当前位置:文档之家› 浅谈纳米技术在锂离子电池中的应用

浅谈纳米技术在锂离子电池中的应用

浅谈纳米技术在锂离子电池中的应用
浅谈纳米技术在锂离子电池中的应用

浅谈纳米技术在锂离子电池中的应用

锂离子电池作为高效储能元件,已经广泛的应用在消费电子领域,从手机到笔记本电脑都有锂离子电池的身影,锂离子电池取得如此辉煌的成绩得益于其超高的储能密度,以及良好的安全性能。随着技术的不断发展,锂离子电池的能量密度、功率密度也在不断的提高,这其中纳米技术做出了不可磨灭的贡献。说起纳米技术在锂离子电池中的应用,小编第一个想到的就是LiFePO4,LiFePO4由于导电性差,为了改善其导电性,人们将其制备成了纳米颗粒,极大的改善了LiFePO4的电化学性能。此外硅负极也是纳米技术的受益者,纳米硅颗粒很好的抑制了Si在嵌锂的过程中的体积膨胀,改善了Si材料的循环性能。近日美国阿贡国家实验室的Jun Lu在Nature nanotechnology杂志上发表文章,对纳米技术在锂离子电池上的应用进行了总结和回顾。

正极材料

1.LiFePO4材料

LiFePO4材料热稳定性好、成本低特性,吸引了人们的广泛关注,但是由于LiFePO4材料内部独特的共价键结构,使得LFP材料的电子电导率很低,因此限制了其高倍率充放电性能,为此人们将LFP材料制成纳米颗粒,并采用导电材料(例如碳)、导电聚合物和金属等材料进行包覆。此外人们还发现通过向纳米LFP颗粒内利用非化学计量比固溶体掺杂方法掺入高价金属阳离子,可以将LFP纳米颗粒的电子导电性提高108,从而使得LFP 材料可以在3min之内完成充放电,这一点对于电动汽车而言尤为重要。

下图a为LFP晶体在(010)方向上的晶体机构,晶体中「PO6」八面体通过共用O 原子的方式连接在一起,这种连接方式也导致了材料的电子电导率低。此外另一个影响LFP 材料性能的问题是Fe占位问题,在1D方向上,Li+有很高的扩散系数,但是部分Fe占据了Li的位置,从而影响了Li在(001)方向上的扩散速度,导致材料的极化大,倍率性能差。

2.抑制LiMn2O4材料分解

LMO材料具有三维Li+扩散通道,因此具有很高的离子扩散系数,但是在低SoC状态下会形成Mn3+,由于Jonh-Teller效应的存在,导致LMO结构不稳定,部分Mn元素溶出到电解液中,并最终沉积到负极的表面,破坏SEI膜的结构。目前,一种解决办法是在LMO 中添加一些低价主族金属离子,例如Li等,取代部分Mn,从而提高在低SoC下Mn元素的价态,减少Mn3+。另外一种解决办法是在LMO材料颗粒的表面包覆一层10-20nm厚度的氧化物、氟化物,例如ZrO2,TiO2和SiO2等。

3.抑制NMC化学活性

NMC材料,特别是高镍NMC材料比容量可高达200mAh/g以上,并具有非常优异的循环性能。但是在充电的状态下NMC材料极容易对电解液造成氧化,因此在实际生产中,我们不希望将NMC材料制成纳米颗粒,但是我们可以通过纳米包覆的手段来抑制NMC的化学活性。

为了抑制高镍NMC材料与电解液的反应活性,人们尝试利用纳米颗粒对材料进行包覆处理,避免材料颗粒和电解液直接接触,从而极大的提高了材料的循环寿命,如下图a、b 所示。原子层沉积也是保护NMC材料的重要方法,研究显示3到5次原子层沉积可以获得性能最好的NMC材料。但是由于NMC材料表面缺少酸性官能团,因此很难有效的进行原子层沉积。此外核壳结构的纳米颗粒也是降低反应活性的有效方法,如图3d,高Mn外壳具有很好的稳定性,但是容量较低,高镍核心容量很高,但是反应活性大,但是这一结构还面临一个问题就是由于晶格不匹配造成的内部应力,影响材料的循环性能,解决这一问题可以通过梯度浓度材料来实现,如图3e所示,Ni的浓度从核心到外壳逐渐降低,该材料能够达到200mAh/g以上的高可逆容量,并具有长达1000次的循环寿命。

负极材料

1.石墨材料保护

石墨材料嵌锂电压低(0.15-0.25V vs Li+/Li),非常适合作为锂离子电池的负极材料,但是石墨材料也有一些缺点。嵌锂后的石墨具有很强的反应活性,会与有机电解液发生反应,造成石墨片层脱落和电解液分解, SEI膜虽然能够抑制电解液的分解,但是SEI膜并不能100%对石墨负极形成保护。目前常见石墨表面保护办法有表面氧化和纳米涂层技术。

纳米涂层技术包括:无定形碳、金属和金属氧化物三大类,其中无定形碳主要是通过真空化学沉积CVD方法获得,这种方法成本较低,适合大规模生产。金属和金属氧化物纳米涂层主要是通过湿法化学的方法获得(电镀),能够很好的对石墨进行保护,防止电解液分解。

2.提升钛酸锂LTO和TiO2材料的倍率性能

LTO(Li4Ti5O12)材料安全性高,Li嵌入和脱嵌过程中不会产生应力,嵌锂电势较高,不会引起电解液的分解,是一种非常优异的负极材料,但是LTO材料还面临一下问题:1)比容量低,理论比容量仅为175mAh/g;2)低电子和离子电导率。目前纳米技术在LTO上主要有以下3方面的应用:1)颗粒纳米化;2)纳米涂层技术;3)LTO纳米材料与导电材料复合。LTO材料纳米化能够有效的降低Li+的扩散距离,并增大LTO于电解液的接触面积。纳米涂层技术能够加强LTO与电解液之间的电荷交换,改善倍率性能。几种常见的纳

锂电池BMS主要技术方案20101231

动力电池/储能电池BMS芯片主 要方案
uADI uATMEL uInfineon uIntersil uLinear uMaxim uO2 uTI
潇湘夜雨 2010-12-31

ADI BMS Solution
Voltage measurement device - monitors and balances the cells (AD7280) Current measurement device - monitors the cell stack’s current (ADuC703x or AD821x) ? Isolator - brings the measurement signals across the high-voltage barrier to the battery management unit (ADuM140x or ADuM540x) ? Safety monitor - enables creation of a fail-safe circuit and safe environment to the user (AD8280) ? Battery management unit – controls and manages battery functions to optimize operation (Blackfin ADSP-50x) 注:ad7280尚未推向市场,单颗芯片可以管理6个电芯 ad8280为电压阈值监控芯片,最多可检测6个电池电压和2个温度 ? ?
潇湘夜雨 2010-12-31

分会场十三微纳米光子学

分会场十三:微纳米光子学 主席:吴一辉(中国科学院长春光学精密机械与物理研究所) 李铁(中国科学院上海微系统与信息技术研究所) 特邀报告1:半导体太赫兹光频梳 黎华,中国科学院上海微系统与信息技术研究所,博士生导师,研究 员。2009年博士毕业于中国科学院上海微系统与信息技术研究所, 然后分别在德国慕尼黑工业大学、日本东京大学、法国巴黎七大材料 与量子现象实验室开展博士后研究工作,2015年回国工作,2016年 获得中国科学院“百人计划”A类择优支持。主要研究方向为太赫兹 量子级联激光器及其光频梳、锁模激光器、太赫兹成像及高分辨光谱 技术等。在Advanced Science、Optica、Applied Physics Letters、Optics Express等期刊上发表50余篇论文,曾获“2015中国中国电子学会优秀科技工作者”,“上海市自然科学二等奖”(排名第三)、德国“洪堡”学者奖学金、日本JSPS奖学金等。担任科技部973计划课题负责人、国家自然科学基金面上项目(2项)负责人、KJW 项目(2项)负责人等。 报告摘要: 太赫兹(THz)波(频率范围:0.1-10 THz; 1 THz=1012 Hz)位于红外光和微波之间,在国防安全、生物医疗、空间等领域具有潜在应用。由于缺乏高效THz辐射源和探测器,THz波还没有被完全认知,所以其被称为THz间隙(“terahertz gap”)。在1-5 THz 频率范围内,基于半导体电泵浦的光子学器件THz量子级联激光器(quantum cascade laser, QCL)在输出功率和效率方面比电子学和差频器件高,是关键的THz辐射源器件。本报告主要介绍我们在高性能THz核心器件以及半导体光频梳方面的研究进展。在高性能核心器件方面,我们突破分子束外延生长和半导体工艺技术,研制出高功率(1.2 W)、低发散角(2.4°)、宽频率范围THz QCL器件并实现THz高速探测和多色成像。基于高性能半导体THz QCL器件,成功实现THz QCL光频梳以及双光梳。克服传统THz光谱仪在测量时间和光谱分辨率方面的缺陷,开发出基于THz QCL双光梳的紧凑型高分辨实时光谱检测系统,为将来实现新一代THz光谱仪奠定基础。

浅谈纳米技术的研究与应用

浅谈纳米技术的研究与应用 1.引言 当集成电路代替电子管和半导体晶体管的初期,1959年美国诺贝尔奖获得者查理·费曼(Richard Phillips Feynman),在美国加州理工学院召开的美国物理年会上预言:“如果人们能够在原子/分子的尺度上来加工材料,制造装置,将会有许多激动人心的新发现,人们将会打开一个崭新的世界。”这在当时只是一个美好的梦想。 如今,这个预言和梦想终于实现了。费曼所预言的材料就是现在的纳米。 今天,不少科学家又在预言,纳米科技将在新世纪里得到惊人的发展,纳米科技将给人类的科学技术和生活带来革命性的变化。科学家认为,纳米时代的到来不会很久,它在未来的应用将远远超过计算机,并成为未来信息时代的核心。 我国著名科学家钱学森早在1991年就指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将是21世纪的又一次产业革命。” 英国理论物理学家斯蒂芬·霍金是继爱因斯坦之后最杰出的物理学家。他预测:“未来一千年人类有可能对DNA基因重新设计。而生化纳米材料则是设计DNA基因所必须具备的医药材料基础。” 近年来,科学家勾画了一幅若干年后的蓝图:纳米电子学将使量子元件代替微电子备件,巨型计算机可装入口袋;通过纳米化,易碎的陶瓷可以变成韧性的;世界还将出现1μm以下的机器甚至机器人;纳米技术还能给药物的传输提供新的方式和途径,对基因进行定点等。 海内外科技界广泛认为,纳米材料和技术的大规模应用可望在10年内实现。现阶段纳米材料和技术正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。 1998年8月20日,《美国商业周刊》发表文章指出,21世纪有三个领域可能取得重大突破:生命科学和生物技术;纳米材料和纳米技术;从外星球获得能源。并指出这是人类跨入21世纪所面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:“70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为21世纪先进国家。” 1974年,Taniguchi最早使用纳米技术(Nanotechnology)一词描述精细机械加工。1977年美国麻省理工学院的德雷克斯勒也提倡纳米科技的研究。但当时多数主流科学家对此持怀疑态度。1982年发明了扫描隧道显微镜(STM),以空前的分辨率揭示了一个“可见的”原子、分子世界。到80年代末,STM已不仅是一个可观察的手段,而且已成为可以排布原子的工具。STM与AFM(原子力显微镜)

浅谈纳米技术及其应用

浅谈纳米技术及其应用 1 概述 1.1 引言 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。 1.2 纳米技术的发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。 20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。 纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO 多晶体。 2

纳米光电子技术的发展及应用

纳米光电子技术的发展及应用 摘要:纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,由纳米技术而产生一些先进交叉学科技术,本文主要讲述的纳米光电子技术就是纳米技术与光电技术的结合的一个实例,随着纳米技术的不断成熟和光电子技术的不断发展,两者的结合而产生的纳米光电子器件也在不断的发展,其应用也在不断扩大。 关键词:纳米技术纳米光电子技术纳米光电子器件应用 一、前言 纳米材料与技术是20世纪80年代末才逐步发展起来的前沿性,交叉性的学科领域,为21世纪三大高新科技之一。而如今,纳米技术给各行各业带来了崭新的活力甚至变革性的发展,该性能的纳米产品也已经走进我们的日常生活,成为公众视线中的焦点。[2 纳米技术的概念由已故美国著名物理学家理查德。费因曼提出,而不同领域对纳米技术的看法大相径庭,就目前发展现状而言大体分为三种:第一种,是美国科学家德雷克斯勒博士提出的分子纳米技术。而根据这一概念,可以制造出任何种类的分子结构;第二种概念把纳

米技术定位为微加工技术的极限,也就是通过纳米技术精度的“加工”来人工形成纳米大小的结构的技术;第三种概念是从生物角度出发而提出的,而在生物细胞和生物膜内就存在纳米级的结构 二、纳米技术及其发展史 1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。其中纳米技术主要为以下四个方面 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等. 3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分

统编版语文四年级下册7.《纳米技术就在我们身边》教学设计

7.纳米技术就在我们身边 【课文简析】 《纳米技术就在我们身边》是中国科学院院士刘忠范的作品。刘忠范曾任中国微米纳米学会常务理事,第二届亚洲纳米科技大会执行主席等,他的团队主要从事纳米碳材料、纳米化学等研究,是国际上具有代表性的纳米碳材料研究团队之一。因为对纳米技术有着非常精深的研究,所以这样一篇纳米技术的文章在刘院士笔下写得深入浅出,既清楚地介绍了纳米技术以及它的应用,又极具可读性,一点儿也不枯燥。 《纳米技术就在我们身边》是一篇科普类型的说明文。这篇课文科技含量极高,学生了解甚微。作者首先从纳米说起,介绍了什么是纳米和纳米技术。紧接着,作者通过举例子、列数字、作比较等说明方法,清楚地告诉读者,纳米技术就在我们身边,纳米技术可以让人类更加健康,纳米技术将给人类生活带来深刻的变化。全文篇幅不长,却让读者一下子就对纳米技术有了比较清晰的了解。教师在教学过程中还要注意结合本单元阅读要素“阅读时能提出不懂的问题,并试着解决”,引导学生学会借助资料,同时联系上下文、结合生活经验来解决问题的方法,去解决问题。 【学情分析】 在学习四年级上册第二单元的时候,学生就已经学习了“提问”的方法。如:根据课文内容提问、根据课文写法提问、根据生活提问。因此,四年级的学生已掌握了一定的“提问方法”,并具备一定的“提出问题”的能力,在学习本课时着重培养学生运用学过的“提问方法”进行提问,并尝试解决。让学生掌握解决问题的方法。并且,学生对于不曾接触过的事物有着旺盛的好奇心,要学会利用学生的好奇心激发他们学习这篇科技含量极高的课文的学习兴趣。 【学习目标】 1.会认“乒、乓、拥”等12个生字,会写“纳、拥、箱”等15个生字,掌握多音字“率”。能够把“碳纳米管天梯”等科技术语读正确。 2.在读课文的过程中能够提住不懂的问题,并在交流中梳理问题,尝试着结合课文内容、查找资料解答问题。 3.初步学习列数字、作比较、举例子等说明方法,并尝试着运用。 4.了解纳米相关知识,以及纳米技术在生活中的应用。通过学习,激发学生热爱科学的情感和学习科学的兴趣,培养正确的科学观点。 【学习重、难点】 学习重点: 1.会认“乒、乓、拥”等12个生字,会写“纳、拥、箱”等15个生字,掌握多音字“率”。能够把“碳纳米管天梯”等科技术语读正确。 2.了解纳米相关知识,以及纳米技术在生活中的应用。通过学习,激发学生热爱科学的

纳米材料与锂电池

纳米材料与锂电池 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

摘要 传统的锂离子电池的负极材料是石墨,在可逆容量,循环寿命方面存在一些问题。二相比于块体材料,纳米材料具有许多优异的性能,纳米材料的制备、性能和应用别广泛研究,其中纳米材料在锂电池方面具应用前景。采用纳米材料取代传统块体材料,可以改善锂电池的性能。因此,本论文我们开展了氧化铁纳米材料在锂电池领域的应用调研。 本调研工作如下: 1) 目前锂离子电池的工作原理、负极材料研究情况,分析它们的优缺点。 2) 氧化铁纳米材料作为锂离子电池的负极时相对与其他负极材料的优越性,了解 氧化铁纳米材料在国内外的最新研究状况,在锂离子电池领域的应用情况。分析氧化铁纳米材料各种合成方法,制备工艺参数,对于氧化铁纳米材料电化学性能的影响,进而对锂离子电池影响。 3) 通过调研工作分析氧化铁纳米材料作为锂离子电池的负极材料目前所存在的问题及可能解决方法。比如从氧化铁纳米材料的结构稳定性、纳米材料的形貌尺寸方面及导电性能等方面着手。 关键词:氧化铁纳米材料,锂离子电池,负极材料。 根据中文摘要修改英文,和最后的总结 Abstract In the 90s of the last century, nano materials, nano composite materials, with its unique performance in lithium ion battery anode material application have great development, the traditional lithium ion battery anode material is graphite, but due to its in the reversible capacity, cycle life performance without nano material as anode materials for lithium ion batteries is superior, so nano material in lithium ion battery anode and by more and more people's attention, for example, the research of iron oxide nano materials because of its high capacity, high safety, high stability, abundant resources, cheap price, etc, by the people's attention.

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米储锂材料和锂离子电池.

纳米储锂材料和锂离子电池 3 黄学杰 李泓王庆刘伟峰师丽红陈立泉 (中国科学院物理研究所纳米物理与器件实验室北京 100080 摘要简单综述了锂离子电池的基本原理和发展现状 , 对中国科学院物理研究所固体离子学课题组在纳米储锂材料方面的研究进展做了介绍 . 用 HRTE M 等手段研究了纳米 SnO 、纳米 S i 以及纳米 SnSb 合金在 Li 入脱嵌过程中结构的变化 . 着重介绍了一种具有纳米微孔的球形硬碳材料和纳米 SnSb 合金钉扎的复合负极材料 , 在高功率密度和高能量密度锂离子电池方面具有广阔应用前景 . 关键词锂离子电池 , 纳米材料 , 负极 NAN O 2SCA LE D MATERIA LS FOR M AN D LITHIU M ION H UANG Xue 2Jie LI H ong W SHI Li 2H ong CHE N Li 2Quan (Nano scaled Physics &Device , Institute , Academy o f Sciences , Beijing 100080, China Abstract aspects of lithium ion batteries are briefly introduced. Then we summarize the research on nano 2for lithium storage in the Laboratory for S olid S tate I onics , where the structural ev o 2lution of nano 2SnO , nano 2S i particles and nano 2SnSb alloy during lithium insertion Πextraction has been studied by high resolution transm ission electron m icroscope. In addition , the electrochem ical properties of hard carbon spherules (HCS and nano 2SnSb alloy pinned HCS com posites are described. The large lithium storage capacity and cyclic ca 2pability of these materials make them

800V电动车锂电池解决方案

1.技术具体描述: (产品技术属于改进还是从无到有;该产品/技术对节能、减排、安全等方面的改进情况;该产品/技术与国际国内领先企业的比较;获得国际国内认证水平和数量;企业基础研究能力和技术储备情况等;) PACK产品技术: 目前行业内汽车电压平台400V或600V,此款PACK产品具有800V高压系统,电压平台提升可以大大提高电驱动系统的功率密度、电驱效率以及NVH性能等,同时高电压平台可以降低整车电流、高压线束线径减少,发热量降低,重量递减。 同时具备PACK系统具备800V-400V转换功能,做到了高压系统&超级快充的同时匹配市场的常规充电桩,中国市场还未见同类产品。 800V电压平台有效提升: 充电时间短,有效降低用户充电焦虑14.2%→78.6%SOC充电仅18.5min, 0→100%SOC充电仅50min; 超强热管理及器件散热能力,满足高功率放电&超级快充策略 高功率放电能力,满足纽北赛道至少1.5圈,峰值放电电流高达1200A 800V高压系统+400V充电能力,2个400V模组经BDU内部串并联,实现800V-400V转换降低充电电压,可800V充放电,也可400V充电,实现超级快充,可兼容市面上常见充电桩。 PACK BDU技术: 集成式高压电路控制单元,整体空间小,布置灵活,同时优异的散热能力,产品采用继电器与智能保险倒置,铜排接触箱体,增大散热面积。优异的绝缘能力:铜排与散热垫中间设置绝缘垫保证绝缘。

PACK-电芯技术:?高能量密度 ?高功率密度 ?低直流内阻 ?快充能力强 ?循环性能好高能量密度 能量密度 (wh/kg@1/3C) 1/3C 1C 能量效率(%)能量效率(%) 271.8 97.6 94.9 高功率密度 ③低直流内阻 50%SOC 功率(w) 2250 @10s 功率密度1 (w/kg) 2184 功率密度2(w/L)5044 PACK所使用电芯

纳米粉体材料行业分析报告行业基本情况.doc

报告概要 行业评级:纳米粉体新材料行业推荐 行业内重点公司推荐:广东羚光 行业分析师:袁熠 执业证编号:S123011470019 电话:(021)64318677 Email:YuanYi@https://www.doczj.com/doc/ab12596585.html, 纳米粉体材料行业分析报告 一、行业基本情况 1、行业主管部门及监管体制 公司属于金属制品制造业,行业主管部门是国家发展与改革委员会、工业和信息化部及其各地分支机构,主要负责产业政策的制定并监督、检查其执行情况;研究制定行业发展规划,指导行业结构调整、行业体制改革、技术进步和技术改造等工作。 中国微米纳米技术学会(CHINESE SOCIETY OF MICRO-NANO TECH-NOLOGY ,英文缩写为CSMNT )是全国范围纳米行业的自律性管理 组织,其主要筹办各种学术活动,包括组织各种学术会、展览会、战略研讨会、 国际交流等等,为我国微米纳米技术的计划与规划、关键技术联合攻关、技术交流、人才培养、科学普及发挥重要作用,为国内外各界微米纳米技术研究人员和 单位的交流、科研成果的转化和产业化提供交流平台。 江苏省新材料产业协会是江苏省内的新材料行业自律性组织,协会由全省新材料产业领域的企事业单位、大专院校、科研机构以及其他相关经济组织自愿组成,是实行行业服务和自律管理的全省性、行业性、非盈利性的社会组织。主要 开展新材料产业全面调查,研究发展趋势,参与制定新材料产业规划和产品技术、质量行业标准,构建综合服务平台,促进产业体制和技术创新,促进新材料企业

持续发展,为江苏省新材料产业发展提供助力。 目前,国家发展与改革委员会、工业和信息化部对行业的管理仅限于宏观管理、政策性引导,行业协会进行指导性管理,公司自主从事业务发展、内部管理 和生产经营。纳米材料行业市场化程度较高,主要表现在市场主体和交易方式上, 政策壁垒已经完全消除,企业可以自由进入,产品价格由市场供求关系决定,国家不干预企业产品定价,行业运作已经充分市场化。 2、行业主管法律法规 (1)主要法律法规 行业相关法规: 序号法律法规名称发布单位 1 《中华人民共和国产品质量法》全国人大 2 《中华人民共和国标准化法》全国人大 3 《中华人民共和国计量法》全国人大 4 《中华人民共和国计量法实施细则》国家计量局 (2)国家标准 国家质检总局与国家标准委联合发布的与纳米材料有关的国家标准,主要有:序号行业标准名称编号 1 纳米材料术语GB/T 19619-2004 2 纳米粉末粒度分布的测定X 射线小角散射法GB/T 13221-2004 3 气体吸附BET 法测定固态物质比表面积GB/T19587-2004 4 纳米镍粉GB/T 19588-2004 5 纳米氧化锌GB/T 19589-2004 6 超微细碳酸钙GB/T 19590-2004 7 纳米二氧化钛GB/T 19591-2004 3、行业主要产业政策 公司处于前沿技术细分行业,公司产品主要运用于片式元件(电容器、电感器和电阻器)、新能源等领域,公司产品的应用领域符合国家的产业政策,属于 国家鼓励发展行业,影响本行业发展的法律法规及政策主要有: 2016 年6 月江苏省政府发布的《江苏省国民经济和社会发展“十三五”规划

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

纳米结构材料在锂离子电池中的应用进展(一)

纳米结构材料在锂离子电池中的应用进展(一) 锂离子电池是现代材料电化学学科的一个巨大的成功。相关的科学与技术连篇累牍地见诸于先前的评论和专着中,有兴趣的读者可以从中得到更多的细节1]。锂离子电池由锂离子插层负极材料(一般为石墨)、锂离子插层正极材料(一般为锂的氧化物如LiCoO2)及将两者分离开的锂离子传导电解液(如溶有锂盐LiPF6的碳酸乙二酯-碳酸二乙酯有机溶液)等材料构成。虽然这类电池已被成功地商业化,但现有的电极和电解液材料已达到了性能的极限。在消费电子,以及清洁能源存储和混合电动交通工具的使用中,新一代可充电锂电池的研制迫切需要材料技术的进一步突破。其中已在开发中的一种途径是纳米材料在锂离子电池中的应用。一、电极锂离子电池纳米电极存在一些潜在的优缺点。优点:(i)更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命;(ii)可发生在块体材料中不可能出现的反应;(iii)更高的电极/电解液接触面积提高了充/放电速率;(iv)短的电子输运路径(允许在低电导或高功率下使用);(v)短的锂离子传输路径(允许在低锂离子传导介质或高功率下使用)。缺点:(i)高比表面积带来的不可预期的电极/电解液反应增加,导致自放电现象,差的循环性能及寿命;(ii)劣等的颗粒包装技术使其体积能量密度很低,除非开发出一种特殊的压缩工艺,否则会限制它的应用;(iii)电极合成过程可能会更加复杂。认识了这些优缺点,人们已经加大在负极材料及最近展开的正极材料的研发力度。二、负极储锂金属存在的问题储锂金属可部分重复地、在低电压(相对于锂)下进行储锂反应,它提供了比传统石墨大得多的比容量。例如,锂硅合金,饱和状态下的分子式为Li4.4Si,理论上可以达到4200mAh/g 的比容量,而金属锂为3600mAh/g,石墨只有372mAh/g。但是,锂的嵌入再加上相变会导致体积发生巨大的变化,产生的应力致使金属电极断裂破碎,电阻增大,存储电荷的能力骤降。尽管在合金化反应中结构的变化是很正常的,但人们依然努力去降低这一效应以保持电极的完整性。活泼/惰性纳米复合(active/inactivecomposite)概念该方法包含了两种材料的混合,一种与锂反应,另一种作为惰性的局域缓冲。在这种复合材料中,活泼相纳米级金属团簇被包裹在惰性非晶相基体中,在嵌锂过程中很好地消除了产生的内应力,从而提高了合金化反应的可逆性。将这一概念应用到不同的体系中,结果显示这些电极极大地提高了锂电池的循环性能。1999年ouMao等2]发现机械合金化得到的Sn基复合材料Sn-Fe-C存在Sn2Fe 和SnFe3C两相,前一相中的Sn可以与Li发生反应因而被称为活泼相,而后一相却几乎不发生嵌锂反应因而被称为惰性相。在两相的协调作用下,循环80次容量几无降低。Si-C纳米复合材料亦有类似功能3,4],2004年Novak,P等5]在日本召开的锂电池会议中宣布其Si-C 纳米复合材料电极循环100次后比容量仍高达1000mAh/g,因而受到了非常的注目。纳米形貌特征对循环性能的贡献2005年3月份,AdvancedMaterials发表了对TiO2-B纳米管或纳米线的研究成果(B表示TiO2的类型而非硼元素)6]。这种材料可由简单的水相合成途径大量合成,直径在40-60nm之间,长度可达数微米。多晶TiO2-B纳米管是一种优秀的锂嵌入载体,插锂电位在1.5-1.6V,形成Li0.91TiO2-B(305mAh/g),具有优异的可逆循环容量(循环100次后容量几无降低)。有意思的是,它的比容量要优于同种相的直径跟纳米线直径相仿的纳米粒子。2003年Green,M等7]发现表面纳米柱磁电极因尺寸限制改变了颗粒的形变行为,减少了断裂的产生,同样显示了优异的可逆容量(循环50次后大部分柱状结构仍保持原样)。人们研究发现纳米碳管的充放电容量可以超过石墨嵌锂化合物理论容量的一倍以上。Z.H.Yang8]发现用化学气相沉积法制备的纳米碳管容量可达700mAh/g,Frackowia9]用Co/硅胶为催化剂在900℃下催化分解乙炔气体得到的纳米碳管的首次嵌锂容量达到952mAh/g。但同时也发现与其它碳材料相比,纳米碳管作为负极材料不仅存在电位滞后,而且存在明显的双电层效应。颗粒度的降低拓宽了人们对电极材料的选择范围纳米尺寸研究上的突破可能会迅速地改变人们对无机材料的化学/电化学反应原有的认识,原以为不满足传统锂插层标准而被否决的材料现在却值得重新思考了。这来自于2003年Larcher,D等所做的关于宏观&纳

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

浅谈锂电池模组与PACK系列

浅谈锂电池模组与P A C K 系列 Hessen was revised in January 2021

浅谈锂电池模组与PACK系列---两大市场形态 自1990年问世以来,因其能量密度高、电压高、环保、寿命长以及可快速充电等优点,深受3C数码、动力工具等行业的追捧,特别是对新能源汽车行业的贡献尤为突出。作为提供新能源汽车动力来源的市场潜力巨大,不仅仅是国家战略发展的重要一环,预计未来5到10年,其产业链将实现行业生态的 自我完善和发展,产业规模有望突破1600亿元。 众所周知,从锂电池单体电芯到自动化模组再到PACK生产线的整个过程中,组装线的自动化程度是决定产品质量与生产效率的重要因素。近几年,随着经验的增加和自动化集成能力的提升,国内高端智能装备制造企业在打造动力电池全自动/ 半自动组装线、自动化设备集成、信息采集与传输(MES)、无人化车间软硬件管理系统等方面大展拳脚并占据一席之地。本文将从国内电池模组与PACK设备特点和市场需求出发,抛砖引玉,浅析当前市场形态。 电池模组 是由几颗到数百颗电池芯经由并联及串联所组成的多个模组,除了机构设计部分,再加上电池管理系统和热管理系统就可组成一个较完整的锂电池包系统。一般而言,不管是软包、方形、圆柱还是18650型电池,模组的自动化组装工艺流程都是从电芯上料开始。来料可以是原供应商提供的包装,也可以是厂家经过检测后统一整理好的专用托盘。上料过程可以是人工操作,也可以通过传送带自动上料,然后通过机器人经由抓手抓取。上料的同时还会进行电芯的读码(采集单个电芯的身份数据信息)、电芯极性检测(有无放反方向)、电芯分选及配组,并将不良品剔除。来料通过初检和分选之后,根据模组和工艺要求的不同会分别进行诸如激光清洁-涂胶-电芯堆叠-电池盒组装-极耳裁切整形-模组壳激光焊接-模组激光打码-打螺丝-模组检测-连接片激光焊接-BMS系统连接-模组终检测-模组下料等 锂电池模组 目前,由于市场上各家汽车厂商的要求不同,几乎没有一家的模组和生产工艺是一样的,而这也对自动化产线提出了更多的要求。好的自动化生产线除了满足以上硬件配置和工艺要求以外,还需要重点关注兼容性和“整线节

纳米制造技术的详细介绍和应用的详细资料概述

纳米制造技术的详细介绍和应用的详细资料概述 史铁林,教育部“微纳制造与纳米测量技术”创新团队负责人、中国振动工程学会常务理事、中国振动工程学会动态信号分析专业委员会主任委员、中国振动工程学会故障诊断专业委员会副主任委员、中国微米纳米技术学会理事。他先后获多项中国青年科技奖、全国优秀博士后、湖北省五四青年奖章、中国机械工程学会杰出青年科技奖和首批“新世纪百千万人才工程”国家级人选等荣誉称号。他发表学术论文250余篇,其中SCI收录150多篇,申请国家发明专利80多项,授权50多项。 问:纳米技术、信息技术和生物技术并列为21世纪的三大科技,而纳米制造则是支撑它们走向应用的基础。那么,纳米制造是如何定义的?其主要特征是什么? 史铁林:美国科学基金会将纳米制造定义为构建适用于跨尺度集成的、可提供具有特定功能的产品和服务的纳米尺度的结构、特征、器件和系统的制造过程。纳米制造已远远超出常规制造的理论和技术范畴,相关技术的发展将依赖于新的科学原理和理论基础,依赖于多学科交叉融合。纳米制造从牛顿力学、宏观统计分析和工程经验为主要特征的传统制造技术走向基于现代多学科综合交叉集成的先进制造科学与技术。其主要特征在于:(1)制造对象与过程涉及跨尺度;(2)制造过程中界面/表面效益占主导作用;(3)制造过程中原子/分子行为及量子效应影响显著;(4)制造装备中微扰动影响显著。 问:纳米制造的关键结构从尺度上主要体现为结合微米与纳米的跨尺度制造和纳米范畴的纳尺度制造,请介绍一下这两种关键结构的特点,以及您的团队在该领域取得的成果。史铁林:跨尺度集成制造是将不同尺度的结构组合、加工形成多尺度整体的过程。微纳集成结构可以根据它们的结构特性分为无序分级结构、一维纳米分支结构、层叠分级结构、几何形状可控分级结构和纳米悬浮分级结构等。微纳集成结构可以有不同的形状、尺寸、层数等几何特征,其关键的一点是要实现纳结构在微结构上的定点、可控集成。稳定的微纳集成结构不仅能为研究纳米材料的光、电等方面的性能提供方便,还可能为功能微/纳米电子器件的研制打下基础。在微纳结构的集成过程中,微结构界面的各种因素都会对纳米结构集成效果带来较大影响,因此研究微环境对纳结构形成的影响机理,实现微环境的

微纳米加工技术及其应用

绪论 1:纳米技术是制造和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm。 2:微纳米技术包括集成电路技术,微系统技术和纳米技术;而微纳米加工技术可获得微纳米尺度的功能结构和器件。 3:平面集成加工是微纳米加工技术的基础,其基本思想是将微纳米机构通过逐层叠加的方式筑在平面衬底材料上。(类似于3d打印机?) 4:微纳米加工技术由三个部分组成:薄膜沉积,图形成像(必不可少),图形转移。如果加工材料不是衬底本身材料需进行薄膜沉积,成像材料的图形需转化为沉积材料的图形时需进行图形转移。(衬底材料,成像材料,沉积材料的区别和联系) 5:图形成像工艺可分为三种类型:平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,其主流的方法是光学曝光即“光刻“技术;探针图形化工艺是一种逐点扫描成像技术,探针既有固态的也有非固态的,由于其逐点扫描,故其成像速度远低于平行成像方法;模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术,还包括模压和模铸技术。 6:微米加工和纳米加工的主要区别体现在被加工结构的尺度上,一般以100nm 作为分界点。 光学曝光技术 1:光学曝光方式和原理 可分为掩模对准式曝光和投影式曝光。其中,掩模对准式曝光又可分为接触式曝光和邻近式曝光,投影式曝光又可分为1∶1投影和缩小投影(一般为1∶4和1∶5)。 接触式曝光可分为硬接触和软接触。其特点是:图形保真度高,图形质量高,但由于掩模与光刻胶直接接触,掩模会受到损伤,使得掩模的使用寿命较低。采用邻近式曝光可以克服以上的缺点,提高掩模寿命,但由于间隙的存在,使得曝光的分辨率低,均匀性差。 掩模间隙与图形保真度之间的关系 W=k√ 其中w为模糊区的宽度。 掩模对准式曝光机基本组成包括:光源(通常为汞灯),掩模架,硅片台。 适用范围:掩模对准式曝光已不再适用于大规模集成电路的生产,但却广泛应用于小批量,科研性质的以及分辨率要求不高的微细加工中。 投影式曝光:投影式曝光广泛应用于大批量大规模集成电路的生产。 评价曝光质量的两个参数:分辨率和焦深。

相关主题
文本预览
相关文档 最新文档