当前位置:文档之家› 压控振荡器及FSK调制

压控振荡器及FSK调制

压控振荡器及FSK调制
压控振荡器及FSK调制

压控振荡器及FSK 调制

摘要:

本系统基本架构采用西勒振荡电路,通过变容二极管实现振荡器输出频率的电压控制。并以频率为600HZ 的方波信号为调制信号,实现FSK 调制。

一、方案论证与比较

压控振荡器: 方案一克拉泼电路

此方案产生的信号频率稳定度好,振荡器振荡幅度随频率增加而下降,即在波段范围内输出信号的幅度是不平稳的,所以,克拉泼振荡器只能用作固定频率振荡器或者波段覆盖系数较小的可变频率振荡器,一般克拉泼振荡器的波段覆盖系数是1.2~1.3,并且不容易起振。 方案二西勒振荡电路

西勒振荡器易于起振,振荡幅度随频率增加而增加,使在波段范围内的输出电压幅度比较平稳,其覆盖系数较大,可大1.6~1.8。西勒振荡器频稳度好,振荡频率也可以较高,起振也比较容易。

结合本题目要求考虑:

本题要求产生30~40MHz 的信号,频率较高、范围较宽且有较高的频稳度要求。因此我们选择了西勒振荡电路,

功率放大器: 方案一:甲类功放。

甲类功放所面临的便是效率低下的问题。只是,没有交越失真以及电路结构的简单确实很实用。 方案二:乙类功放

乙类功放相对于甲类功放而言效率得到大幅度的提升,但是交越失真却不是我们所想要的,并且,电路结构也相对复杂。

结合本题目考虑: 要求的输出功率要求大于1.5dBm ,约为1.42mW 。而负载为50Ω电阻,可计算出输出电压峰峰值为0.75V ,因此使用乙类功放电路,就可达到该功率值。

方波发生器:

方案一运算放大器组成的方波发生器

运放构成的波形发生器简单易于搭建,并且频率、幅度调节很容易,只是转换速率或许显得并不是那么的快,要产生稳定频率的波比较困难,电路也相对复杂。 方案二555定时器产生方波

通过555定时器产生方波,首先是电路较运放电路而言更简单,只需要电阻与电容即可。此外,更重要的是555定时器产生的方波频率精确稳定,而且成本同样比较低廉。

结合本题目考虑:

本题中对方波的频率稳定度要求相对较高,综合考虑成本等因素,我们选择了方案二

二、理论分析及参数计算

(一)西勒振荡器分析与计算

西勒振荡器是一种改进型的电容三点式振荡器,其主要特点就是在回路电感上并联了一个可变电容x C ,而0C 为固定值,因此可使回路总电容为:0x C C C =+。所以正当频率为

0ω,可折算到晶体管的输出端的谐振电阻'

2p

p R p R =?,而系数43/p C C =,可见,p 与x C 无关,调节x C 时不会改变p 的值,也就是振荡频率不会改变。

在本电路中,x C 对电路的性能影响很大,而x C (在电路中也就是压控二极管所对应的电容)变化则可以调节频率的变化,所以3C 不能选的太大,否则电路的频率就是由L 和3C 所决定的,这样将限制频率调节的范围,此外,3C 过大也不利于消除晶体管极间电容的影响,但,

3C 太小,则接入系数p 降低,振荡幅度也就减小。因此,3C 大概在PF 级别就可以了。并

且电容应该选择陶瓷电容比较好。电容确定了,而L 与电容的搭配有很多种,但L/C 太小的

话,在低频下将难以振荡。也有大致的指标来确定电感,振荡频率为1MhZ 时,L 在10uH 左右,10MhZ 时L 大于1uH 。

(二)方波发生器分析与计算

方波发生器我们选择了简单易于搭建的555定时电路,定时器选择了LM555CM 芯片,该电路结构简单,其周期仅由两个电阻和一个电容决定,其公式为()T R12R2C ln2=+??,而占空比则仅由电阻决定,占空比计算公式为T1R1R2

D T R12R2

+=

=+。 此方波发生器产生的方波,最大值和最小值分别为max V =VCC 、min V =0,而VCO 电路只能由2-9V 的电压控制,因此在方波发生部分与VCO 部分,需要一个接口电路。我们选择的接口电路是由运放构成的加法器。

三、电路分析与设计

(一)西勒振荡电路设计

图1 压控振荡电路

电路的直流偏置通过两个10k Ω电阻实现,以使晶体管工作于放大状态。波形发生部分

先固定电感的值为L=1.4uH ,当频率变化范围为30~40MHz 时,由公式0ω总计算

得,总的电容值C 变化范围为11.3~20.2pF ,又0x C C C =+,

其中0134

1

1/1/1/C C C C =++,

因此我们选择3C =18pF ,4C =220pF ,1C =10pF ,变容二极管选择两个BB910串联。电压控制部分2L 为高频扼流圈,防止产生的高频波对控制电压的影响。单元电路如图1所示。

(二)方波发生及接口电路设计

方波发生部分,为了得到600HZ (周期约1.67ms )的方波。先固定C=0.01uF ,再利用公式()T R12R2C ln2=+??和T1R1R2D T R12R2

+=

=+计算,我们选择1R =1k Ω,2R =120k Ω。接口电路部分通过加法器电路将方波缩小后和直流电压相加,以得到2-9V 范围内的方波。单元电路如图2所示。

图2 方波发生单元电路

四、系统测试与分析

(一)测试仪器

UT33D 万用表,泰克TDS1002数字示波器,EE163C 函数发生器,双通道直流稳压源一台,晶体管毫伏表一台。

(二)测试方法与测试数据 1、压控振荡器测试 (1)VCO 波形测试

测试方法:在电压控制端加上2~9V 之间的数个电压值,输出端连接示波器,观察波形是否失真。

测试结果如表1所示

表1 波形测试

测试方法:调节VCO 电路的控制电压,在波形无明显失真的情况下,使控制电压范围尽可能大,用示波器测出输出的频率范围。

测试结果记录:max f =,min f =。

(3)功率测试

测试方法:在电压控制端加上2~9V 之间的数个电压值,在输出端接上50Ω负载,用万用表测负载两端的电压。

测试结果如表2所示

表2功率测试结果

(3)线性度测试

测试方法:在电压控制端输入端,加上2~9V 之间的数个控制电压,并用示波器分别测试不同压控电压下输出的信号的频率,并观察波形是否失真。

测试结果如表3所示

表3线性度测试结果

max =

max

min

f f

f ?-=

线性度。

(4)频稳度测试

测试方法:在压控电压输入端,分别加2~9V 的8个电压值,输出端接示波器。在每个电压值下,每隔10秒读取一个频率值,总共读取6个频率值,完成表4并计算频稳度。

测试结果如表4所示

表4频稳度测试

2、方波发生电路测试 (1)方波波形测试

测试方法:波形发生器输出端(即接口电路的输出端)连上示波器,用数字示波器测试

功能测出表格5中的数据。

测试结果如表5所示

表5方波测试

五、总结分析与结论

多谐振荡器双闪灯电路设计与制作

多谐振荡器双闪灯电路设计与制作 南昌理工学院张呈张海峰 我们主张,电子初学者要采用万能板焊接电子制作作品,因为这种电子制作方法,不仅能培养电子爱好者的焊接技术,还能提高他们识别电路图和分析原理图的能力,为日后维修、设计电子产品打下坚实的基础。 上一篇文章《电路模型设计与制作》我们重点介绍了电路模型的概念以及电流、电压、电阻、发光二极管、轻触开关等基本知识,并完成了电路模型的设计与制作,通过成功调试与测试产品参数,进一步掌握了电子基础知识。 本文将通过设计与制作多谐振荡器双闪灯,掌握识别与检测电阻、电容、二极管、三极管。掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。

一、多谐振荡器双闪灯电路功能介绍 图1 多谐振荡器双闪灯成品图

多谐振荡器双闪灯电路,来源于汽车的双闪灯电路,是经典的互推互挽电路,通电后LED1和LED2交替闪烁,也就是两个发光二极管轮流导通。 完成本作品的目的是为了掌握识别与检测电阻、电容、二极管、三极管。掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。。 该电路是一个典型的自激多谐振荡电路,电路设计简单、易懂、趣味性强、理论知识丰富,特别适合初学者制作。 二、原理图 图2 多谐振荡器双闪灯原理图 三、工作原理 本电路由电阻、电容、发光二极管、三极管构成典型的自激多谐振荡电路。在上篇文章中介绍了电阻、和发光二极管,本文只介绍电容和三极管。 1、电容器的识别

电容器,简称电容,用字母C表示,国际单位是法拉,简称法,用F表示,在实际应用中,电容器的电容量往往比1法拉小得多,常用较小的单位,如微法(μF)、皮法(pF)等,它们的关系是: 1法拉(F)=1000000微法(μF),1微法(μF)=1000000皮法(pF)。 本的套件中使用了2个10μF的电解电容,引脚长的为正,短的为负;旁边有一条白色的为负,另一引脚为正。电容上标有耐压值上25V,容量是10μF。 2、三极管的识别 三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件。其作用是把微弱信号放大成幅值较大的电信号, 也用作无触点开关,俗称开关管。套件中使用的是NPN型的三极管9013,当把有字的面向自己,引脚朝下,总左往右排列是发射极E,基极B,集电极C。如图3所示。 图3 三极管的引脚图 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体三极管的三种工作状态: (1)截止状态 当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

实验四 2PSK调制与解调实验

实验四 2PSK 调制与解调实验 1、 实验箱中2PSK 调制器用的调制方法是什么? 答:移相键控调制的直接调相法。 2、 2PSK 调制能否用非相干解调方法? 答:不能。 3、 相位模糊产生的原因和解决方法? 答:①原因:在调制过程中采用了分频,而二分频器的输出电压有相差180度的两种可能相位,即其输出电压的相位决定了分频器的初始状态,这就是会导致分频出的载波存在相位模糊(2PSK 采用的是相移方式) ②解决办法:使用2DPSK 二相相对移相键控 4、 绝/相、相/绝变换的框图? 答: 5、 绝/相、相/绝变换电路是怎么实现的。 答:绝/相变换电路是把数据信息源输出的绝对码变相对码,2DPSK 信号由相对码进行绝对调相得到。它由模二加10A U (74LS86)和D 触发器9A U (74LS74)组成,其逻辑关系为:i a ⊕i-1b =i b ,其中i a 是绝对码,i-1b 是延迟一个码元的相对码,i b 是相对码。 相/绝变换电路由14B U (74LS74)和15B U (74LS86)组成,其逻辑关系可表示为i-1b ⊕i b =i a ,其中i b 为相对码,i-1b 为延迟一个码元的相对码,i a 为绝对码。 6、 画出实验板中2PSK 、2DPSK 调制与解调器的原理框图; 答:

7、本实验中,2PSK 信号带宽是多少?用数字示波器如何测量? 答:B=2 f=2/Ts。先按MATH按钮,再选择FFT选项。 s 8、测试接收端的各点波形,需要与什么波形对比,才能比较好的进行观测? 示波器的触发源该选哪一种信号?为什么? 答:绝对码波形。原始信号。触发源信号应该选择频率较低、稳定度高的信号。 9、解调电路各点信号的时延是怎么产生的? 答:由滤波与抽样产生。 10、码再生的目的是什么? 答:①防止噪声干扰的累加,恢复出基带信号。②把码元展宽。 11、用D触发器做时钟判决的最佳判决时间应该如何选择? 答:眼图中眼睛张开最大时刻,即码元能量最大时刻,把各个信号叠加在一起。 12、解调出的信码和调制器的绝对码之间的时延是怎么产生的? 答:由滤波与抽样产生。 13、在接收机带通滤波器之后的波形出现了起伏是什么原因,带通滤波器的 带宽设计多大比较合适? 答:符号切换造成了旁瓣的产生,0、1跳变使得高频成份丰富。π→0→π转换点导致的频谱扩展特别大,通过滤波器会缩小。带宽设计为2/Ts。

压控振荡器原理和应用说明

压控振荡器(VCO 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj 随反向偏置电压VT 变化而变化的特点(VT=OV 时Cj 是最大值,一 般变容管VT 落在2V-8V 压间,Cj 呈线性变化,VT 在8-10V 则一般为非线性变化,如图1 所示,VT 在10-20V 时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当 改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO 。 压控振荡器的调谐电压 VT 要针对所要求的产品类别及典型应用环境(例如用户提供调谐要 求,在锁相环使用中泵源提供的输出控制电压范围等 )来选择或设计,不同的压控振荡器, 对调谐电压VT 有不同的要求,一般而言,对调谐线性有较高要求者, VT 选在1-10V ,对宽 频带调谐时,VT 则多选择1-20V 或1-24V 。图1为变容二极管的V — C 特性曲线。 图1变容二极管的V — C 特性曲线 三压控振荡器的基本参数 1工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“ MHZ 或 “GHz 。 2输出功率:在工作频段内输出功率标称值,用 Po 表示。通常单位为“ dBmW 。 3输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△ P 表示,通常 单位为“ dBmW 。 4调谐灵敏度:定义为调谐电压每变化1V 时,引起振荡频率的变化量,用 MHz/ △ VT 表示,在线性区,灵敏度最咼,在非线性区灵敏度降低。 5谐波抑制:定义在测试频点,二次谐波抑制 =10Log (P 基波/P 谐波)(dBmw )。 6推频系数:定义为供电电压每变化1V 时,引起的测试频点振荡频率的变化量,用 MHz/V 表 示。 7相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振 f0为fm 的带内,各杂散能量的总和按fin 平均值+15f0点频谱能量之比,单位为dBC/Hz 相位噪 声特点是频谱能量集中在f0附近,因此fm 越小,相噪测量值就越大,目前测量相噪选定 WV) 0 8 10

基于MATLAB的FSK调制解调1

基于MATLAB的FSK调制解调 学生姓名:段斐指导老师:吴志敏 摘要本课程设计利用MATLAB集成环境下的M文件,编写程序来实现FSK 的调制解调,并绘制出解调前后的时域和频域波形及叠加噪声时解调前后的时频波形,并观察解调前后频谱有何变化以加深对F SK信号解调原理的理解。对信号叠加噪声,并迚行解调,绘制出解调前后信号的时频波形,改变噪声功率迚行解调,根据运行结果和波形来分析该解调过程的正确性及信道对信号传输的影响。完成整个FSK的调制解调过程。程序开发平台为MATLAB7.1,使用其自带的M文件实现。运行平台为Windows 2000。 关键词:程序设计;FSK ;调制解调;MATLAB7.1;M文件 1引言 本课程设计是利用MATLAB集成环境下的M文件,编写程序来实现FSK 的调制解调,并绘制出解调前后的时域和频域波形及叠加噪声时解调前后的时频波形,根据运行结果和波形来分析该解调过程的正确性及信道对信号传输的影响。 1.1课程设计目的 此次课程设计的目的是熟悉MATLAB中M文件的使用方法,编写M文件实现FSK的调制和解调,绘制出FSK信号解调前后在时域和频域中的波形,观察调解前后频谱的变化,再对信号迚行噪声叠加后解调同样绘制解调前后的

信号时频波形,最后改变噪声功率迚行调解,分析噪声对信号传输造成的影响,加深对FSK信号解调原理的理解。 1.2课程设计要求 熟悉MATLAB中M文件的使用方法,并在掌握FSK调制解调原理的基础上,编写出F SK调制解调程序。在M文件环境下运行程序绘制出F SK信号解调前后在时域和频域中的波形,观察波形在解调前后的变化,对其作出解释,同时对信号加入噪声后解调,得到解调后的时频波形,分析噪声对信号传输造成的影响。解释所得到的结果。 1.3课程设计步骤 本课程设计采用M文件编写的方法实现二迚制的FSK的调制与解调,然后在信号中叠加高斯白噪声。一,调用dmode函数实现FSK的解调,并绘制出F SK信号调制前后在时域和频域中的波形,两者比较。二,调用ddemod函数解调,绘制出F SK信号解调前后在时域和频域中的波形,两者比较。三,调用awgn函数在新海中叠加不同信噪比的噪声,绘制在各种噪声下的时域频域图。最后分析结果。 1.4设计平台简介 Matlab是美国MathWorks公司开发的用于概念设计,算法开发,建模仿真,实时实现的理想的集成环境。是目前最好的科学计算类软件。 作为和Mathematica、Maple并列的三大数学软件。其强项就是其强大的矩阵计算以及仿真能力。Matlab的由来就是Matrix + Laboratory = Matlab,这个软件在国内也被称作《矩阵实验室》。Matlab提供了自己的编译器:全面兼容C++以及Fortran两大语言。Matlab 7.1于2005.9最新发布-完整版,提供了

通信原理实验——2PSK调制与解调

贵州大学实验报告 学院:计信学院专业:网络工程班级:101 姓名学号实验组实验时间2013.06.16 指导教师成绩 实验项目名称实验二2PSK调制与解调 实 验目的1、掌握2PSK调制的原理及实现方法。 2、掌握2PSK解调的原理及实现方法。 实验原理 1、2PSK调制 2PSK信号产生的方法有两种:模拟调制法和数字调制法。 码型变换乘法器 NRZ输入双极性NRZ调制输出 载波输入 图16-1 2PSK调制模拟相乘法原理框图 上图16-1是2PSK调制模拟相乘法原理框图。信号源模块提供码速率96K的NRZ 码和384K正弦载波。在2ASK中数字基带信号是单极性的,而在2PSK中数字基带信号是双极性的。故先将单极性NRZ码经码型变换电路转换为双极性NRZ码,然后与384K正弦载波相乘,便得2PSK调制信号。乘法器的调制深度可由“调制深度调节”旋转电位器调节。 载波1 384K 开关电路2 调制输出 NRZ输入 开关电路1 反相器 图16-2 2PSK调制数字键控法原理框图 上图16-2是2PSK调制数字键控法原理框图。为便于实验观测,由信号源模块提供码速率为96Kbit/s的NRZ码数字基带信号和384KHz正弦载波信号,NRZ码为“1”的一个码元对应0相位起始的正弦载波的4个周期,NRZ码为“0”的一个码元对应π相位起始的正弦载波的4个周期。 实验中采用模拟开关作为正弦载波的输出通/断控制门,数字基带信号NRZ码用来

控制门的通/断。当NRZ 码为高电平时,模拟开关1导通,模拟开关2截止,0相位起始的正弦载波通过门1输出;当NRZ 码为低电平时,模拟开关2导通,模拟开关1截止,π相位起始的正弦载波通过门2输出。门的输出即为2FSK 调制信号,如下图16-3所示。 NRZ输入 调制信号 1 1 00 1 PSK 图16-3 2PSK 调制信号波形 2、2PSK 解调 2PSK 信号的解调通常采用相干解调法,原理框图如下图16-4所示。 LPF 相乘器电压判决 抽样判决 调制输入 BS输入 PSK/DPSK 判决电压调节 载波输入相乘输出 滤波输出 解调输出 判压输出 图16-4 2PSK 解调相干解调法原理框图 设已调信号表达式为1()cos(())s t A t t ω?=?+(A 1为调制信号的幅值), 经过模拟乘法器与载波信号A 2cos t ω(A2为载波的幅值)相乘,得 0121 ()[cos(2())cos ()]2 e t A A t t t ω??= ++ 可知,相乘后包括二倍频分量121 cos(2())2 A A t t ω?+和cos ()t ?分量(()t ?为时 间的函数)。因此,需经低通滤波器除去高频成分cos(2())t t ω?+,得到包含基带信号的低频信号。 然后再进行电压判决和抽样判决。此时,“解调类型选择”拨位开关拨到“PSK ”一端。 解调过程中各测试点波形如下图16-5所示。

lc压控振荡器实验报告doc

lc压控振荡器实验报告 篇一:实验2 振荡器实验 实验二振荡器 (A)三点式正弦波振荡器 一、实验目的 1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1. 熟悉振荡器模块各元件及其作用。 2. 进行LC振荡器波段工作研究。 3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4. 测试LC振荡器的频率稳定度。 三、基本原理 图6-1 正弦波振荡器(4.5MHz) 【电路连接】将开关S2的1拨上2拨下, S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振 荡频率。振荡频率可调范围为:

?3.9799?M??f0??? ? ?4.7079?M? CCI?25p CCI? 5p 调节电容CCI,使振荡器的频率约为4.5MHz 。振荡电路反馈系数: F= C1356 ??0.12 C20470 振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。 四、实验步骤 根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 1. 调整静态工作点,观察振荡情况。 1)将开关S2全拨下,S1全拨下,使振荡电路停振 调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),使其为5.0V(或稍小,以振荡信号不失真为准),这时表明振荡管的静态工作点电流IEQ=5.0mA(即调节W1使

FSK调制

二进制移频键控(2FSK) 一、实验目的 1、掌握2FSK调制原理及其实现方法 2、掌握2FSK解调原理及其实现方法 3、了解非线性调制时信号的频谱变化 二、实验内容 1、理解2FSK的调制和解调原理并用SystemView软件仿真其实现过程 2、用SystemView分析二进制移频键控调制前后信号频谱的变化 三、实验原理 1. 调制 FSK是用不同频率的载波来传递数字消息的。 二进制移频键控(2FSK):用二进制的数字信号去控制发送不同频率的载波。即传“1”信号时发送频率为f1的载波;传“0”信号时发送频率为f2的载波。这种调制属于非线性调制。 2FSK的时域表达式为: 其中: 为a n的反码。 2FSK调制方法有两种: (一)可以用矩形脉冲序列对一个载波进行调频而实现这也是利用模拟调频法实现数字调制的方法,框图如图2-8所示: 图2-8 2FSK模拟调制法原理框图 (二)键控法即用矩形脉冲序列对两个不同频率的载波进行选通框图如图2-9所示: 图2-9 2FSK键控法原理框图 2. 解调 2FSK的解调方法有非相干解调和相干解调,如图2-10所示:

图2-10 2FSK解调原理方框图 这里的抽样判决器与2ASK解调时不同,只需判断哪一个输入样值大不专门设置门限电平。 四、2FSK调制解调系统的SystemView仿真 1. 调制仿真框图及参数设置 键控法: 参数设置 系统时钟:No. of Sample: 1001; Sample Rate: 10000Hz; No.of System Loop: 1 器件参数 矩形脉冲 0 1V; 100Hz; Offset 0; 0deg 正弦信号 1 1V; 500Hz; 0deg 正弦信号 2 1V; 1000Hz; 0deg; 双刀开关 5 Logic---MixedSignal---SPDT;Gate Delay 0; Ctrl Thresh 0.5V 2、解调仿真原理图及参数设置

双三极管多谐振荡器电路工作原理

双三极管多谐振荡器电路工作原理 双三极管多谐振荡器 电路工作原理 多谐振荡器电路是一种矩形波产生电路.这种电路不需要外加触发信号,便能连续地, 周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振 荡器电路. 电路结构 1.路图 2.把双稳态触发器电路的两支电阻耦合支路改为电容耦合支路.那么电路就没有稳 定状态,而成为无稳电路 3.开机:由于电路参数的微小差异,和正反馈使一支管子饱和另一支截止.出现一个暂 稳态.设Q1饱和,Q2截止. 工作原理 正反馈: Q1饱和瞬间,VC1由+VCC 突变到接近于零,迫使Q2的基极电位VB2瞬间下 降到接近 —VCC,于是Q2可靠截止. 注:为什么Q2的基极产生负压,因为Q1导通使Q1 集电极的电压瞬间接近于零,电容C1的

正极也接近于零,由于电容两边电压不能突变使得电容的负端为—VCC。 2.第一个暂稳态: C1放电: C2充电: 3.翻转:当VB2随着C1放电而升高到+0.5V时,Q2开始导通,通过正反馈使Q1截止,Q2饱和. 正反馈: 4.第二个暂稳态: C2放电: C1充电: 5.不断循环往复,便形成了自激振荡 6.振荡周期: T=T1+T2=0.7(R2*C1+R1*C2)=1.4R2*C 7.振荡频率: F=1/T=0.7/R2*C 8..波形的改善: 可以同单稳态电路,采用校正二极管电路 下面我们来做一个实验:如图 振荡周期: T=1.4R2*C=1.4*10000Ω*0.00001F=0.14s=140ms 此图利用Multisim仿真软件去求出时间与实际的偏差 数据测量图:此图测量了Q2的基极和集电极极,集电极的波形相当于图的矩形波,基极波形相当于图的锯齿波。

压控振荡器

压控振荡器 一.基本原理 信号的频率取决于输入信号电压的大小,因此称为“压控振荡器”。其它影响压控振荡器输出信号的参数还VCO(Voltage ControlledOscillator)(压控振荡器)是指输出信号的频率随着输入信号幅度的变化而发生相应变化的设备,它的工作原理可以通过公式(5-1)来描述。 (5-1) 其中,u(t)表示输入信号,y(t)表示输出信号。由于输入信号的频率取决与输入信号的电压的变化,因此称为“压控振荡器”。其他影响压控振荡器输出信号 的参数还有信号的幅度A c ,振荡频率f c ,输入信号灵敏度k c ,以及初始相位。 压控振荡器的特性用输出角频率ω0与输入控制电压uc之间的关系曲线(图1)来表示。图中,uc为零时的角频率ω0,0称为自由振荡角频率;曲线在ω0,0处的斜率K0称为控制灵敏度。使振荡器的工作状态或振荡回路的元件参数受输入控制电压的控制,就可构成一个压控振荡器。在通信或测量仪器中,输入控制电压是欲传输或欲测量的信号(调制信号)。人们通常把压控振荡器称为调频器,用以产生调频信号。在自动频率控制环路和锁相环环路中,输入控制电压是误差信号电压,压控振荡器是环路中的一个受控部件。 压控振荡器的类型有LC压控振荡器、RC压控振荡器和晶体压控振荡器。对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。晶体压控振荡器的频率稳定度高,但调频范围窄,RC压控振荡器的频率稳定度低而调频范围宽,LC 压控振荡器居二者之间。

在MATLAB中压控振荡器有两种:离散时间压控振荡器和连续时间压控振荡器,这两种压控振荡器的差别在于,前者对输入信号采用离散方式进行积分,而后者则采用连续积分。本书主要讨论连续时间压控振荡器。 为了理解压控振荡器输出信号的频率与输入信号幅度之间的关系,对公式(5-1)进行变换,取输出信号的相角Δ为 对输出信号的相角Δ求微分,得到输出信号的角频率ω和频率f分别为: ω=2πf c+2πk c u(t) (5-3) (5-4) 从式(5-4)中可以清楚地看到,压控振荡器输出信号的频率f与输入信号幅度u(t)成正比。当输入信号u(t)等于0时,输出信号的频率f等于f c;当输入信号u(t)大于0时,输出信号的频率f高于f c;当输入信号u(t)小于0时,输出信号的频率f低于f c。这样,通过改变输入信号的幅度大小就可以准确地控制输出信号的频率。 二.程序及结果分析 定义一个锯齿波信号,频率是20HZ,幅度范围在0V和1V之间。现在用此信号 =20HZ,输入信号作为压控振荡器的输入控制信号,该压控振荡器的振荡频率f c 灵敏度,初始相位。使用MATLAB求得输出的压控振荡信号。MATLAB 程序如下: %MATLAB实现压控振荡器 clear all; clc; t0=0.15;%定义压控信号持续时间 ts=0.0001;%定义信号采样率 fc=50;%定义振荡频率 t=[0:ts:t0];%时间矢量 u0=20*t(1:length(t)/3);%定义压控信号(单周期) u=[u0,u0,u0,0];%定义压控信号(3个周期) Ac=1;%定义振幅 kc=0.1;%定义输入信号灵敏度 fi=0;%定义初始相位 %对压控信号进行积分 u_int(1)=0;%定义压控信号积分初值 for i=1:length(u)-1%进行离散积分 u_int(i+1)=u(i)+u_int(i);

压控LC电容三点式振荡器设计及仿真

实验二压控LC 电容三点式振荡器设计及仿真 一、实验目的 1、了解和掌握LC 电容三点式振荡器电路组成和工作原理。 2、了解和掌握压控振荡器电路原理。 3、理解电路元件参数对性能指标的影响。 4、熟悉电路分析软件的使用。 二、实验准备 1、学习LC 电容三点式西勒振荡器电路组成和工作原理。 2、学习压控振荡器的工作原理。 3、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 三、设计要求及主要指标 1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。 2、实现电压控制振荡器频率变化。 3、分析静态工作点,振荡回路各参数影响,变容二极管参数。 4、振荡频率范围:50MHz~70MHz,控制电压范围3~10V。 5、三极管选用MPSH10(特征频率最小为650MHz,最大IC 电流50mA,可 满足频率范围要求),直流电压源12V,变容二极管选用MV209。 四、设计步骤 1、整体电路的设计框图

整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分,设计中采用变容二极管MV209 来控制振荡器频率,由于负载会对振荡电路的 频 率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。 2、LC 振荡器设计 首先应选取满足设计要求的放大管,本设计中采用MPSH10 三极管,其特征频率f T=1000MHz。LC 振荡器的连接方式有很多,但其原理基本一致,本实验中采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频率而不对振荡回路的分压比产生影响的特点。电路图如下所示:

基于verilog的fsk调制与解调(呕心沥血,极度精简)

先上程序(verilog语言编写) `timescale 1ns/1ns // 测试程序 module test; reg clk1,rst1,clk2,rst2; reg din1; wire dout1,ddout1; modulator my1(.clk(clk1),.rst(rst1),.din(din1),.dout(dout1)); demodulator my2(.clk(clk2),.rst(rst2),.ddin(dout1),.ddout(ddout1)); initial begin clk1=0; forever #25 clk1=~clk1; end initial begin clk2=0; forever #10 clk2=~clk2; end initial begin rst1=1; #15 rst1=0; #50 rst1=1; end initial begin rst2=1; #5 rst2=0; #25 rst2=1; end initial begin #25 din1=1; #400 din1=1; #400 din1=0; #400 din1=1; #400 din1=0; #400 din1=1;

#400 din1=0; #400 din1=1; #400 din1=1; #400 din1=0; #400 din1=1; #400 din1=1; #400 din1=1; #400 din1=0; #400 din1=1; #400 din1=0; #400 din1=0; #400 din1=1; #400 din1=0; #400 din1=0; #400 din1=0; #400 din1=1; #400 din1=1; #400 din1=0; #400 din1=0; #400 din1=1; #400 din1=0; #400 din1=0; #400 din1=0; #400 din1=0; #400 din1=1; #1000 $stop; end endmodule module demodulator(clk,rst,ddin,ddout); //解调input clk,rst; input ddin; output ddout; reg ddout; reg [3:0]cnt3; reg temp; reg [3:0]cnt4; reg clk1; always @(posedge clk or negedge rst) begin if(!rst) cnt3<=4'b0000;

压控振荡器的设计与仿真.

目录 1 引言 (2) 2 振荡器的原理 (5) 2.1 振荡器的功能、分类与参数 (5) 2.2 起振条件 (9) 2.3 压控振荡器的数学模型 (10) 3 利用ADS仿真与分析 (11) 3.1 偏置电路的的设计 (12) 3.2 可变电容VC特性曲线测试 (13) 3.3 压控振荡器的设计 (15) 3.4 压控振荡器相位噪声分析 (18) 3.5 VCO振荡频率线性度分析 (23) 4 结论 (24) 致谢 (25) 参考文献 (25)

压控振荡器的设计与仿真 Advanced Design System客户端软件设计 电子信息工程(非师范类)专业 指导教师 摘要:ADS可以进行时域电路仿真,频域电路仿真以及数字信号处理仿真设计,并可对设计结果进行成品率分析与优化,大大提高了复杂电路的设计效率。本论文运用ADS仿真软件对压控振荡器进行仿真设计,设计出满足设计目标的系统,具有良好的输出功率,相位噪声性能及震荡频谱线性度。本论文从器件选型开始,通过ADS软件仿真完成了有源器件选型,带通滤波器选型,振荡器拓扑结构确定,可变电容VC特性曲线,瞬态仿真及谐波平衡仿真。实现了准确可行的射频压控振荡器的计算机辅助设计。关键字:压控振荡器,谐波平衡仿真,ADS 1 引言 振荡器自其诞生以来就一直在通信、电子、航海航空航天及医学等领域扮演重要的角色,具有广泛的用途。在无线电技术发展的初期,它就在发射机中用来产生高频载波电压,在超外差接收机中用作本机振荡器,成为发射和接收设备的基本部件。随着电子技术的迅速发展,振荡器的用途也越来越广泛,例如在无线电测量仪器中,它产生各种频段的正弦信号电压:在热加工、热处理、超声波加工和某些医疗设备中,它产生大功率的高频电能对负载加热;某些电气设备用振荡器做成的无触点开关进行控制;电子钟和电子手表中采用频率稳定度很高的振荡电路作为定时部件等。尤其在通信系统电路中,压控振荡器(VCO)是其关键部件,特别是在锁相环电路、时钟恢复电路和频率综合器电路等更是重中之重,可以毫不夸张地说在电子通信技术领域,VCO几乎与电流源和运放具有同等重要地位。 人们对振荡器的研究未曾停止过。从早期的真空管时代当后期的晶体管时代,无论是理论上还是电路结构和性能上,无论是体积上还是制作成本上无疑都取得了飞跃性的

晶体振荡器与压控振荡器

晶体振荡器与压控振荡器 一、实验目的: 1.掌握高频电子电路的基本设计能力及基本调试能力,并在此基础上设计并联变换的晶体正弦波振荡器。 2.比较LC振荡器和晶体振荡器的频率稳定度。 二、实验内容: 1.熟悉振荡器模块各元件及其作用。 2.分析与比较LC振荡器与晶体振荡器的频率稳定度。 3.改变变容二极管的偏置电压,观察振荡器输出频率的变化。 三、基本原理: 1.下图是石英晶体谐振器的等效电路: 图中C0是晶体作为电介质的静电容,其数值一般为几个皮法到几十皮法。L q、C q、r q是对应于机械共振经压电转换而呈现的电参数。r q是机械摩擦和空气阻尼引起的损耗。由图3-1可以看出,晶体振荡器是一串并联的振荡回路,其串联谐振频率f q和并联谐振频率f0分别为 f q=1/2πLqCq,f0= f q Co 1 Cq/ 图1 晶体振荡器的等效电路 当W<W q或W> W o时,晶体谐振器显容性;当W在W q和W o之间,晶体谐振器等效为一电感,而且为一数值巨大的非线性电感。由于Lq很大,即使在W q处其电抗变化率也很大。其电抗特性曲线如图所示。实际应用中晶体工作于W q~W o之间的频率,因而呈现感性。

图2 晶体的电抗特性曲线 设计内容及要求 2 并联型晶体振荡器 图3 c-b型并联晶体振荡器电路 图 4 皮尔斯原理电路图 5 交流等效电路

C3用来微调电路的振荡频率,使其工作在石英谐振器的标称频率上,C1、C2、C3串联组成石英晶体谐振器的负载电容C L上,其值为 C L=C1C2C3/(C1C2+C2C3+C1C3) C q/ (C0+C L)<<1 3.电路的选择: 晶体振荡电路中,与一般LC振荡器的振荡原理相同,只是把晶体置于反馈网络的振荡电路之中,作为一感性元件,与其他回路元件一起按照三端电路的基本准则组成三端振荡器。根据实际常用的两种类型,电感三点式和电容三点式。由于石英晶体存在感性和容性之分,且在感性容性之间有一条极陡峭的感抗曲线,而振荡器又被限定在此频率范围内工作。该电抗曲线对频率有极大的变化速度,亦即石英晶体在这频率范围内具有极陡峭的相频特性曲线。所以它具有很高的稳频能力,或者说具有很高的电感补偿能力。因此选用c-b型皮尔斯电路进行制作。 图 6 工作电路 4.选择晶体管和石英晶体 根据设计要求,

FSK调制与解调

【实验目的】 1、熟悉fsk调制与解调; 2、熟悉fpga; 3、熟悉编码与解码。 【实验原理】 信道 编码 调制 数模转换 四位一位一位一位 解码 解调 模数转换 五位一位一位 本次实验利用实验板实现了一个fsk通信系统。从按键输入一组四位码元,经过fpga编码后,形成8位码元。在这八位中,前三位固定为110,在解码时用来识别一帧的开头。最后加了一位奇偶校验。这八位在编码后,串行输出到调制部分。调制部分的调制方式是fsk调制。调制完成后,输出到数模转换部分。数模转换与模数转换部分相连,然后输出到解调部分。解调后,输出到解码部分。串行输入的码元被解码后,输出到指示灯。同时输出到指示灯的还有一位,用来指示是否接收到的信号是否有错。 【实验内容】 总框图如下: 1、调制 调制部分框图如下

RAGMO与RAGMO2是两个分频器,代码相似,只是分频数有差别。如下代码中黑体处根据系统需要更改。实际系统中,两个频率为700Hz、300Hz左右。 -- MAX+plus II VHDL Template -- Clearable loadable enablable counter LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY ragmo IS PORT ( clk_input : IN STD_LOGIC; output : BUFFER STD_LOGIC ); END ragmo; ARCHITECTURE a OF ragmo IS SIGNAL hgame : INTEGER RANGE 0 TO 1023; BEGIN PROCESS (clk_input) BEGIN IF (clk_input'EVENT AND clk_input='1') THEN hgame <= hgame + 1; IF hgame = 1023 THEN output <= NOT output;

多谐振荡器

第八章 脉冲波形的产生与整形 在数字电路或系统中,常常需要各种脉冲波形,例如时钟脉冲、控制过程的定时信号等。这些脉冲波形的获取,通常采用两种方法:一种是利用脉冲信号产生器直接产生;另一种则是通过对已有信号进行变换,使之满足系统的要求。 本章以中规模集成电路555定时器为典型电路,主要讨论555定时器构成的施密特触发器、单稳态触发器、多谐振荡器以及555定时器的典型应用。 8.1 集成555定时器 555定时器是一种多用途的单片中规模集成电路。该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。因而在波形的产生与变换、测量与控制、家用电器和电子玩具等许多领域中都得到了广泛的应用。 目前生产的定时器有双极型和CMOS 两种类型,其型号分别有NE555(或5G555)和C7555等多种。通常,双极型产品型号最后的三位数码都是555,CMOS 产品型号的最后四位数码都是7555,它们的结构、工作原理以及外部引脚排列基本相同。 一般双极型定时器具有较大的驱动能力,而CMOS 定时电路具有低功耗、输入阻抗高等优点。555定时器工作的电源电压很宽,并可承受较大的负载电流。双极型定时器电源电压范围为5~16V ,最大负载电流可达200mA ;CMOS 定时器电源电压变化范围为3~18V ,最大负载电流在4mA 以下。 一. 555定时器的电路结构与工作原理 1.555定时器内部结构: (1)由三个阻值为5k Ω的电阻组成的分压器; (2)两个电压比较器C 1和C 2: v +>v -,v o =1; v +<v -,v o =0。 (3)基本RS 触发器; (4)放电三极管T 及缓冲器G 。 2.工作原理。 当5脚悬空时,比较器C 1和C 2的比较电压分别为cc V 32和cc V 3 1 。 (1)当v I1>cc V 32,v I2>cc V 31 时,比较器 C 1输出低电平,C 2输出高电平,基本RS 触发 器被置0,放电三极管T 导通,输出端v O 为低电平。 (2)当v I1cc V 31 时,比较器 C 1输出高电平,C 2也输出高电平,即基本RS 触发器R =1,S =1,触发器状态不变,电路亦保持原状态不变。

2PSK相干解调设计

课程设计 班级:电信08-3 姓名:张三 学号:0806110101 指导教师:杨建 成绩: 电子与信息工程学院 通信工程系

2PSK相干解调器设计 1.设计目的及要求 通过课程设计实践,了解并掌握通信系统、通信调制等技术的一般设计方法,训练并提高学生在理论计算、结构设计、工程绘图、查阅设计资料、运用标准与规范和应用计算机等方面的能力。培养学生正确的设计思想,理论联系实际的工作作风,严肃认真、实事求是的科学态度和勇于探索的创新精神。巩固所学的专业技术知识,培养学生综合运用所学知识与生产实践经验,缝隙和解决工程技术问题的能力,培养初步的独立设计能力。 本次可生设计是设计一个2PSK的想干解调器,并且运用simulink对系统建模。要求是输入数字信号并进行接受判决;通过多次输入输出对所设计的心痛性能进行分析;最后对解调原理进行分析。 2.2PSK的相关知识和基本原理 2.12PSK的相关知识 在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。通常用已调载波的“0”和“180”分别表示二进制数字基带信号的1和0.二进制相移键控(2PSK)是用二进制数字信号控制载波的两个相位,这两个相位通常相隔π例如用相位0和π分别表示1和0,所以这种调制又称为相移键控(BPSK),二进制相移键控的时域表达式: e2PSK(t)=[∑ag(t-nTs)]coswct 这里的an为双极性数字信号,如果g(t)是幅度为1,宽度为Ts的矩形脉冲,则2PSK信号可表示为 e2PSK(t)=+-coswct 2.2二进制移相键控信号的时间波形 这种以载波的不同相位直接表示相应二进制数字信号的调制方式,称为二进制绝对相移方式。 2.3 2PSK的调制与解调 2.3.1 调制原理 二进制相移键控信号的调制原理图如图2所示。其中2(a)是采用模拟调制的方法产生2PSK信号,图2(b)是采用数字键控的方法产生2PSK信号。2PSK信号的解调通常都是采用相干解调。在相干解调过程中需要用到与接受的2PSK信号同频同相的相干载波,二进制移相键控(2PSK)方式是载波相位按基带脉冲序列的规律而改变的一种数字调制方式,就是根据数字基带信号的两个电平,使载波相位在两个不同的数值之间切换的一种相位调制方式,当两个载波相位相差180度时,此时称为反向键控,也称为绝对相移方式。

压控振荡器

压控振荡器 3(15 压控振荡器 一. 实验目的 1. 了解压控振荡器的组成、工作原理。 2. 进一步掌握三角波、方波与压控振荡器之间的关系。 3. 掌握压控振荡器的基本参数指标及测试方法。 二. 设计原理 电压控制振荡器简称为压控振荡器,通常由VCO(Voltage Controlled Oscillator)表示。是一种将电平变换为相应频率的脉冲变换电路,或者说是输出脉冲频率与输入信号电平成比例的电路。它被广泛地应用在自动控制,自动测量与检测等技术领域。 压控振荡器的控制电压可以有不同的输入方式。如用直流电压作为控制电压,电路可制成频率调节十分方便的信号源;用正弦电压作为控制电压,电路就成为调频振荡器;而用锯齿电压作为控制电压,电路将成为扫频振荡器。 压控振荡器由控制部分、方波、三角波发生器组成框图如下: 反相器 1 模拟方波、三角波发生器三角波方波开关 反相器 2 3-15-1 1. 方波、三角波发生器 我们知道,方波的产生有很多种方法,而用运算放大器的非线性应用电路--- 电压比较器是一种产生方波的最简单的电路之一。而三角波可以通过方波信号积

分得到。电路如图3.15.2所示: C 8 RR3A1 A2 R2 R1R’Uz 3-15-2 8 设t=0,Uc=0,Uo1=+Uz,则Uo=-Uc=0,运放A1的同相端对地电压为: URURo2z1U+’= ,R,RR,R1212 此时,Uo1通过R向C恒流充电,Uc线性上升,Uo线性下降,则U+’下降,由于运放反相端接地,因此当U+’下降略小于0时,A1翻转,Uo1跳变为-Uz 见土 3.7.2中t=t1时的波形。根据式3.7.1可知,此时Uo略小于-R1×U2/R2。 在t=t1时,Uc=-Uo=R1×U2/R2,Uo1=-Uz.运放A1的同相端对地电压为: UzRUoR12U,',,, R,RR,R1212 此时,电容C恒流放电,Uc线性下降,Uo线性上升,则U+’也上升。当U+’上升到略大于0时,A1翻转,Uo跳变为Uz,如此周而复始,就可在Uo端输出幅 度为R1×U2/R2的三角波。同时在Uo1端得到幅度为Uz的方波。 T/2T/2 tt12 +(R/R)U12z

时基电路构成的压控振荡器

555时基电路构成的压控振荡器 摘要:555电路是集模拟电路和数字电路于一体的集成电路,是在上世纪70年代,为制作定时器而被设计制造的。该电路具有灵活的引出端脚,使用者尽用其能,将其广泛运用于电子行业的各个领域内,并且该电路在科研、仪表、测量、控制等诸多领域内也得到了广泛的应用。本文主要从原理和应用两个方面讲述由555无稳态多谐振荡器电路构成的压控振荡器。 关键词: 1、引言 如今,555时基电路得到如此广泛的应用,这得益于该电路本身独特的优越性。按照555电路的应用特点,以数字电路的分类方法作为基本方式,可将其分为:多谐振荡器的应用方式、单稳态电路的应用方式、双稳态(R-S触发器)电路的应用方式以及施密特电路的应用方式。本文要讨论的压控振荡器是一种结构特殊的多谐振荡器,全称为电压控制的多谐振荡器,简称VCO。由555电路构成的压控振荡器具有电路简单、成本低、产生脉冲波形的线性度好等特点,因此压控振荡器电路在锁相技术、A/D转换、脉冲调制及遥测技术中有广泛的用途,是一种十分重要的电路。. 2、555电路原理图]1[ 图1、原理电路图

整个原理电路图有5个部分组成,这5个部分可以分为三大部分进行解释:(1)分压器与比较器 三个等值电阻(每个5KΩ)串联进行分压,将电源电压分别分压为U CC/3和2U CC/3。其中2U CC/3加至电压比较器A1的同相输入端,作为它的参考电压;U CC/加之电压比较器A2的反相输入端,作为它的参考电压。A1、A2是由两个差分电路组成的电压比较器,相当于两个运算放大器的输入电路。这两个参考电压决定了555电路的输入特性。 上述原理电路图有两个输入端,分别称为触发端(TR、2脚)和阀值端(TH、6脚),它们分别是A2的同相输入端和A1的反相输入端。根据电压比较器的工作原理:当对输入端2脚上加上低于U CC/3的输入电压时,比较器A2输出低电平;当加上高于U CC/3的输入电压时,A2输出高电平。对于输入端6脚,当对其加上低于2U CC/3的输入电压时,A1输出高电平;当对其加上高于2U CC/3的输入电压时,A1输出低电平。 (2)基本R-S触发器]1[ 在数字电路中,触发器分为同步R-S触发器和基本R-S触发器,555电路中使用 是基本R-S触发器。这种触发器由两个非门交叉连接组成,它的特点是需要低电平触发,即只有在输入端加以低电平或负脉冲,触发器才能翻转。 它的逻辑功能是:当R=0,S=1时,不管触发器原来是什么状态,都会被置成低电平0的状态;当R=1,S=0时,触发器被置成高电平1的状态;当R=1,S=1时,触发器保持原状态不变;当R=0,S=0时,触发器的状态不定,不过这种状态是不允许出现的,也是不可能出现的。 (3)输出级]2[ 为了提高555电路带负载的能力,使其能够直接驱动一定功率的负载,并且隔离负载对定时器的影响,在它的R-S触发器之后加入了一级输出级G3。该输出级G3将R-S 触发器的输出电平进行反相,并同时给予一定的功率放大后输出,这就使得555电路可以直接驱动小型继电器、扬声器等。 (4)放电电子开关]3[ 在由555电路组成的定时定路及各类触发器和振荡器中,它们的工作状态都和电容器的充、放电有关。例如在定时电路中,通常把上比较器的输入端TH(6脚)接到只电容C的正极。这个电容又通过一只串联电阻R接到电源的正极。工作时,电源通过电阻R向电容C充电,当电容充电使其电压达到阀值电平后,比较器A1输出低电平,触发器R-S翻转,它的输出端变为高电平,经过一级反相器反相为低电平后作为一种控制信号输出,实现对电路的一种工作状态的控制。 ( 5 ) 555定时器的基本功能]4[ ①R=0,无论其他输入为何值(用×表示),必有Q=1,U O为低电平0,T D饱和导通,故R端称为置0端或复位端。 ②R=1,U TH>2U CC/3、U TR>U CC/3时,U O1为低电平,U O2为高电平,使Q=1、

相关主题
文本预览
相关文档 最新文档