工具,如图1a)和1b)所示: a)单刃切割刀具的刀刃为20°~30 °,以及其他尺寸,如图1a)规定。

热喷涂涂层性能检测方法

热喷涂涂层性能检测方法 热喷涂涂层在实际应用中对基体起到重要的保护作用,为确定涂层的性能和效果,检测显得尤为重要。 热喷涂涂层的性能由于影响着所防护材料的使用性能而备受关注。涂层的性能取决于喷涂设备、材料、工艺等多种因素。涂层性能的检测评估涉及很多检测方法,就一般的电弧喷涂层而言,涂层性能主要包括了涂层物理性能(如外观、密度、厚度、金相等)、力学性能(如结合强度、耐磨性、残余应力等)和化学性能(如化学成分、耐蚀性、耐热性、电化学性等)。在实际工作中并不要求电弧喷涂涂层一定要测试上述所有性能,而是要根据不同的目的来选择不同的测试项目。 涂层性能测试所涉及的国家标准 为了可靠地评价电弧喷涂涂层质量的优劣,准确测定涂层性能是否达到工艺、设计或者使用上的预期要求,需要一套比较准确的涂层质量和性能检测的方法。当然,最有效的方式就是采用现有的国家标准。表列出了现有的一些国家标准。 热喷涂涂层的测试方法 1.涂层显微金相组织 由于涂层与基体是两种截然不同的材料,硬度可能相差很大,磨制试样时需要特别谨慎。涂层试样的要求与一般金相试样有所不同,制备过程中要特别注意不能破坏涂层中微粒的组织结构,尽量避免涂层粒子在磨制试样时脱落下来。显微金相结构的分析主要包括两个步骤:样品制备和观察分析。具体步骤如下: (1)取样:样品的选择应符合国家标准GB/T13289金属显微组织检测方法规定进行,用细砂轮、线切割机或者火焰切割等方法截取一定尺寸具有研究价值的部位,且应保持所观察部位的组织不改变。

(2)样品制备:样品镶嵌,磨、抛以及腐蚀,均应按照GB/GT3298规定进行。 (3)组织结构分析步骤:将准备好的组织结构试样置于载物台上;将显微镜开关开启,打开光源,调整好照明电源使之对中;装上选好的物镜、目镜以及相应的观察方法。显微镜功能一般有6种,如明视场、暗视场、偏振光、干涉、微分干涉衬度、显微硬度;用粗细调焦钮对样品进行聚焦,同时调整好孔径和视场光栏大小,至目镜筒内观察到清晰的组织图像为止;选择好物象视场,用转换钮转向摄影系统,装上底片即可曝光拍照。 (4)样品的保存:对于涂层样品应放置在干燥器内(内有硅胶)。 2.涂层结合强度测试方法 该性能测试根据国标G9 8642-88 (热喷涂层结合强度的测定)进行。拉伸试样的材质是普通的Q235钢,经车削加工而成。具体试验步骤如下:将试样对偶件A、B喷砂处理,将试件端面A均匀地喷上待测结合强度的涂层,厚度约为0.8mm,然后用E-7胶将试件A、B件粘合,并将A试件置于B试件之上,使其同轴,经过100℃、1h加热固化以后,将试件夹在试验机夹具上,以1m/min的速度进行拉伸,记下拉断时所施加的载荷大小,同时观察拉断时,试件端面涂层的剥落情况。 用下式计算结合强度: 式中,σb—涂层得结合强度,N/mm2; F—试样破裂的最大载荷,N; A0—试验的涂层面积,mm2。 3.涂层硬度测试方法

相关主题
文本预览
相关文档 最新文档