当前位置:文档之家› 功能基因的克隆及生物信息学研究

功能基因的克隆及生物信息学研究

功能基因的克隆及生物信息学研究
功能基因的克隆及生物信息学研究

功能基因的克隆及其生物信息学分析

摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等>,其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,

通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。

关键词:功能基因、克隆、生物信息学分析。

1.功能基因的克隆

1.1 图位克隆方法

图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,

得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因<控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦 VRN2 基因克隆[5]等)也通过图位克隆法获得。

1.2 同源序列克隆目的基因

首先根据已知的基因序列设计PCR引物,在已知材料中扩增到该片段,并

经克隆测序验证,利用放射性同位素标记或其他非同位素标记该PCR片段作为

探针,与待研究材料的cDNA文库杂交,就可以获得该基因cDNA克隆,利用克隆进一步筛选基因组文库,挑选阳性克隆,亚克隆并测序,从中就可以筛选到该基因的完整序列。

1.3结合连锁和连锁不平衡的分析方法

结合连锁和连锁不平衡的分析方法是未知基因克隆研究领域发展的新方向[6 ]。(Linkage disequilibrium, LD>。与连锁分析不同, 连锁不平衡分析可以利用自然群体中历史发生的重组事件。历史上发生的重组使连锁的标记渐渐分布到不同的同源染色体上,

这样就只有相隔很近的标记才能不被重组掉,

从而形成大小不同的单倍型片段(Haplotype block>。这样经过很多世代的重组, 只有相隔很近的基因, 才能仍处在相同的原始单倍型片段上, 基因间的连锁不平衡才能依然存在。所以基于连锁不平衡分析,

可以实现目的基因的精细定位。林木大多为自由授粉的异交物种,

所以连锁不平衡程度很低, 林木基因组中的LD可能会仅局限于非常小的区域, 这就为目的基因的精细定位提供了可能, 结合SNP 检测技术, 科学家甚至可以将效应位点直接与单个的核苷酸突变关联起来,

进行数量性状寡核苷酸(Quantitative trait nucleotide, QTN>作图。当然除了相隔很近的基因, 某些相隔较远的基因, 由于受相同的选择压力, 也可能产生连锁不平衡。但通过家系分析, 首先可以进行目的基因的粗略定位, 将目的基因首先限定到一个较小的区域, 只针对该区域内的SNP 进行相关性分析, 从而消除非由连锁引起的连锁不平衡干扰。随着林木全基因组测序的发展,

连锁图谱与LD 分析相结合的方法将是在林木中实现未知基因克隆的最有效的方法[6]。

1.4电子克隆

近年来又兴起一种新的基因克隆方法--

电子克隆,它是近年来伴随着基因组计划和EST计划发展起来的基因克隆新方法,它的主要原理是利用日益发展的生物信息学技术,借助电子计算机的巨大运算能力,通过EST或基因组的序列组装和拼接,利用RT-PCR的方法快速获得功能基因,具有投入低、速度快、技术要求低和针对性强等优点[7]。

1.4.1利用EST数据库信息

首先选择感兴趣的水稻, EST作为查询探针,搜索水稻dbEST数据库,找到部分重叠的EST进行拼接,然后再以拼接好的EST重叠群为新的查询探针,继续搜索

dbEST库,直到没有新的EST可供拼接为止,最后根据拼接好的完整序列设计PC R引物,通过RT-PCR的方法获得目的cDNA克隆并进行序列测定验证[7]。

图1为利用EST数据库信息克隆水稻功能基因的实验流程。

图1 利用水稻 EST数据库进行电子克隆的策略

1.4.2利用基因组信息

利用基因组信息资料进行电子克隆的最大优点就是基因的克隆不受作物发育时期或特殊环境条件的限制:可以用来源于任何时期或组织的水稻和其他物种的EST或全长cDNA序列作为信息探针搜索位于

GenBank或者我国华大公布的水稻基因组序列:

随后根据内含子的规则通过人工拼接或相应的计算机软件预测:

可以得到该基因完整的开放读码框,根据拼接的序列结果设计PCR引物:

进一步采取RT-

PCR的方法获得目的基因的cDNA克隆并进行序列测定[7]。具体实验流程见图2

2 生物信息学分析

生物信息学(bioinformatics>是在生命科学、计算机科学和数学的基础

上逐步发展而形成的一门新兴交叉学科,是为理解各种数据的生物学意义,运用数学与计算机科学手段进行生物信息的收集、加工、存储、

传播、分析与解读的科学[8-

10]。由于历史原因,有的研究者也使用计算生物学(computational

biology>或计算分子生物学(computational molecular biology> 等不同的术语。在后基因组时代,生物信息学的研究内容主要可分为两个重要组成部分:基因组信息学和蛋白质组信息学[11]。后基因组时代,除了继续序列和结构分析外,更多的研究力量则投入到功能分析,也就是分析研究遗传型到表型的过程[12]。

2.1 基因序列同源性比对及其应用

基因序列同源性的比对,对于分析基因组DNA序列以及完成新基因的染色体定位也是极为便捷的。将确定的新基因的编码基因序列作为参照,对于GenB ank数据库中高通量基因序列(htgs>数据库中基因组DNA序列进行同源性对比,当发现与新基因的cDNA序列完全同源的基因组DNA序列时,根据Chambon原则,内含子(intron>的序列总是以GT开始,以AG结束,就可以确定该基因的基因组DNA序列的结构,及外显子(exon>-

内含子序列结构。因为在htgs数据库收录的基因组DNA序列,其染色体的来源是十分清楚的,因此就很容易、很方便地将该基因组进行染色体的定位,而不再需要进行荧光原位杂交(FISH>的常规的基因染色体定位技术。可见基因的生物信息学技术的发展对于基因组DNA序列的确定和在染色体上的定位是多么重要。迟光红等在香蕉中获得一个柠檬酸合酶基因的cDNA序列。用NCBI

Blastx分析,得出它具有植物柠檬酸合酶基因的特征结构域,并与其他植物中柠檬酸合酶基因的同源性较高,进一步证明了该cD

NA编码香蕉中的柠檬酸合酶[13]。李学农等通过Internet查询美国国家生物信息

中心数据库,数据库采用BLAST,依据Genecard和Ense-

mbl获得将MGC39325基因定位于人染色体8q12[14]。

2.2 结构分析与功能预测

结构分析的研究重点在于研究蛋白质的空间结构。利用分子模拟技术结合计算机图形技术可以更形象、更直观地研究蛋白质等生物大分子的结构,蛋白质的空间结构的更清晰的表述和研究对揭示蛋白质的结构和功能的关系、总结蛋白质结构的规律、预测蛋白质肽链折叠和蛋白质结构等,都是有力的帮助和促进。同时,也可以对已经被测定的生物大分子的三维结构进行显示和编辑操作。分子模型的建立为下一步进行的分子模拟以及了解结构与功能的关系打下了基础。蛋白质结构预测是利用已知的一级,二级序列来构建蛋白质的立体结构模型,

对蛋白质进行结构预测需要具体问题具体分析,在不同的已知条件下对于不同的蛋白质采取不同的策略。杨波等以LRP16 基因转录产物为目标序列,在人类基因组数据库中搜索开放阅读框

用计算机辅助系统预测LRP16蛋白的一级结构、二级结构和三级结构;利用结构域搜索 LRP16 编码蛋白的同源或相似结构蛋白[15]。

2.3 蛋白质的同源性检索及系统发生进化树分析

将推导出的蛋白质序列登录到NCBI网站( http://www.ncbi.nlm.n ih.gov />上,用BL AST程序进行序列的同源性检索[16-18]。王安娜等。结果发现大豆的C4H蛋白质与绿豆、马铃薯、棉、辣椒、橄榄、烟草、律草属啤酒花等的 C 4 H蛋白质有着很显著的同源性。在BLA ST p分析的基础上,选择与其同源性较高的几条序列做聚类分析,对

C4H蛋白和其他C4H蛋白的同源性做进一步分析。在DNAMA N 6.0 的Treeview显示的结果。结果表明大豆C4

H和绿豆的C4H亲缘关系最近,同源性达

95%,来自于同一个分枝;其次是紫苜蓿、红车轴草、鹰嘴豆、豌豆,来自同—个次分枝[19]。

参考文献

[1] 黎裕、王天宇、贾继增. 植物功能基因组学的发展现状与发展趋势. 生物技术通报 2000;6-10

[2] 刘斌.生命科技的前沿领域,HIGH TECHNOLOGYANDINDUSTRIALIZATIONAUGUST 2006;48-54

[3] Frary A, Nesbitt T.C, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, TanksleySD. Fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289(期>: 85–88.

[4] Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science, 2006, 311(5266>: 1936–1939.

[5] Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P,

Bennetzen JL, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303(5664>: 1640–1644.

[6] 尹佟明 HEREDITAS (Beijing> 2018年7月, 32(7>: 677―684.

[7] 黄骥张红生曹雅君钱晓茵杨金水水稻功能基因的电子克隆策略. 中国水稻科学,2002,16(4>。295-298.

[8] Baldi P, Brunak S.Bioinformatics:The Machine Learning App roach [M].Cambridge,Mass.:MIT Press,2001.

[9]

欧阳曙光,贺福初.生物信息学:生物实验数据和计算技术结合的新领域[ J ].科学通报,1999,44 ( 14 >:1457—1468.

[10]

陈润生.当前生物信息学的重要研究任务[ J ] .生物工程进展,1999,19 (4> :11—14.

[11] 王正华王勇献后基因组时代生物信息学的新进展国防科技大学学报: 1001—2486 (2003>。 01-06.

[12] 陈铭, 后基因组时代的生物信息学, 生物信息学,1672-5565(2004>-02-06.

[13] 迟光红,周雪丽,李美英,徐碧玉,金志强香蕉柠檬酸合酶基因MaGCS的克隆及生物信息学分析.热带农业科学, 2009,12-18.

[14] 李学农,李亚玲,刘国炳,丁彦青肿瘤相关未知功能基因MGC 39325的克隆及生物信息学分析World Chin J Digestol > : 1059 — 1064 (2005> 1059-1064.

[15] 杨波,卢学春迟小华韩为东于力楼方定基于生物信息学分析人类LRP16 基因功能初步研究癌症2009,28 (1>1283-1290

[16]

李玉花,刘靖华,徐启江,等.现代分子生物学模块实验指南[ M] .北京:高等教育出版社,2006:295—311.

[17] 孙啸,陆祖宏.生物信息学基础[M] .北京:清华大学出版社,2005.

[18] 钟扬,王莉,张亮.生物信息学[M] .北京:高等教育出版社,2003 .

[19]王安娜,王婵婵,吴蕾,李业成,刘成,马凤鸣

大豆C4H基因克隆及生物信息学分析东北农业大学学报 2018.41 (4>:12 ~ 15.

【高中生物】功能基因的克隆及生物信息学分析

(生物科技行业)功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structuralgenomics)转向功能基因组学(functionalgenomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多

控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2基因克隆[5]等)也通过图位克隆法获得。 1.2同源序列克隆目的基因 首先根据已知的基因序列设计PCR引物,在已知材料中扩增到该片段,并经克隆测序验证,利用放射性同位素标记或其他非同位素标记该PCR片段作为探针,与待研究材料的cDNA文库杂交,就可以获得该基因cDNA克隆,利用克隆进一步筛选基因组文库,挑选阳性克隆,亚克隆并测序,从中就可以筛选到该基因的完整序列。 1.3结合连锁和连锁不平衡的分析方法 结合连锁和连锁不平衡的分析方法是未知基因克隆研究领域发展的新方向[6]。(Linkagedisequilibrium,LD)。与连锁分析不同,连锁不平衡分析可以利用自然群体中历史发生的重组事件。历史上发生的重组使连锁的标记渐渐分布到不同的同源染色体上,这样就只有相隔很近的标记才能不被重组掉,从而形成大小不同的单倍型片段(Haplotypeblock)。这样经过很多世代的重组,只有相隔很近的基因,才能仍处在相同的原始单倍型片段上,基因间的连锁不平衡才能依然存在。所以基于连锁不平衡分析,可以实现目的基因的精细定位。林木大多为自由授粉的异交物种,所以连锁不平衡程度很低,林木基因组中的LD可能会仅局限于非常小的区域,这就为目的基因的精细定位提供了可能,结合SNP检测技术,科学家甚至可以将效应位点直接与单个的核苷酸突变关联起来,进行数量性状寡核苷酸

最新gfp基因的克隆与表达

基因工程实验设计 题目:绿色荧光蛋白基因(gfp)的克隆及表达 专业:生工1001 姓名:刘会淼 2013年3月13 实验目的:研究绿色荧光蛋白(Greed Fluorescent Protein,GFP)基因的基因克隆及在大肠杆菌中的表达。 实验方法; 通过分别将DH-5α(pEGFP-N3)和DH-5α(pET-28a)提取质粒、酶切并连接形成重组质粒pET-28a-GFP,将重组质粒导入E.coli DH-5α感受态细胞中进行转化,通过限制性核酸内切酶Not I与Bam H1和PCR对所建质粒进行分析鉴定后, 通过转化的方法把含绿色荧光蛋白(GFP)外源基因转入大肠杆菌体BL-21内进行表达,再用IPTG诱导GFP基因表达,如果可以看到显现绿色,判断GFP基因在大肠杆菌中成功表达。 1.材料与方法: 1.1.1 实验材料 克隆菌E.coli DH-5a、表达菌BL-21为本实验室收藏菌种,质粒pET-28a 和pEGFP-N3,引物,限制性内切酶Bam H1、Not Ⅰ 1.1.2 仪器设备 Eppendof离心机、电泳仪、电子天平、台式离心机、控温磁力搅拌器、调温电热套pH计、冰箱、台式冷冻恒温振荡器、紫外灯、生物洁净工作台、电热恒温水温箱、琼脂糖凝胶电泳电泳装置、凝胶成像分析系统、酒精灯、培养皿、、移液枪、枪头、接种环、酒精棉球、灭菌枪头、平板封口膜、离心管 1.1.3 试剂及溶液 分装后于121 ℃高压灭菌20 min。(LB固体培养基是在液体LB中加琼脂粉至1 %); 溶液Ⅰ50 mL 葡萄糖50 mmol/L Tris-Cl (pH 8.0) 25 mmol/L EDTA (pH 8.0) 10 mmol/L 121℃高压灭菌15 min后置于0~4℃贮存; 溶液Ⅱ100 mL NaOH 0.2 mol/L

甘蔗MYB2转录因子的电子克隆和生物信息学分析

第9卷第1期2011年3月生物信息学 China Journal of Bioinformatics Vol.9No.1Mar.,2011 收稿日期:2010-04-29;修回日期:2010-09-06.基金项目:国家948项目(2010-C21)。 作者简介:李国印,男,山东菏泽,硕士研究生E -mail :lyion029@163.com. *通讯作者:许莉萍,女,福建莆田,博士,博导、研究员,E -mail :xlpmail@yahoo.com.cn. doi :10.3969/j.issn.1672-5565.2011.01.006 甘蔗MYB2转录因子的电子克隆和生物信息学分析 李国印,阙友雄,许莉萍* ,郭晋隆,闫学兵,陈如凯 (福建农林大学农业部甘蔗遗传改良重点开放实验室,福建福州350002) 摘要:用电子克隆方法获得甘蔗MYB2基因,采用生物信息学方法,对该基因编码蛋白从氨基酸组成、理化性质、跨膜结构 域、 疏水性/亲水性、亚细胞定位、高级结构及功能域等方面进行了预测和分析。结果表明:甘蔗MYB2基因全长991bp ,包含570bp 的ORF ,编码189个氨基酸。甘蔗MYB2基因包含有MYB 功能域,在序列组成、高级结构及活性位点等方面,与玉米等其它植物的MYB2基因具有高度的相似性。研究结果为该基因的实验克隆奠定基础。关键词:甘蔗;MYB2基因;电子克隆;生物信息学中图分类号:Q785 文献标识码:A 文章编号:1672-5565(2011)-01-024-04 Electronic cloning and characterization of MYB 2gene from Saccharum officinarum using bioinformatics tools LI Guo-yin ,QUE You-xiong ,XU Li-ping *,GUO Jin-long ,YAN Xue-bing ,CHEN Ru-kai (Key Laboratory of Sugarcane Genetic Improvement ,Ministry of Agriculture ,Fujian Agriculture&Forestry University ,Fuzhou 350002,China ) Abstract :An novel MYB2gene from Saccharum officinarum was cloned in silico based on the EST seqences from Unigene of NCBI.Some characters of the MYB2encodes amino acid were analyzed and predicted by the tools of bioinformatics in the following aspects ,including the compositon of amino acid sequence ,hydrophobicity or hydro-philicity ,secondary and tertiary structure of protein and funcion.Bioinformatical analysis showed that the full -length of MYB2gene from S.officinarum was 991bp and it contained a complete ORF which encoded 189amino acid.The MYB2gene contained an typical MYB domain and was highly conservative compared with MYB2from several different plant species in sequence compositon ,advanced structure and activity sites.The results will pro-vide the basis for MYB2gene cloning in experiment. Key words :Saccharum officinarum ,MYB2gene ,In silico cloning ,Bioinformatics 在植物中首先从玉米中克隆了含有MYB 结构 域的转录因子C1基因[1] , 此后在植物中发现的MYB 相关基因的数量迅速增加。对其功能的研究表明,植物MYB 转录因子具有广泛的生理功能,几乎参与植物发育和代谢的各个方面,重点是调控环境胁迫,如干旱和病害逆境胁迫、次生代谢调节、激素调控应答及控制细胞分化等。 植物MYB2转录因子是MYB 大家族中一个小的亚族,虽然不同植物的MYB2基因具有不同的生物学功能 [2,3] ,但它们都是在转录水平上调控植物 各个阶段的生长发育。通过突变体及基因敲除技 术,已克隆了很多植物MYB 类基因,但在甘蔗MYB 方面研究甚少。 以NCBI 数据库为基础,电子克隆得到甘蔗中编码MYB2的cDNA 序列,利用生物信息学方法,对该基因编码蛋白从氨基酸组成、理化性质、疏水性、亚细胞定位及结构功能等方面进行预测和分析,为后续通过实验手段克隆甘蔗MYB2基因和基因功能研究奠定基础。

新基因的克隆

新基因克隆技术原理的概述 摘要:新基因克隆是当今生物学最热点的领域之一,为能快速而准确地克隆目的基因, 本文综述了一些基因克隆常用技 术,包括功能性克隆,表型克隆,图位克隆,转座子标签 技术,电子克隆等;通过从技术原理、适应性及使用例证 等方面进行综述和评价,以便在实际研究中可以选用较为 可行的方案。 关键词:新基因克隆技术原理 从上世纪70年代, 由于以限制性核酸内切酶、DNA连接酶、逆转录酶的发现和应用及外源性DNA转化感受态E. coli.实验成功为标志的基因工程的出现, 使人们可以在分子水平对目的基因进行克隆。根据“中心法则”遗传信息的流向,克隆新基因的途径主要分为正向遗传学途径和反向遗传学途径:前者主要通过被克隆基因的产物或表现型突变去进行,而后者则是依据被克隆基因在染色体上的位置来实现。正向遗传学途径常见的方法如传统的功能克隆(functional cloning)、表型克隆(phonetypical cloning)包括递减杂交(substractive hybridization)、差异显示PCR (DD-RT PCR)、代表性差示分析法(RDA)、抑制性扣除杂交(SSH) 等; 而反向遗传学途径则以图位克隆(map-based cloning)与转座子标签(transposon tagging )技术较为常见, 在未知基因的功能信息又无适宜的相对表型用于表型克隆时,上述两

种方法较为常用; 同时随着现代生物信息学的发展, 电子克隆(silicon cloning)出现, 更为研究者提供了方便、迅捷的方法。 1功能性克隆(functional cloning) 1.1纯化后克隆 若研究者可得到足够多的纯化目的蛋白以用于制备特异性抗体时,可以采用经典的免疫筛选表达文库的方法, 筛选阳性克隆获取其目的基因(1),除了免疫筛选方法外, 也可根据目的蛋白的生物学功能,利用同位素标记的配体来筛选受体表达的阳性克隆。当所分离的目的蛋白较难大量获得, 但纯度较高时, 可利用其中的一段氨基酸序列, 反推出其基因序列, 据此合成寡核苷酸用cDNA文库的筛选;或根据所获得的基因序列,指导5′端的引物合成,根据mRNA3′端poly-A 序列指导合成poly-T的3′端引物, 用PCR 技术从制备细胞的mRNA 或直接从胞浆内溶物物中合成相应cDNA, 将该cDNA克隆到表达载体上进行产物表达。 1. 2同源性克隆 生物的种、属之间编码基因序列的同源性高于非编码区的序列,基于此原理,在其它种属同源基因被克隆的前提下, 构建cDNA文库或基因组文库,然后用已知分子高保守序列制备同源探针,经标记后从相应的文章中筛选阳性克隆,并经核酸序列分析鉴定所克隆的基因,当然在没有全同源探针的情况下,可以使用部分同源探针来筛选与探针序列相关但不完全相同的基因。 2表型克隆( phonetypical cloning)

红豆杉中MYB家族基因克隆及表达分析 开题报告 于凯

毕业设计/论文 开题报告 课题名称红豆杉中MYB家族基因克隆及表达分析类别毕业论文 系别城市建设学院 专业班生物工程0701班 姓名于凯 评分 指导教师 华中科技大学武昌分校

华中科技大学武昌分校学生毕业论文开题报告

癌活性,对于治疗卵巢癌、乳腺癌等疗效突出。但是由于含量少、提取困难等诸多因素,高纯度紫杉醇价格昂贵,每公斤200万元人民币左右。因此,近年来国内外许研究人员、实验室和公司一直试图通过生物合成、化学合成、微生物提取、组织和细胞培养、寻找类似物等途径来解决紫杉醇的药源短缺问题。 研究紫杉醇的生物合成,尤其一些限速反应步骤机理的阐明对于人为定向的提高合成效率,克隆重组形成关键酶基因从而提高紫杉醇的产量意义重大。从理论上来说这是一个好方法,但是紫杉醇的合成途径非常复杂,涉及到多种酶以及很多分支途径,单纯依靠转化一、两种限速酶基因,只能保证转入的限速酶表达量提高,使之不再是限速因素,但其它阶段对于最终产量的限制依然存在,而且同时转入多种基因的可行性非常低,这种方法的缺陷很明显。 若采用化学合成,如从红豆杉植物中分离得到的巴卡亭Ⅲ经过四步化学过程可合成紫杉醇,为合成紫杉醇提供了新途径[5]。但化学合成从实质意义上说还没有取得彻底的突破,目前还不具备应用价值。 如果从共生真菌中直接提取紫杉醇,能够利用真菌生长速度快的优势,但目前分离的菌株无论从种类还是数量上都远不够工业化的要求,而且还存在很多不确定因素[1]。生产紫杉醇的微生物大多是与红豆杉共生的真菌,其紫杉醇含量极微,并且这些真菌的培养和大规模发酵困难,菌株衰退也是一个难题。 另外,红豆杉愈伤组织和细胞培养生产紫杉醇是研究的热点之一,是工厂化大规模生产紫杉醇的重要手段之一。但运用植物组织、细胞培养技术生产紫杉醇仍处在实验室阶段,如何获得高含量、产紫杉醇稳定的愈伤组织一直都是组织培养、细胞培养生产紫杉醇的关键。 1.1.3关于MYB基因 ①MYB基因 目前,在几乎所有的真核生物中都发现了与禽类逆转录病毒癌基因和细胞原癌基因c-MYB相似的基因,它们的编码产物在结构和功能上具有高度保守的DNA结合域,是一类转录因子[6]。在植物中首先从玉米中克隆了含有MYB结构域的转录因子C1基因,之后在植物中发现的MYB相关基因的数量迅速增加[7]。

功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structural genomics)转向功能基因组学(functional genomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1 图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2 基因克隆[5]等)也通过图位克隆法获得。

乳糖酶基因的克隆及生物信息学分析

乳糖酶基因的克隆及生物信息学分析 【摘要】目的:克隆并分析保加利亚德氏乳杆菌中的乳糖酶基因。方法:利用PCR技术从保加利亚德氏乳杆菌中克隆出乳糖酶基因、测序并生物信息学分析。结果:成功的从保加利亚德氏乳杆菌中克隆出全长为3 024 bp的乳糖酶基因,利用生物软件分析,推测乳糖酶基因共编码1 008个氨基酸,蛋白分子量为114 KDa,等电点为4.9,氨基酸序列中共有9处潜在的糖基化位点。并将此基因与不同来源的乳糖酶基因进行同源性比较。结论:成功的克隆出乳糖酶基因,并利用生物分析软件对其进行生物信息学分析。了解该酶的性质特征,为进一步研究及低成本表达该酶奠定基础。 【关键词】乳糖酶基因;克隆;生物信息学分析 Clone and bioinformatics analysis of lactase gene WANG Zheng1, 2, MA Wen li1, ZHENG Wen ling1 (1.Institute of Gene Project, South Medical University Guangzhou 510510, China; 2.Key Laboratory of Molecular Biology, Hainan Medical College Haikou 571101, China ) [ABSTRACT]Objective: To clone and analyze lactase gene from Lactobacillus delbrueckii bulgaricus. Methods: Cloned lactase gene from Lactobacillus delbrueckii bulgaricus with PCR, made sequencing and bioinformatics analysis. Results: Cloned lactase gene (3 024 bp) successfully. It was presumed that the lactase gene encode 1 008 amino acids, with protein molecule 114 KDa, isoelectric point 4.9, 9 potential glycosylation sites in amino acid sequence. Made homology comparison with other lacteses. Conclusion: The lactase gene is cloned successfully and the bioinformatics analysis is made by biological analysis software to investigate its character. It provides foundation for further study and colonization at low cost. [KEY WORDS]Lactase gene; Clone; Bioinformatics analysis 乳及乳制品含有丰富的优质蛋白质、脂肪、碳水化合物以及几乎全部已知的维生素和多种矿物质,还含有免疫球蛋白等抗病因子,易被人体消化吸收,是人类改善营养、增强体质的理想食品[1]。除此之外,在牛乳等制品当中还含有5%左右的乳糖,它是牛奶中主要的碳水化合物,对人体有着重要的作用。主要表现在于乳糖能促进钙质吸收及整理肠道的功效,特别是乳糖被分解后的半乳糖是婴儿脑发育的必需物质,与婴儿大脑的迅速成长有密切关系。然而,人体却不能直接利用乳糖,它必须被乳糖酶分解为单糖的葡萄糖及半乳糖后才能被吸收和利用。据研究发现,世界各国人口都有不同程度的乳糖酶缺乏,东方人乳糖酶缺乏高达85%[2],从而导致“乳糖不耐症”的发生。 乳糖酶(EC3.2.1.23,又名β 半乳糖苷酶)能将牛乳中的乳糖水解为葡萄糖和半乳糖,并具有半乳糖苷的转移作用[3]。利用该酶生产低乳糖制品或口服酶制剂,能够有效解决“乳糖不耐症”问题。乳糖酶广泛存在于扁桃、桃、杏、苹果和咖啡豆等植物中,大肠杆菌、乳酸杆菌、酵母菌和霉菌等微生物中,以及有效哺乳动物的小肠等器官和皮肤组织中。然而,

绿色荧光蛋白基因克隆及表达结果分析

3 结果与分析 3.1质粒提取 用醋酸铵法提取pET-28a 和pEGFP-N3质粒后,进行琼脂糖电泳检测质粒是否提取成功。得到电泳结果,如图一所示,3、4号泳道有明显清晰的条带说明pEGFP-N3提取成功。1、2泳道同样有明显清晰的条带,说明pET-28a 提取成功。 3.2 双酶切 用BamH1和Not1分别对pEGFP-N3和pET-28a 双酶切。1、2号泳道为pEGFP-N3的酶切结果,如图二所示,电泳会得到两条带,说明pEGFP-N3酶切成功。4号泳道为pET-28a 的酶切产物的电泳有明显条带,证明酶切成功。 3.3 抗性筛选 通过氯化钙法制备DH5α感受态细胞,用热激发将pET-28a-GFP 转入DH5α感 图 1 pET-28a 和pEGFP-N3质粒提取电泳图 1、2泳道为pET-28a 电泳结果 3、4号泳道为pEGFP-N3电泳结果 图 2 BamH1、Not1双酶切 pEGFP-N3和pET-28a 1、2号泳道为pEGFP-N3酶切产物 3号泳道为pEGFP-N3原始质粒 4号泳道为pET-28a 酶切产物 5号用泳道为pET-28a 原使质粒

受态细胞。转化重组质粒后涂平板,进行重组质粒的抗性筛选。因为28a中含有 抗卡那基因,所以筛选后可以得到含28a的重组质粒。从图中可以看出1号平板 长出较多菌落,说明DH5α感受态细胞存活。2号平板无菌落生长,说明DH5α中 不含抗卡那基因。3号板生长出较少菌落,证明卡那有活性。4号板无菌落生长。 失败原因其一可能是在倒了第一个平板加入卡那后,由于倒平板速度太慢,导致 培养基凝固,影响了卡那的浓度和活性。其二可能是在转化过程中,离心后,弃 上清的过程中,将沉淀和上清混在了一起,影响了溶液的浓度。 图3重组质粒转化DH5α感受态细胞 1号图为不含卡那的阴性对照 2号图为含卡那的阴性对照 3号图为含卡那的自提pET-28a的阳性对照 4号图为含卡那的连接产物结果 3.4PCR鉴定 经PCR扩增后,进行琼脂糖凝胶电泳检测是否扩增成功,得到电泳结果如图 四所示,结果表明,1、2泳道的条带约为700bp,说明成功扩增出含有GFP的基 因。DNA电泳检验扩增片段,选出能够得到700bp左右片段的阳性克隆。 图4阳性重组菌的PCR鉴定 1、2号泳道为重组质粒转化结果

第五章基因克隆技术

第五章基因克隆技术 基因克隆技术是分子生物学的核心技术,其目的是获得某一基因或DNA片段的大量拷贝,用于深入分析基因的结构与功能,并可达到人为改造细胞以及物种遗传性状的目的。基因克隆的一项关键技术是DNA重组技术,它利用酶学方法将不同来源的DNA分子进行体外特异性切割,重新拼接组装成一个新的杂合DNA分子。在此基础上将杂合DNA分子转入一定宿主细胞中进行扩增,形成大量的子代分子,此过程称基因克隆。有目的地通过基因克隆技术,人为操作改造基因,改变生物遗传性状的系列过程总称为基因工程。 基因克隆的一般程序为: 一、获取目的基因 目的基因就是需要研究的特定基因或DNA片段。获取目的基因的主要方法: 1、用限制性内切酶酶解染色体DNA,构建基因组文库,再从基因组文库中筛选目的基因。该法的优点是获得的目的基因的组织结构与天然基因完全相同,在结构基因中也含有内含子序列,但是也正因为这一点构成了该法最大缺点,即含有内含子的基因在原核细胞中不能表达。原因是原核细胞不能识别并剪切插入顺序(内含子),因而也不能表达出正确的基因产物。 2、分离纯化细胞中的mRNA,以mRNA为模板,在反转录酶作用下生成cDNA第一链,再以cDNA第一链为模板在DNA聚合酶作用下生成双链cDNA,构建cDNA文库,从中筛选所需的目的基因。此法仅用于筛选为蛋白质编码的结构基因。因成熟的mRNA分子中已经切除了内含子序列,具有完整的阅读框架,可在原核细胞中正确表达。 3、人工体外合成基因:由于当前人工体外合成DNA的长度有限,此法仅用于制备小分子生物活性多肽基因和小分子量蛋白基因。在基因较大情况下,常需先合成多个DNA片段,然后拼接成完整的基因,此法还要求目的基因的全部碱基顺序已被阐明。 4、PCR法扩增基因:PCR(聚合酶链式反应)技术的出现和发展,为目的基因的寻找提供了有力技术工具。用PCR法可选择性扩增基因组中所要研究的个别基因或DNA片段,或用反向PCR技术,先将特定mRNA反转录为cDNA第一链,然后再进行扩增。用PCR法筛选基因,需要对目的基因的DNA序列至少有部分了解。 二、选择适当的载体 按上述方法制备的目的基因如果没有合适的载体协助,很难进入受体细胞,即使能进入,往往也不能进行复制和表达,因为这些外源性DNA一般不带有复制调控系统。为了保证目的基因或外源DNA片段能在细胞内克隆,必须将它们与适当的载体连接。理想的载体应该是:(1)分子量较小,能在细胞内自主复制的环状或线状DNA分子;(2)具有特异的限制性酶切位点,便于外源DNA片段的插入,且有明显的遗传筛选标志,如抗药性或插入失活等,以利于阳性克隆的筛选;(4)具有生物安全性。常用的克隆载体可分为三类,即质粒、噬菌体及病毒。由于天然载体用于基因克隆存在许多缺点,现用载体实际上是在天然载体基础上进行改造而成。 1、质粒载体质粒是细菌染色体外小型环状DNA复制子,质粒载体是在天然质粒的基础上人工改造拼接而成。质粒载体具有如下特点:分子相对较小(3~10kb);含松弛型复制子因而在

全长基因的克隆

全长基因的克隆 王闵霞 马欣荣 代富英 谭 红 (中国科学院成都生物研究所,成都610041) 摘 要:新基因全长cDNA序列、全长DNA序列的获得常常是分子生物学工作者面临的难题。本文就克隆全长基因的各种技术如文库筛选法、各种PCR技术及新发展起来的电子克隆法等方法作一简单综述。 关键词:全长基因 克隆 文库筛选法 PCR 电子克隆 The Cloning of Entire G ene WANG Minxia MA Xinrong DAI Fuying TAN H ong (Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu610041) Abstract:To obtai n the enti re DN A or cDN A sequence of a new gene is a problem f or researchers.The article described the techniques that are used to clone the enti re gene,f or ex am ple:screeni ng li2 braries,a great variety of PCR techniques and new developed silico cloni ng. K ey w ords:enti re gene,cloni ng,screeni ng libraries,PCR techniques,silico cloni ng 研究一个基因的结构、功能及其表达产物的特性,完整的基因信息是必需的,但是新基因全长cD2 NA序列的获得常常是分子生物学工作者面临的难题。随着分子生物学技术的飞速发展和广泛应用,对基因进行克隆的技术在原有的基础上也有了许多新的发展,例如差别显示杂交、抑制性差减杂交、RAP2PCR、代表性差异显示、酵母双杂交系统、cD2 NA直接捕捉法等。本文就克隆全长基因的各种技术作一简单介绍。 1 文库筛选法 文库筛选法是克隆基因最经典的方法,至今仍广泛应用。构建文库主要有两种类型:基因组文库和cDNA文库。 1.1 从DNA入手,建立基因组文库 作为遗传学科研究的重要内容,基因组文库的概念早在七十年代就已提出,Maniatis于1978年设计了随机片段克隆的方案。选择含有目的基因的基因组DNA,应用物理或酶学方法打断,再选择合适的载体与DNA片段连接,然后转化至受体细胞,培养得到基因组文库。然后选择合适的方法,如Southern杂交筛选法、HDR(高密度影印膜)杂交筛选或者PCR法等,对基因组文库进行筛选、测序。Shuichi等使用的两步PCR鉴定技术可在一天内找到所需的克隆。王瑛等以λ噬菌体EMBL23为基因载体,构建大麻哈鱼(Oncorhynchus keta)的基因组文库,并从中分离出了全长3361bp的生长激素(cs2 GH)基因的克隆[1]。 然而有时候筛选的结果得到的仅仅是基因片段,这时有必要进行染色体步行以得到基因片段旁边的序列。染色体步行(Chromosome Walking)是指由基因组或基因组文库中的已知序列出发逐步探知

新基因ZNFD的克隆及其多克隆抗体的制备

新基因ZNFD的克隆及其多克隆抗体的 制备 (作者:__________ 单位:___________ 邮编:___________ ) 作者:史群芳杨世蕊,雷陈,孟祥勋,黄超群,王明华 【摘要】目的:PCR扩增得到新基因ZNFD( Znf doma in con tai ning protein ),构建pET32a-ZNFD原核表达载体,诱导蛋白表达及制备多克隆抗体。方法:通过PCR的方法克隆新基因ZNFD,选取部分抗原免疫原性较高的部分ORF序列,克隆到原核表达载体pET32a 上,利用大肠杆菌Rosetta-gami(DE3)表达系统表达ZNFD融合蛋白。纯化目的蛋白免疫家兔,制备多克隆抗体。通过琼脂糖双向扩散实验和Western blot鉴定其效价和特异性。结果:经测序鉴定已成功克隆ZNFD基因。通过构建原核表达载体pET32a-ZNFD,在大肠杆菌Rosetta-gami(DE3)中使用IPTG诱导表达,得到相对分子质量约为45 kD的融合蛋白。纯化蛋白免疫家兔,制备的多克隆抗体具有较强的免疫特异性。结论:得到纯化的ZNFD蛋白,制备的多克隆抗体达到了一定的效价,且具有高特异性,为进一步研究ZNFD的功能

奠定了实验基础。 【关键词】ZNFD基因;锌指;原核表达;免疫抗原;多克隆抗体; 聚合酶链反应 [Abstract] Objective : To clo ne ZNFD ge ne by PCR , con struct expressi on vector ZNFD-pET32a, prepare and obta in its polycl onal antibody. Methods : The ORF fragment of ZNFD was amplified by PCR and seque need. Part of ORF was cloned in to pET32a prokaryotic expressing vector to form pET32a-ZNFD plasmid. His-ZNFD was expressed in E. coli Rosetta-gami(DE3) in duced by IPTG and purified by using affinity chromatography. Purified His-ZNFD was used to immunize rabbits to prepare polyclonal antibody. Rabbit serum specificity and its titer were detected by double diffusi on and Wester n blot. Results : The ZNFD gene was cloned and seque need , and the n pET32a-ZNFD was con structed successfully. His-ZNFD protein, 45 kD molecular weight, can be expressed in E. coli Rosetta-gami(DE3) with high efficiency. Its corresp onding an tibody was obta ined by immunizing rabbit with the purified protein. The data of double diffusion and Western blot dem on strated that the purified an tige n had high an tige ni city. Conclusions : ZNFD gene was cloned and the purified fusion protein ZNFD was obtained, it had high antigenicity. Polyclonal antibody was prepared, which provided reliable tools for the future

一种新的 DNA 分子克隆方法

中国科学: 生命科学 2011年 第41卷 第9期: 722 ~ 729 SCIENTIA SINICA Vitae https://www.doczj.com/doc/ab15763096.html, https://www.doczj.com/doc/ab15763096.html, 英文引用格式: Huang Y, Tao Y, Zhang W L, et al. A new method for DNA molecular cloning. SCIENTIA SINICA Vitae, 2011, 41: 722–729, doi: 10.1360/052011-309 《中国科学》杂志社 SCIENCE CHINA PRESS 论 文 一种新的DNA 分子克隆方法 黄媛, 陶颖, 张文露, 黄爱龙, 胡接力* 重庆医科大学, 感染性疾病分子生物学教育部重点实验室, 重庆 400016 * 联系人, E-mail: hujieli1977@https://www.doczj.com/doc/ab15763096.html, 收稿日期: 2011-05-13; 接受日期: 2011-08-25 国家自然科学基金(批准号: 81000732)资助项目 doi: 10.1360/052011-309 摘要 DNA 分子克隆是基本的分子生物学实验技术, 传统的分子克隆方法大多需经过酶切链接过程, 但在某些情况下, 没有合适的酶切位点往往会成为阻碍克隆进行的障碍. 本文描述了一种新的分子克隆方法, 称为不依赖酶切和链接的分子克隆(RLIC). 利用RLIC, 将3种不同大小的DNA 片段克隆到3种不同载体, 证明了这种方法的有效性和可靠性. 由于该方法不受限制性酶切序列限制, 省去了酶切连接步骤, 因此具有很大的灵活性和简便性, 在分子生物学研究方面有广泛应用前景. 关键词 DNA 分子克隆 方法 DNA 分子克隆是指将一段目的DNA 分子片段与特定载体DNA 分子连接, 形成重组DNA 分子. DNA 分子克隆是基本的分子生物学实验技术, 广泛用于生物学、医学等各个领域. 传统的DNA 分子克隆方法主要包含以下步骤: 目标DNA 分子制备、目标分子与载体酶切、连接、转化及筛选. 从分子克隆技术建立之初起, 针对传统DNA 分子克隆方法的改进就一直在进行, 其中很多技术改进已转化为商品化克隆试剂盒, 如T-A Cloning [1], TOPO Cloning, Gateway [2,3]技术等. 这些新技术在不同程度上简化了克隆过程, 提高了克隆效率, 也能满足大部分研究需求. 但是对于一些问题, 传统克隆方法和新技术仍不能很好地解决. 例如, 可能希望在已克隆了一个基因(以gene 1指代)的真核表达载体上再克隆另一个基因(如检测标记EGFP 或筛选抗性标记等, 以gene 2指代), 且gene 2需使用独立启动子来单独表达而非融合表达. 此时, 不能再选择该载体的多克隆位点来克隆gene 2. 因为, 第一, 可能已经没 有合适的酶切位点; 第二, 即使有合适的酶切位点, 在该部位插入gene 2将扰乱gene 1的表达. 理想的情况是, 在第一个基因表达框架之外(如polyA 序列下游)的载体骨架上, 找到合适的酶切位点, 插入gene 2表达片段(包括启动子、基因及转录终止信号). 然而, 在大多数商业化载体中, 往往很难找到合适的位点来进行这类操作. 如果有一种克隆方法, 可以不受插入部位的序列限制, 即不用限制性切割, 便可以解决上述问题. Aslanidis 和de Jong [4]建立过一种非连接依赖性克隆方法(ligation-independent cloning of PCR products, LIC-PCR), 基本原理是: 在PCR 片段末端及PCR 扩增的线性载体末端分别加上12 bp 核苷酸, 利用T4 DNA 聚合酶的外切活性, 产生末端为单链的上述两种分子, 由于这两种分子末端互补, 退火后转化可得到重组分子. Rashtchian 等人[5]将此方法进行了改进, 使末端12 bp 核苷酸含dUMP, 从而可以用尿嘧啶DNA 糖基化酶(UDG)进行特异切割, 便于产生单链

L_乳酸脱氢酶基因克隆及功能分析

20卷5期2004年9月生 物 工 程 学 报Chinese Jou rnal o f Biotechnology Vol.20 No.5 September 2004 收稿日期:2004_03_08,修回日期:2004_05_31。 *通讯作者。 Tel:86_22_23505967;Fax:86_22_23505967;E_mail:meor@https://www.doczj.com/doc/ab15763096.html, L_乳酸脱氢酶基因克隆及功能分析 李 剑 唐 梁凤来 张心平 刘如林 * (南开大学生命科学学院,天津 300071) 摘 要 构建了一株产D,L_乳酸的乳杆菌(Lactobacillus sp.)MD_1的基因文库。利用乳酸脱氢酶和丙酮酸裂解酶缺陷的Escherichia coli FMJ144作为宿主,通过互补筛选分离克隆到乳酸脱氢酶基因(ldh L )。核酸序列分析表明,该基因以ATG 为起始密码子编码316个氨基酸残基组成的蛋白质,预测的分子量为33 84kD;5 端存在典型的启动子结构,3 端的终止子是不依赖于 因子的转录终止子。ldh L 编码的蛋白质有3个保守区域,其中Gly13~Asp50保守区域是NADH 的结合位点,Asp73~Ile100和Asn123~Arg154保守区是酶的活性部位。该ldhL 和其他乳杆菌的ldhL 基因和编码的氨基酸序列相似性较低,核苷酸序列相似性最高仅为64 1%,氨基酸序列相似性最高仅为68 9%,是新的L_乳酸脱氢酶基因。 关键词 乳杆菌(Lactobacillus sp.)MD_1,L_乳酸脱氢酶基因,互补筛选,功能分析中图分类号 Q93 文献标识码 A 文章编号1000 3061(2004)05 0725 05 乳酸在食品、医药、化工、环保等领域有广泛的用途。L_乳酸的生产及其聚合物作为可降解塑料和医用材料的研究日益深入。D_乳酸的聚合物可以用于药物的缓释技术和可降解环保农药的前体物。因此,高光学纯度的D_乳酸或L_乳酸均具有广阔的应用前景[1] 。 乳酸脱氢酶(LDH )是以NAD H 为辅酶,将丙酮酸经过生化反应生成乳酸,因此LDH 是乳酸菌合成乳酸的关键酶。产D,L_乳酸的乳杆菌中存在L 和D 两种依赖NADH 的LDH,分别催化丙酮酸生成L_乳酸和D_乳酸。作者筛选到一株产DL_乳酸的乳杆菌(Lactobacillus sp.)MD_1,能在48 含200g L 葡萄糖的发酵液中快速生长并生产乳酸,72h 产量可达 140g L 以上。如果使乳杆菌的D_乳酸脱氢酶基因(ldhD )缺失,则只生产高光学纯度的L_乳酸(理论上光学纯度可达到100%),同时可以大幅提高L_乳酸产量。反之,如果使L_乳酸脱氢酶基因(ldhL )缺 失,则生产高光学纯度的D_乳酸。 本文报道了Lactobacillus sp.MD_1菌株的ldhL 序列,同时对ldhL 及编码的蛋白质的一级结构进行了初步分析。 1 材料与方法 1 1 菌株与质粒 本文所用的菌株和质粒见表1。质粒pJDC9、菌株E .coli FMJ144由Jean Delcour 教授惠赠。 表1 菌株和质粒 Table 1 Bacterial strains and plasmids used in this study Strain or plas mi d Characteri stic(s) Source or reference Lactobacillus .s p.MD_1 Wild_type s train this study E .coli FMJ144 ldh pfl ::Cam r t rpR his _29(Am )pro _2ary _427deo B arc ts x IN (rrnD _rrnE )lacY 2 TG1suoE hsd 5thi (lac _proAB ) F (traD 36)ProAB +lac I q lacZ M 15 3Plas mid pJDC9Em r ;l dhZ 4 pLZD3083 Em r ;pJ DC9wi th a 3 11Bam H fragment from s train MD_1 this study Em r ,Ap r and Cm r indicate resistance to erythro myci n,ampicillin,and chl oramphenicol,respectivel y

相关主题
文本预览
相关文档 最新文档