当前位置:文档之家› 电动机技术试验报告..

电动机技术试验报告..

电动机技术试验报告..
电动机技术试验报告..

电动机在线检测软件的技术试验报告

软件部 杨艳

1.本项目的应用范围和主要功能

1.1 应用范围:电力、煤炭、化工、钢铁、水泥等系统的大型鼠笼式异步电动机。在工业现场,对

不同功率大小的交流电动机处理方式是完全不相同的。对于小功率电机,如几百千

瓦以下的,一般只作为一个元件,一般不搞在线监测,也很少进行离线测试,有故

障就更换,有备用机。对于大型电动机,如发电厂的吸风机、球磨机,功率为2000Kw ,

或更大,才有价值进行在线监测和离线监测,这种电机也有备用机,监测的程度远

不如发电机。

1.2 主要功能:对连续运行的异步电动机进行实时监测,对运行工况进行实时分析,在故障发生之

前进行异常预警,避免发生事故及事故的扩大化,同时能够识别故障的性质,并提

出相应的措施,对于异步电动机的维修提出了指导性的建议。在非连续运行情况下,

根据对启动过程的分析,可出具试验报告。 在发生真正故障时,还能够启动故障

滤波,对故障时候的电气量进行记录,作故障后分析,出具分析报告。

2.本项目的主要技术条件

2.1 在线检测可判定的故障类型、判断原理

2.1.1 转子断条故障

危害:笼型异步电动机转子断条故障将导致电机出力下降、运行性能恶化。加之转子断条故障发生

概率高达10%,因此必须对其进行检测,特别是进行早期检测。早期检测系统可以在故障发展初期及时告警,有助于现场组织、安排维修,避免事故停机,具有显著经济效益。

判断原理:笼型异步电动机发生转子断条故障后,在其定子电流中将出现)3,2,1( , )21(1=±=k f ks f 频率

的附加电流分量(s 为转差率,1f 为供电频率)。由于定子电流信号易于采集,可以对定

子电流信号进行频谱分析,提取故障频率分量幅值与基频分量幅值,以两者之比作为故障

特征,设定检测阈值(一般设定为1-2%),超过此阈值则认为存在转子断条故障。

2.1.2 气隙偏心故障

危害:转子和定子由于装配、运行时振动和非平衡的径向此拉力,将会导致电动机的气隙偏心。气

隙偏心,将会使气隙磁通畸变,振动增大。

判断原理:当气隙存在偏心时,气隙磁导沿圆周方向出现不均匀,从而在定子电流中感应出谐波分

量。理论分析和试验表明,这些特征谐波分量的频率为:]/)1)([(1w d n p s n R f f ±-±=,其

中1f 为外加电源的频率;R 为鼠笼式异步电动机的转子导条数;p 为电机的极对数;s 为

转差率;静态偏心时,0=d n ;动态偏心时,1=d n ;...5,3,1=w n 。当转子齿数较大时,这

些特征谐波频率较高,从而对数据采集及处理系统的采样频率、运算速度和内存要求较

高。实际上,另有一低频分量对动态偏心的检测非常有效,其频率为:r f f f ±=1,其中

r f 为旋转频率,其大小为p s f /)1(1-。同样,对定子电流信号进行频谱分析,将正常时候

的频谱与故障时候的频谱进行比较,观察特征频率处的频谱幅值以确定是否存在偏心故

障。

2.1.3 定子绕组对称电气故障

危害:对于电动机的对称电气故障,如过载、堵转、对称短路等,其危害主要是由于电流增大而引

起的热效应。

判断原理:此类故障可以通过过流程度来反映。当出现过载故障时,电动机二次侧电流n I I )5~2.1(=;

当出现堵转故障时,二次侧电流n I I )7~5(=;当出现对称短路故障时,二次侧电流

n I I )10~8(=,其中n I 为电动机二次侧额定电流。

2.1.4 定子绕组不对称电气故障

危害:不对称故障引起的负序电流分量会给电动机的安全运行带来极大危害。当出现负序电流时,

定子中会产生与正序电流形成的转速相同但方向相反的旋转磁势,这样,电动机转子便以2倍于同步转速切割磁场,转子中会产生危险的高压;同时,此负序电流将在转子中产生2倍于工频的电流,使转子附加发热大大增加,严重危及电动机的安全运行,极易形成事故,造成电动机严重损坏。因此,电动机不对称故障运行故障的早期诊断是非常重要的。

判断原理:电动机的不对称故障较多,如断相、不平衡、匝间短路、单相接地等。大多数不对称故

障一般不出现显著的电流幅值变化,因此通过过电流程度常常不能及时正确判断。电动机正常运行时,其三相负荷基本对称,负序和零序电流分量基本为零,而一旦发生不对称故障时,根据对称分量法,电动机的电流可以分解为正序、负序和零序电流分量,此时,电动机负序和零序电流分量将会大幅度增加。所以可以通过负序电流分量的大小来检测电动机定子绕组不对称故障。

2.2 启动过程分析可判定的故障类型、判断原理

2.2.1 异步电动机起动过程分析

当电动机处于停机状态,可以对起动过程进行分析。

判断原理:异步电动机起动过程中,转差率s 是在不断变化的,由转子不对称所感应的

)3,2,1( , )21(1=±=k f ks f 分量的频率也是不断变化的。把整个起动时间分成若干时段,然

后分别对每个时段的定子电流信号作谱分析,除起动开始和起动结束的两个时段外,其

他时段内特征频率可以远离1f 频率分量,对谱分析的分辨率要求大大降低;在起动过程

的大多数时段内,特征频率分量的电流大小相对于基频分量电流之比值比稳定时大,故

障特征量信息丰富,诊断灵敏度高;异步电动机拖动负载起动过程中,始终满足电磁转

矩大于负载转矩,因此不会出现稳定运行时那样的摆动。综上,异步电动机起动电流时

变频谱诊断转子断条故障能够克服稳态运行时转差率很小,从而特征频率分量与基频分

量接近;故障频率分量电流与基频分量电流之比很小;电动机拖动的负载不平稳,从而

使定子电流发生畸变等不足。因此,对起动时的定子电流信号,进行时变频谱分析,起

动初始时,故障特征频率与基频靠近,随着转速的增加,即转差率s 的减小,故障特征

频率逐渐远离基频,当s 接近0.5时,转子断条故障分量幅值减小,当s 小于0.5之后,

故障特征分量幅值又开始增加,且随着s 的进一步减小,特征分量频率又逐渐向基频靠

近,当起动快结束时,即s 较小时,故障特征分量频率又与基频靠得很近,且幅值又变

小。若从时变频谱图上观察到符合上述变化规律的频谱峰群,则可确诊有故障。

2.2.2 故障后分析

判断原理:在发生真正故障时,起动故障滤波,对故障时候的电气量进行记录,利用上述故障判断

原理,作故障后分析,出具分析报告。

2.3 本项目不能进行分析和诊断的故障类型

2.3.1 定子铁心故障

定子铁心故障多由各种原因造成的片间短路引起。其典型的故障征兆为:出现局部过热、造成绝缘热解,分解物产生烟雾和颗粒。

2.3.2 定子绕组绝缘

由于老化、磨损、过热、振动、受潮、污损及放电等因素的影响会使绝缘性能下降,甚至出现击穿而引起绕组匝间短路、接地或相间短路故障。典型征兆为:绝缘电阻下降、泄漏电流增加、局部过热、绝缘热解、局部放电量增多等。当由绝缘故障严重,直接引发电气故障后,是可以通过本项目进行诊断的。

2.3.3 滑环和电刷故障

滑环和电刷因经常处于运动接触状态而容易出现故障。制造或安装不良,电刷压力调整不当,电刷选型不当,电刷没及时更换,滑环移位,各种原因造成的火花过大等,均可能引起电刷和滑环的损坏。故障征兆:火花偏大甚至出现环火,滑环电刷磨损严重,滑环表面烧伤等。

2.4 故障检测报告格式

三相异步电动机试验报告单

三相交流异步电动机型式试验数据处理一、被试电动机铭牌中的主要数据 被试电动机铭牌中的主要数据 二、试验数据统计和计算 (一)绝缘电阻的测定 1、绝缘电阻测量结果汇总(见表1-1) 表1-1 绝缘电阻测量结果汇总 注:测量时电机绕组温度(环境温度)为℃ 2、测量结果的判断 一般电机标准中,都没有电机在冷状态时的绝缘电阻的考核标准,但电机绕组的绝缘电阻在冷状态下所测得的数值应不小于下式所求得的数值 R是电机绕组冷状态下绝缘电阻考核值,MΩ; 式中: MC U是电机绕组的额定电压,V; t是测量时的绕组温度(一般用环境温度),℃。

3、思考题 在绝缘电阻的测定中,如何选用兆欧表? (二)绕组在实际冷状态下直流电阻的测定 1、冷状态下直流电阻测量结果汇总(见表2-1) 表2-1 冷状态下直流电阻测量结果汇总 2、测量结果的处理 标准工作温度下的定子绕阻: 075 1r = 0T 75 T R ?++θ 3、思考题 测量定子绕组的直流电阻为何不用万用表?

(三)、空载特性的测量 1、空载试验数据汇总(见表3-1) R。 空载试验后立即测得的一个定子线电阻 表3-1空载试验数据汇总

2、试验数据计算 (1)计算三相电压平均值0U 。每点的三相电压平均值0U 为三个读数之和除以3。 (2)计算三相电流平均值0I 。每点的三相电流平均值0I 为三个读数之和除以3。 (3)计算每点的输入功率仪表显示值0P 。每点的输入功率仪表显示值0B P 为两功率表读数的代数和。 (4)计算每点的空载铜耗0Cu1P 用公式0203R I P 0Cu1=求出各点的空载铜耗。 (5)计算求出各点的铁耗与机械耗之和' 0P 铁耗与机械耗之和为空载损耗与空载定子铜耗之差 100Cu 0P P P -=' 上述计算结果见表3-2 表3-2 空载试验计算结果

电机型式试验之噪声的测定及其限值

3.12 (1)试验目的 电机的运行会发出一定的噪音,因此国家标准规定了电机噪音的限制,以此来限制电机的噪音影响,电机噪音主要由通风(空气动力)噪音,机械振动噪音和电磁噪音三个部分组成,通风噪音在电机进,出风口,特别是风扇附近噪声最大,机械振动噪声往往伴随这振动,发生共振的结构部件处噪声最大,电磁噪声一般在机座中央噪声最大,通风噪声在堵塞电机进,出风口或者拆去风扇噪声显著削弱,电磁噪声在电机断电后空转时消失。 ⑵噪声的分类 ①声压和声压级 声波引起空气质点的振动,使得空气的压强在大气压强附近按声频起伏变化,这种压强称为“声压”,其单位用微帕(卜Pa),有关压强的单位换算关系是: 1Pa=1N/m2=10-5b=10 卜b=0.1mm 水柱 在声学中,通常用声压级别来代替声压作为声音和物理评价指标,声压级与声压的关系是: L P = 20lg p^ (3- 23) 式子中L P一声压级,dB P一声压,PP a P0—基准声压,是一个参考量,一般以20PPa作为基准声压。 用声压级代替声压度量声音的好处是:可把一般人耳刚好能听到的声压 20」】a 到可震破人耳膜的声压20 x 10^Pa这一数白万级声压值表示的声音度量范围缩小到0?120dB的范围内,从而便丁使用和分辨记录。 ②声强和声强级 声强是在一定时间内稳定声场中瞬时声压与其声速度乘积的时间平■均值,单

位为W/m2,符号为I。 声学上也常用声强级(单位为dB,符号为L I)代表声强,他们之间的关系是:

L i =10lg : (3-24) 式子中 I 一声强,W/m 2 I o —基准声强,一般取值为10-12 W/m 2 ③ 声功率和声功率级 声功率是声源在单位时间内辐射的总声能,符号为 W,单位为瓦。 声功率在声学中也常用声功率级,符号为 L w,单位为dB,来表示,他们之 间的关系: W L w =10lg - W o 式中 W 。一基准声功率,一般为10-12W 。 在现行的电机噪声考核标准中,大部分采用声功率级,少部分采用声压级, 这是因为声功率只和深远的总功率有关,而声压级则与声压和测量点到声源的距 离两个因素有关,在给出声压级数的同时,还应该给出测量距离, 声功率级别方便,声功率级和声压级的关系如下式子: S L w =L )+ 101g 一 S 0 式子中,SH 测量声压时,所用包络面的面积, m 2 S0—基准面面 积,一般为1m 2 ⑶测量仪器和设备 ① 声级计 声级计是用以测量声级数值的仪器,因此常用测量噪声升级, 作为噪声仪,通用的声级计测量显示值为声压级值, 声级计的准确 度表示方法和 其他仪器不同,他将不同最大误差级别的仪表分为四个类型号, 各种类型声级计 的最大误差和级别名称见下表: 表3-11声压级声级计准确度分类表 类型号(级) 0 I 皿 m 固有最大误差 (dB ) 土 0.4 土 0.7 土 1.0 土 1.5 (3-25) 所以表述不如 (3-26) 所以被习惯称

直流伺服电机实验报告

实验六 直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A , 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。 2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。

2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

表中Ra=(R a1+R a2+R a3)/3; R aref=Ra*a ref θ θ + + 235 235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref=Ra a ref θ θ + + 235 235

电动机实验报告doc

电动机实验报告 篇一:电机实验报告 黑龙江科技大学 综合性、设计性实验报告 实验项目名称电机维修与测试 所属课程名称电机学 实验日期 XX年5.6—5.13 班级电气11-13班 学号 姓名 成绩 电气与信息工程学院实验室 篇二:电机实验报告 实验报告本 课程名称:电机拖动基础班级:电气11-2 姓名田昊石泰旭孙思伟 指导老师:_史成平 实验一单相变压器实验 实验名称:单相变压器实验 实验目的:1.通过空载和短路实验测定变压器的变比和参数。

2.通过负载实验测取变压器的运行特性。 实验项目:1. 空载实验测取空载特性U0=f(I0), P0=f(U0)。 2. 短路实验测取短路特性Uk=f(Ik), Pk=f(I)。 3. 负载实验保持U1=U1N,cos?2?1的条件下,测取U2=f(I2)。 (一)填写实验设备表 (二)空载实验 1.填写空载实验数据表格 2. 根据上面所得数据计算得到铁损耗PFe、励磁电阻Rm、励磁电抗Xm、电压比k (三)短路实验 1. 填写短路实验数据表格 O (四)负载实验 1. 填写负载实验数据表格 表3 cos?2=1 (五)问题讨论 1. 在实验中各仪表量程的选择依据是什么? 根据实验的单相变压器额定电压、额定电流、额定容量、空载电压,单 相变压器电源电压和频率、线圈匝数、磁路材质及几何尺寸等。 2. 为什么每次实验时都要强调将调压器恢复到

起始零位时方可合上电源开关或断开电源开关? 防止误操作造成人身伤害、防止对变压器及其它仪器仪表等设备过压过 流而损坏。 3. 实验的体会和建议 1.电压和电流的区别:空载试验在低压侧施加额定电压,高压侧开路;短路 试验在高压侧进行,将低压侧短路,在高压侧施加可调的低电压。2.测量范围的不同:空载试验主要测量的是铁芯损耗和空载电流, 而短路试 验主测量的是短路损耗和短路电阻。3.测量目的不同:空载试验主要测量数据反映铁芯情况,短路试验反映的是线圈方面的问题。 4.试验时,要注意电压线圈和电流线圈的同名端,要避免接错线。选择的导 线应该是高压导线,要不漏线头要有绝缘外皮保护。5.通过负载试验可以知道变压器的阻抗越小越好。阻抗起着限制变压器的电 流的作用,在设计时我们要考虑这些。 篇三:直流电动机实验报告 电机 实验报告 课程名称:______电机实验_________指导老师:___

电动机试验报告

设备名称;#3炉一次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉二次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 四、交流耐压: 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机A试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机B试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#1机电动给水泵A试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

设备名称;#1机电动给水泵B试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

电机型式试验之匝间耐冲击电压

匝间耐冲击电压试 ⑴试验目的 用专用的匝间冲击电压试验仪对电机绕组施加模仿操作过电压和自然雷电过电压的冲 击电压,可以有效的查出绕组匝间绝缘的损伤。 ⑴试验仪器 此次设计研究的是交流异步机的耐电压试验,目前较为流行的仪器为匝间冲击电压试验仪,其工作原理大致为:单相交流220V,50Hz通过一个调压器,供给一个升压变压器,电压升高后通过整流成为一个较高电压的直流电压,用一个由电路控制的闸流管将上述直流高电压突然加到被测试电机的线圈上,然后在用一个示波器显示该线圈的放电电压曲线,由于该曲线性状与线圈的匝数,磁路等参数有关,所以,可以通过观察他来判别被试线圈是否有匝间短路,匝数多少或者开路的故障。应该按照试验电压的大小和被测电机的容量来选择仪器的规格。 ⑵试验接线方法 ①三相绕组六个线端都引出时,可按下图a所示接法,称为相接法,它试用于无换相装置的匝间仪,需要人工的倒相。 ②三相绕组已接成Y形或△形时,则可按照下图的b,c,d,e所示的方法接线。 (a)(d) (b)(c) (c)(f) 图3-4匝间耐电压试验接线图 对于具有一种额定电压的单速度电机,若接线方式固定,冲击试验电压应从接电源端子输入绕组,若有其多种接线方式而电源进线方式不固定,冲击试验电压应分别从可能的几种电源进线方式输入绕组,例如可以从U1、V1、W1端子进线,也可从U2、V2、 W2端子进线。 ⑶试验电压和时间 试验时所加高压的数值与被试电机的额定电压,中心高度及使用条件有关,所加高压取冲击电压的峰值,其计算公式为 U Z=(3-5) 式子中U z——冲击电压峰值V

K1——运行系数,见下表 K2——尺寸系数,电机中心高≤100mm,取:≥100mm,取绕线转子及并用电动机一律取 U G——交流工频电压值 表3-4运行系数K的标准表 运行情况或要求K1 一般运行 浇水潜水 湿热环境,化工防腐,高速,一般船用 防暴增安— 屏蔽运行,频繁启动或者逆转— 剧烈震动,井用潜水,驱动磨头 特殊船用,耐氟制冷 特殊运行1,40 对于试验时间的规定是:对于能分辨冲击次数的试验仪,每次试验的冲击次数应该不少于5次,对于不能分辨冲击次数的试验仪,每次试验的冲击电压时间为1-3s;允许采用更长的时间。 ⑸实验结果的判断方法 从理论上讲,给两个电磁参数完全相同的绕组加相同的冲击电压后的放电电压波形应该是完全相同的,即在一个示波器上只看到一条放电曲线(两条曲线完全重合),一般情况下,完好的电机也会做到上述显示结果,但是由于材料的差异及加工制造中造成的误差等各种可能允许因素的影响,有时会使两条曲线略有差异,或略有错位和变形,这些情况均应该视为在允许的误差范围内。 下面的五个图分别为五中不同情况所得到的结果: (a)正常时候的示波器图(b)有匝间短路时(抖动,有放电声) (c)匝数不等或者有头尾反接的现象(d)有一相对机壳短路(加压端) (e)有一相断线时

直流他励电动机实验报告记录

直流他励电动机实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

电机学实验报告——直流他励电动机实验 姓名:张春 学号:2100401332

实验三直流他励电动机实验 一、实验目的 1.掌握用实验方法测取直流他励电动机的工作特性和机械特性。 2.掌握直流他励电动机的调速方法。 二、实验内容 1.工作特性和固有机械特性 保持和不变,时,测取工作特性、、及 固有机械特性。 2.调速特性 (1)改变电枢电压调速 保持电动机不变,常数,测取。 (2)改变励磁电流调速 保持,常数,时,测取。 3.观察能耗制动过程 三、实验说明及操作步骤 1.他励直流电动机的工作特性和固有机械特性 按图3-4接线,电阻选用挂箱上的阻值为、电流为 的可调电阻,作为直流并励电动机的起动电阻,电阻选用挂箱上的阻值为的可调电阻. 并接上励磁电流表(mA)和电枢电流表(A)。

(1)打开设备开关和设置好各个按钮状态,将电动机励磁回路电阻调至阻值最 小,电枢回路起动电阻调至阻值最大。 (2)调节直流稳压电源上的“电压调节”旋钮,使电动机输入电压为,电动机电枢回路起动电阻调至最小值,增加电动机磁场调节电阻,使电动机转速达额定值。 (3)调出电动机的额定运行点,确定电动机的额定励磁电流。 (4)在保持,不变的条件下,逐次减小电动机的负载,在额定负载到 空载范围内,测取电动机电枢电流,转速和输出转矩,共取组数据,记录于表3-1中。 表中:电动机输入功率P1=U a I a+U f I fn,输出功率P2=0.105nT2 效率 表3-1 工作特性和固有机械特性实验数据 实 验 数 据 1.10 1.0 0.9 0.8 0.4 0.3 0. 2 16 638 169 3 171 17 34 1.18 1.08 0.9 7 0.8 6 0.4 0.2 8 0. 15 计 算 数 260 .96 238 .96 216 .96 194 .96 106 .96 84. 96 62.9 6 19818216514771.50.27.3

电机型式试验之匝间耐冲击电压

3.3 匝间耐冲击电压试 ⑴试验目的 用专用的匝间冲击电压试验仪对电机绕组施加模仿操作过电压和自然雷电过电压的冲击电压,可以有效的查出绕组匝间绝缘的损伤。 ⑴ 试验仪器 此次设计研究的是交流异步机的耐电压试验,目前较为流行的仪器为匝间冲击电压试验仪,其工作原理大致为:单相交流220V ,50Hz 通过一个调压器,供给一个升压变压器,电压升高后通过整流成为一个较高电压的直流电压,用一个由电路控制的闸流管将上述直流高电压突然加到被测试电机的线圈上,然后在用一个示波器显示该线圈的放电电压曲线,由于该曲线性状与线圈的匝数,磁路等参数有关,所以,可以通过观察他来判别被试线圈是否有匝间短路,匝数多少或者开路的故障。应该按照试验电压的大小和被测电机的容量来选择仪器的规格。 ⑵ 试验接线方法 ①三相绕组六个线端都引出时,可按下图a 所示接法,称为相接法,它试用于无换相装置的匝间仪,需要人工的倒相。 ②三相绕组已接成Y 形或△形时,则可按照下图的b ,c ,d ,e 所示的方法接线。 (a) (d) (b) (c)

(c) (f) 图3-4匝间耐电压试验接线图 对于具有一种额定电压的单速度电机,若接线方式固定,冲击试验电压应从接电源端子输入绕组,若有其多种接线方式而电源进线方式不固定,冲击试验电压应分别从可能的几种电源进线方式输入绕组,例如可以从U1、V1、W1端子进线,也可从U2、V2、W2端子进线。 ⑶试验电压和时间 试验时所加高压的数值与被试电机的额定电压,中心高度及使用条件有关,所加高压取冲击电压的峰值,其计算公式为 U Z=1.4K1K2U G (3-5) 式子中U z——冲击电压峰值V K1——运行系数,见下表 K2——尺寸系数,电机中心高≤100mm,取0.9:≥100mm,取1.0 绕线转子及并用电动机一律取1.0 U G——交流工频电压值 表3-4运行系数K的标准表 运行情况或要求K1 一般运行 1.0 浇水潜水 1.05 湿热环境,化工防腐,高速,一般船用 1.10 防暴增安 1.05—1.20 屏蔽运行,频繁启动或者逆转 1.10—1.20 剧烈震动,井用潜水,驱动磨头 1.20 特殊船用,耐氟制冷 1.30

电力系统继电保护实验报告

实验一电流继电器特性实验 一、实验目的 1、了解继电器的結构及工作原理。 2、掌握继电器的调试方法。 二、构造原理及用途 继电器由电磁铁、线圈、Z型舌片、弹簧、动触点、静触点、整定把手、刻度盘、轴承、限制螺杆等组成。 继电器动作的原理:当继电器线圈中的电流增加到一定值时,该电流产生的电磁力矩能够克服弹簧反作用力矩和摩擦力矩,使Z型舌片沿顺时针方向转动,动静接点接通,继电器动作。当线圈的电流中断或减小到一定值时,弹簧的反作用力矩使继电器返回。 利用连接片可将继电器的线圈串联或并联,再加上改变调整把手的位置可使其动作值的调整范围变更四倍。 继电器的内部接线图如下:图一为动合触点,图二为动断触点,图三为一动合一动断触点。 电流继电器用于发电机、变压器、线路及电动机等的过负荷和短路保护装置。 三、实验内容 1. 外部检查 2. 内部及机械部分的检查

3. 绝缘检查 4. 刻度值检查 5. 接点工作可靠性检查 四、实验步骤 1、外部检查 检查外壳与底座间的接合应牢固、紧密;外罩应完好,继电器端子接线应牢固可靠。 1. 内部和机械部分的检查 a. 检查转轴纵向和横向的活动范围,该范围不得大于0.15~0.2mm,检查舌片与极间的间隙,舌片动作时不应与磁极相碰,且上下间隙应尽量相同,舌片上下端部弯曲的程度亦相同,舌片的起始和终止位置应合适,舌片活动范围约为7度左右。 b. 检查刻度盘把手固定可靠性,当把手放在某一刻度值时,应不能自由活动。 c. 检查继电器的螺旋弹簧:弹簧的平面应与转轴严格垂直,弹簧由起始位置转至刻度最大位置时,其层间不应彼此接触且应保持相同的间隙。 d. 检查接点:动接点桥与静接点桥接触时所交的角度应为55~65度,且应在距静接点首端约1/3处开始接触,并在其中心线上以不大的摩擦阻力滑行,其终点距接点末端应小于1/3。接点间的距离不得小于2mm,两静接点片的倾斜应一致,并与动接点同时接触,动接点容许在其本身的转轴上旋转10~15度,并沿轴向移动0.2~0.3mm,继电器的静接点片装有一限制振动的防振片,防振片与静接点片刚能接触或两者之间有一不大于0.1~0.2mm的间隙。 2、电气特性的检验及调整 (1)实验接线图如下:

电机实验报告

步进电机控制报告 目录 引言 0 一系统技术指标 (1) 二总体方案 (1) 2.1 任务分析 (1) 2.2 总体方案 (1) 三硬件电路设计 (2) 3.1 单片机控制单元 (2) 3.2 nokia5110液晶显示单元 (3) 3.3 电机的选择 (4) 3.3.1 反应式步进电机(VR) (4) 3.3.2 永磁式步进电机(PM) (4) 3.3.3 混合式步进电机(HB) (4) 3.3.4 电机确定 (5) 3.4 驱动电路方案选择 (5) 3.4.1 单电压功率驱动 (5) 3.4.2 双电压驱动功率驱动 (6) 3.4.3 高低压功率驱动 (6) 3.4.4 斩波恒流功率驱动 (7) 3.4.5 集成功率驱动 (8)

3.4.6 驱动电路方案确定 (9) 3.5 键盘电路 (9) 四软件设计 (11) 五测试结果 (13) 六误差分析 (13) 七操作规范 (13)

引言 本系统是基于MSP430的步进电机控制系统,能够实现精密工作台位移、速度(满足电机的加、减速特性)、方向、定位的控制。用MSP430F449作为控制单元,通过矩阵键盘实现对步进电机转动开始与结束、转动方向、转动速度的控制。并且将步进电机的转动方向,转动速度,以及位移动态显示在LCD液晶显示屏上。硬件主要包括单片机系统、电机驱动电路、矩阵键盘、LCD显示等。

一系统技术指标 系统为开环伺服系统,执行元件为步进电动机,传动机构为丝杠螺母副。工作台脉冲当量:δ=0.01 mm /脉冲;最大运动速度=1.2m/min;定位精度=±0.01 mm;空载启动时间=25ms。 二总体方案 2.1 任务分析 本系统要求脉冲当量为δ=0.01 mm /脉冲,而工作台丝杠螺母副导程4mm,即电机转动一周需要400个脉冲,所以电机的步距选择0.9度;最大速度要求为1.2m/min(20mm/s),所以单片机输出的脉冲频率最大为2000Hz;空载启动时间为25ms,所以电机的启动频率为40Hz。 2.2 总体方案 根据系统要求,经过分析,可对MSP430F449单片机编程,实现按键控制和nokia5110液晶屏显示。由于MSP430F449的I/O的电压是3.3V,不符合L298驱动芯片的输入电压要求,固通过光耦隔离芯片TLP521-4,将I/0的3.3V 电压提升至5V,然后接进L298来控制电机的定位,加减速,正反转来实现精确系统总体框图如图1所示:

电机检测标准

电机的检测标准 一、外观要求: 1.定位孔位置正确,外壳和轴的结构尺寸符合图纸要求。 2.引出线长120±5mm,引线规格为18AWG1015塑胶线,有UL认证,引线颜色为红蓝白三色,红线为主线,蓝线为副线,白线为公共端,引线出线方向正确,线头剥线15mm。 3.电机引线长短、颜色符合要求,标志完好,裸线不应有氧化。 4.整机装配完整,螺丝紧固,外壳电镀有良好的光泽,无锈蚀,铁心表面无明显锈蚀; 5.振动:小于2.5mm/S。 6.轴向窜动:小于0.25mm。 7.电机标志清晰,包装完整。铭牌标志包括以下内容: 1)、制造商名或标记; 2)、产品型号; 3)、额定电压和频率; 4)、产品批号和日期。 二、主要电气参数: 1.在自制测试架上,接好电机引线,将开关打到对应挡,用数字转速表测其空载转速,120V/60Hz电机转速为1720±3%转每分钟,230V/50Hz电机转速为1470±3%转每分钟。 2.额定电压: 120V(120V型) 230V(230V型) 额定频率: 60Hz(120V型) 50Hz(230V型) 空载功率: 40W (120V型) 45W (230V型) 空载电流: 0.55A(120V型) 0.35A(230V型) 额定电流: 0.75A(120V型) 0.45A(230V型) 额定输入功率:90W (120V型) 100W (230V型) 3.耐压试验:在1800V AC/0.5mA/1S下无击穿拉弧现象。 4.噪音:在安静的检测室内,用分贝检测仪在距离电机500mm处测其空载噪音,应小于47dB (与背景噪音差要大于10 dB)。 5.泄漏电流:小于0.5mA。 6.绝缘强度:大于2MΩ/500VDC。 7.低压启动电压值:48V(120V型),132V(230V)。 8.旋转方向:轴伸方向单向逆时针转动。 9.热保护器:SF152℃可恢复温控器,动作温度157±5%℃。 10. 在温度为40±2℃,相对湿度为90∽95%的恒温恒湿箱中试

步进电机实验报告剖析

北华航天工业学院 课程设计报告(论文) 课程名称:微机控制技术课程设计 设计课题:步进电机的控制系统 专业班级: 学生姓名: 指导教师: 设计时间:2013年06月11日

北华航天工业学院电子工程系 微机控制技术课程设计任务书 姓名:专业:班级: 指导教师:职称:教授时间:2013.6.11 课程设计题目:步进电机的控制系统 设计步进电机单片机控制系统,其功能如下: 1.具有对步进电机的启停、正反转、加减速控制; 2.控制按钮分别为正转、反转、加速、减速、以及停止键; 3.能够通过三位LED数码管(或液晶显示器)显示当前的转动速度,并且由两只不同颜色的发光二极管分别指示正转和反转,因此可以清楚的显示当前转动方向和转速; 4.要求每组选择的步进电机控制字不同; 5.用单片机做控制微机; 应用软件:keil protues 成果验收形式: 1.课程设计的仿真结果 2.课程设计的报告书 参考文献: 【1】张家生. 电机原理与拖动基础【M】. 北京:北京邮电大学出版社,2006. 【2】马淑华,王凤文,张美金. 单片机原理与接口技术【M】.北京:北京邮电大学出版社,2007. 【3】顾德英,张健,马淑华.计算机控制技术【M】. 北京:北京邮电大学出版社,2006. 【4】张靖武,周灵彬. 单片机系统的PROTEUS设计与仿真【M】. 北京:电子工业出版社,2007 第16周 时间 安排 指导教师教研室主任: 2013年06 月11日

内容摘要 步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。 关键词:步进电机单片机数码管显示

电机型式试验之负载试验

3.6 负载试验 ⑴试验目的 根据时能否直接测取被试电机的输出功率和对电机效率求取方法的规定不同,负载试验的目的也有所不同,但是最终目的都是为了求取被测电机的满载或者规定负载的效率,功率因数,电流,转矩及其转差率或者转速,对于要求效率的求取采用直接测定法,负载试验的目的则是为了测取可直接用于计算效率的输入及其输出功率。另外还有用于计算满载功率因素的定子输入电流及其绘制工作曲线的其他有关数据,对于不能直接显示被试电机输出功率或者输出载距的负债设备。或者不论采用任何负载设备但是效率要求采用间接测定法,负载试验的目的则是为了准确求得被试电机的效率,功率因素及其转差率等而测取一些有关数据,一般为额定电压和额定频率时的若干组不同输出功率或者输入功率下的定子电流,三相输入功率,转差率或者定子电阻等。 ⑵试验接线图 图3-11负载试验接线图 ⑶试验方法—额定电压负载法 ①实验设备可以直接显示被试电机输出功率或者输出转矩时

所用设备可以直接显示时,让被试电机在额定频率,额定电压及额定负载下运行到温升稳定,然后调节负载,在1.5到0.25倍额定功率范围内测取6个点读数,允许增加点的测量个数,测量越多对准确度越好,每个点都应该测取三相线电流,输入功率,输出功率或者输出载距,转速,定子绕组,直流电阻(无条件时,可最后停机时尽快测量得到)或者温度,试验过程中,每个点都应该保持被试电机定子电压和频率为额定值。 上述实验方法可用下列流程图显示: 1.5P N开始保持U=U N 测取I1,P1,P2,s或n,R1 6—9个点 0.25P N 断电停电测取R1 ②当实验设备不能显示输出机械功率或者转矩时 所用设备不能直接心事输出机械功率或者输出载矩,则使被试电机在额定电流,额定电压及额定功率下运行到温升稳定后,调节负载,在1.5—0.5倍额定电流之间测取6点读数,读数包括三相电流,输入功率及转差率或者转速,定子直流电阻或者温度,试验中,各测点都应该保持被试电机所加电压及频率为额定值。 当对试验的准确度要求十分严格,可在上述试验结束后,尽快停机测出定子绕组的直流电阻,对热试验后立即进行本项饰演者,可不测,而用热试验后测的电阻值代替。 上述实验方法可用下列流程图显示: 1.5P N开始保持U=U N ,f=f N 测取I1,P1,s或n,R16—9 个点0.5I N 断电停电测取R1 ⑷直接负载法—降低电压负载法 首先使被试电机在额定频率,1/2额定电压和1/2额定电流下运行到接近热稳定状态,然后保持额定频率和1/2额定电压不变,在0.6倍额定电流至空载电流范围内测取6—7个点,每个点读数包括三相线电流,输入功率、转差率。上述实验结束后,立即停机测取定子直流电阻。 上述实验方法可用下列流程图显示: 0.6I N开始保持U=0.5U N ,f=f N 测取I1,P1,s或n,R16—7 个点I0 断电停电测取R1 ⑸试验结果的计算

电机设计实验报告

一、实验内容 某一磁化曲线为 二、实验要求 1、画框图 2、编制c 语言程序 3、输出计算结果 三、实验项目 (一)、利用线性插值法求解 1、实验原理 (x)=f( )+(x-) 2、实验框图 3、试验程序 #include main() { static float X[10]={0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2};

static float Y[10]={0.96,1.48,2.54,4.14,7.30,19.4,67.0,230.0,700.0,2280}; int i; float B; float H; printf("Please input the B:"); scanf("%f",&B); for(i=1;i<=10;i++) { if(B<=X[i]) break; } H=Y[i]+(Y[i+1]-Y[i])*(B-X[i])/(X[i+1]-X[i]); printf("H=%f\n",H); } 4、输出计算结果 (二)、利用抛物线插值法求解 1、实验原理 (x)= ++ 2、实验框图

3、试验程序 #include main() { static float X[10]={0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2}; static float Y[10]={0.96,1.48,2.54,4.14,7.30,19.4,67.0,230.0,700.0,2280}; int i; float B; float H; printf("Please input the B:"); scanf("%f",&B); for(i=2;i<=9;i++) { if(B<=X[i+1]&&B>=X[i-1]) break; } H=(B-X[i])*(B-X[i+1])*Y[i-1]/(X[i-1]-X[i])*(X[i-1]-X[i+1]) +(B-X[i-1])*(B-X[i+1])*Y[i]/(X[i]-X[i-1])*(X[i]-X[i+1]) +(B-X[i-1])*(B-X[i])*Y[i+1]/(X[i+1]-X[i-1])*(X[i+1]-X[i]); printf("H=%f\n",H); } 4、输出计算结果

电机实验报告一

西华大学实验报告(理工类) 开课学院及实验室: 电气与电子信息学院 6A-214 实验时间 :2018年12月01日 一、实验目的 1.熟悉他励直流电动机的启动、调速和改变转向的方法。 2.用实验方法测取他励直流电动机的工作特性和机械特性。 3.学习测取他励直流电动机调速特性的方法。 二、实验内容 1.他励直流电动机的启动、调速和改变转向的方法。 2.他励直流电动机额定工作点的求取和测取他励直流电动机的工作特性n =f (P 2)、 T =f (P 2)、 =f (P 2),机械特性n =f (T )。 3.测取他励直流电动机调速特性。 4.他励直流电动机的能耗制动实验。 三、实验线路 直流机电枢电源 同步机励磁电源 接触注:LDSP 为转矩/转速测量仪表 图1-1 他励直流电动机实验线路原理图 图1-2 他励直流电动机能耗制动原理图 直流机电枢电源

说明: 1.为了测量直流电机的转矩和转速大小,转矩/转速测量仪表LDSP的I a+、I a-必须串接到直流电机的电枢回路,U a+、U a-要并接到直流电机的电枢绕组两端,并且测量仪表的接线正负极性要与使用说明书中的规定一致。 2.接线时注意选择合适量程的仪表。 3.多功能表的接线详见附录二(后续实验同此)。 四、实验说明 在通电实验之前,请仔细阅读附录中有关直流电源和转矩/转速表LDSP的使用说明。 1.他励直流电动机的启动和改变转向 实验步骤: (1)请参照实验线路图1-1正确接线。检查ZDL-565多功能表为三相四线制接线方式,具体操作见附录。 (2)合上“总电源”开关,对应总电源指示灯亮,再合上“操作电源”空开,对应操作电源指示灯亮。按下“操作电源开关”合闸按钮,对应的红色指示灯亮;检查台面上所有的按钮处于断开位置,均为绿灯亮;所有数字表显示无错误。 (3)按下实验台直流机励磁电源合闸按钮,按下ZL-Ⅱ微机型直流电机励磁电源机箱面板上的“启动”按钮,面板上的“合闸”指示灯将会亮。点击“增加电压”按钮将直流电动机的励磁电压调到电机额定励磁电压值220V; (4)按下实验台直流电机电枢电源合闸按钮,点击“增加电压”按钮将电枢电压从零逐渐升高,观察“LDSP转矩/转速表”上的直流电机转速显示值,通过调节电枢电压的大小使电机的转速逐渐上升至其额定转速(约1500r/min)。启动电机时注意使电机的转向应与标定转向相同。 如果希望改变他励直流电动机的转向,只须改变电动机的电磁转矩方向,同学们自拟改变转向的方法。 2.额定工作点求取和测取他励电动机工作特性与机械特性 实验步骤: (1)实验接线参考图1-1,启动直流电动机步骤参考实验1。 (2)按下实验台同步电机励磁电源合闸按钮,点击“增加电压”按钮将同步发电机端电压逐渐升高,因为发电机以灯泡作负载,实验时其线电压不要超过额定电压380V。 (3)合上实验台交流接触器接通发电机负荷箱回路,依次将实验负荷箱上KM1~KM7按钮按下;注意每投入一组负载,需要同时调节直流电动机的电枢电压或励磁电流以便保持电动机转速为额定转速。同样,由于负荷的变化,同步发电机机端电压也会发生变化,需要随时调节同步发电机励磁电流,以保证机端电压基本不变。直流电动机的负载为同步发电机,改变同步发电机的输出功率,即可改变电动机的负载大小,电动机负载变化影响转速变化,因此需要相

电机型式试验之绕组耐电压测定

3.2 绕组耐电压测定试验 ⑴试验目的 绕组耐电压试验又称为介电强度试验,这是检查绕组及相关导电部件(例如接线和接线装置等)对机壳和相互间绝缘水平的一项重要试验,所以在电机实验中必须要严格的执行。对于小型异步机,无论是交流电动机还是直流电动机,此项实验均采用50H Z 正弦,对于小型异步机来说,如果不加以说明,应理解为只要求进行耐电压交流试验。若非为特殊规定,整机试验是对绕组和机壳之间的加压实验,俗称对地耐压试验。 本设计研究的是小型异步机的耐交流对地耐电压试验。 ⑵耐交流电压试验方法 ①压变压器的高压输出端接被测绕组,低压端接地。 ②被测试电机外壳或者铁心及未加高压的绕组及其他电气元件都要可靠接地 ③试验加压时间分为1min或者1s两种 ④对于小型异步电机,功率小于1KW且额定电压低于100V电机的绝缘绕组,试验电压应该用500V+2倍的额定电压。 ⑤1min方法试验时,加电压应从不超过试验电压全值的一半开始,然后均匀的或每步不超过全值的5%逐步升至全值,这一过程所用时间应不少于10s,加压达到1min后,再逐步将电压将至实验全值电压的一半以后才允许关闭电源。 ⑥对于批量生产的额定功率为5KW及以下的电机,允许将上述1min试验缩短为5s。 ⑦1s实验方法限于批量生产的额定功率为5KW及以下的电机,并且试验电压要高于1min方法规定值的20%。 项号电机类型或部件名称试验电压(V) 1 额定输出功率<1KW,且 额定电压<100V的绝缘 绕组 500+2倍的被测试电机的额定电压

2 额定输出功率<1×104KW 的绝缘绕组 1000+2倍的被测试电机 的额定电压,最低为1500V 3 非永久短路的异步电机 1000V+2倍静止开路电压 ⑶ 试验要求与电路图 试验电压为50H Z ,波形尽可能的接近正弦波,对于新生产的或修理时全部更 换的新部件(例如绕组),其数值应该按照一定的标准,对于本次毕业设计所涉及到的小型异步机,功率小于1KW 且额定电压低于100V 电机的绝缘绕组,试验电压应该用500V+2倍的额定电压。 典型的交流耐电压试验设备线路图如下图4-6所示(其中M 为被测试三相交流电机,不属于试验设备) T 1——调压变压器 T 2——高压试验变压器 R ——限流保护电阻 ,每伏0.2—1? R 0—保护电阻 TV —测量用电压互感器 V —电压表 M —被试电机 图3-3试验线路图 其中变压器T 2的容量,对于小型异步机的绕组,,每1KV 试验电压应该不小于1KVA ,若被测电机的电容量C 较大,则试验变压器的额定 容量P 应大于下列计算式 P >2πf CUU NT ×10-3 (KVA ) (3-4) F 为电源频率 U 为被试验电机 U nt 为试验变压器高压测额定电压 C 为被测试电动机的电容,另外,应该设置安全保护装置, 防止在实验中误操作等意外造成人R

PID控制电机实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ PID控制电机实验报告

编号:FS-DY-20618 PID控制电机实验报告 摘要 以电机控制平台为对象,利用51单片机和变频器,控制电机精确的定位和正反转运动,克服了常见的因高速而丢步和堵转的现象。电机实现闭环控制的基本方法是将电机工作于启动停止区,通过改变参考脉冲的频率来调节电机的运行速度和电机的闭环控制系统由速度环和位置环构成。通过PID调节实现稳态精度和动态性能较好的闭环系统。 关键词:变频器PID调节闭环控制 一、实验目的和任务 通过这次课程设计,目的在于掌握如何用DSP控制变频器,再通 过变频器控制异步电动机实现速度的闭环控制。为实现闭环控制,我们需完成相应的任务: 1、通过变频器控制电机的五段调速。

2、通过示波器输出电机速度变化的梯形运行图与s形运行图。 3、通过单片机实现电机转速的开环控制。 4、通过单片机实现电机的闭环控制。 二、实验设备介绍 装有ccs4.2软件的个人计算机,含有ADC模块的51单片机开发板一套,变频器一个,导线若干条。 三、硬件电路 1.变频器的简介 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,变频器还有很多的保护功能。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 2.变频器的使用 变频器事物图变频器原理图

电机型式试验之匝间耐冲击电压

3.3匝间耐冲击电压试 ⑴试验目的 用专用的匝间冲击电压试验仪对电机绕组施加模仿操作过电压和自然雷电过电压的冲击电压,可以有效的查出绕组匝间绝缘的损伤。 ⑴试验仪器 此次设计研究的是交流异步机的耐电压试验,目前较为流行的仪器为匝间冲击电压试验仪,其工作原理大致为:单相交流220V,50Hz通过一个调压器,供给一个升压变压器,电压升高后通过整流成为一个较高电压的直流电压,用一个由电路控制的闸流管将上述直流高电压突然加到被测试电机的线圈上,然后在用一个示波器显示该线圈的放电电压曲线,由于该曲线性状与线圈的匝数,磁路等参数有关,所以,可以通过观察他来判别被试线圈是否有匝间短路,匝数多少或者开路的故障。应该按照试验电压的大小和被测电机的容量来选择仪器的规格。 ⑵试验接线方法 ①三相绕组六个线端都引出时,可按下图a所示接法,称为相接法,它试用于无换相装置的匝间仪,需要人工的倒相。 ②三相绕组已接成Y形或△形时,则可按照下图的b,c,d,e所示的方法接线。 (a)(d) (b)(c) (c)(f) 图3-4匝间耐电压试验接线图 对于具有一种额定电压的单速度电机,若接线方式固定,冲击试验电压应从接电源端子输入绕组,若有其多种接线方式而电源进线方式不固定,冲击试验电压应分别从可能的几种电源进线方式输入绕组,例如可以从U1、V1、W1端子进线,也可从U2、V2、W2端子进线。 ⑶试验电压和时间 试验时所加高压的数值与被试电机的额定电压,中心高度及使用条件有关,所加高压取冲击电压的峰值,其计算公式为 U Z =1.4K 1 K 2 U G (3-5) 式子中U z ——冲击电压峰值V K 1 ——运行系数,见下表

电机型式试验之最大、最小转矩的测定

3.10 最大转矩,最小转矩的测定试验 ⑴ 试验目的 测量电机的最大转矩的目的是为了检测被试电机的短时过载能力,而测量最小转矩的目的则是为了研究被试电机的启动能力,从而判断电机的质量好坏,是质量检测研究中的一个不可或缺的环节。 ⑵ 最大(小)转矩的定义 ① 三相异步电机的最大转矩是指电机在额定电压和额定频率下,所产生的无转速突降的趋态异步转矩最大值(本定义不试用于转矩随转速增加而连续下降的电机),符号为T max ,如下图所示: (a )一般电机 (b )转矩随转速的升高一直下降的电机 图3-17三相异步机的转子—转速特性曲线 ② 三相异步电机的最小转矩是是指电动机在额定电压和额定功率的频率下,在零转速与对应于最大转矩的转速之间所产生的稳态异步转矩的最小值。这里应当注意的是稳态异步转矩的最小值这几个字,因为在实际测量的过程中,最小转 s ) 0T T KN n

矩点附近的一段区域内,转矩值一般是跳动很大的震荡曲线,从定义来看,应该取其平均值为最小转矩的结果,而不是取振荡曲线的最低值。 ⑶ 最大转矩的测试方法—描点法 根据国家规定,100KW 以下的电机测量最大转矩采用实测法,试验时,要求产生最大转矩的电机端电压应在被试电机额定电压的0.9-1.1倍之内,此时用转矩与电压的平方成正比的关系对转矩进行修正才不会产生较大的误差。 使用转矩—转速传感器加直流负载法时的试验步骤 ① 描点绘制曲线的方法:可以从空载开始,逐渐加大负载,并按一定的梯度设定一个试验点,在一个试验点上稳定运行一段时间,待显示数据后,并记录下相关数据,再调高到下一个试验点进行试验,直至使转矩值达到某一最大值后开始下降,在接近最大值时应该减缓增加负载的速度,试验时同时记录各点的转速和电压值,有要求还应该记录电流值,如下图(a )所示。 图3-18转矩—转速曲线 按与电压的平方成正比的关系将各个试验点的转矩值修正到额定电压的数值后,在一张坐标纸上点出转矩与转速的对应坐标点,并将各点练成一条光滑的曲线,被试电机的最大转矩从曲线上求得。 ⑷ 最小转矩的测试方法—描点法 采用描点法单独测量最小转矩的时候,可现在低电压下确定被试电机出现最小转矩的中间转速,一般为同步转速的1/13—1/7范围内的某一转速,机组在该转速下能稳定运行而不升速,断开被试电机的电源,调节测功机使其转速为中间转速的1/3,然后,合上被试电机的电源,调节测功机负载,直到转矩值达到最小,读取次转矩值和被试电机的端电压,通过电压修正,得到额定电压时的最小转矩值 本试验一般和测取最大转矩的试验一起进行,测绘出一条完整的转矩—转速曲线,然后取由堵转到空载的曲线上处于堵转至最大转矩对应的转速范围内的转0T

相关主题
文本预览
相关文档 最新文档