当前位置:文档之家› 单片机课程设计(直流数字电压表)

单片机课程设计(直流数字电压表)

单片机课程设计(直流数字电压表)
单片机课程设计(直流数字电压表)

南京信息工程大学

单片机原理课程设计报告

设计题目:直流数字电压表设计

专业班级:测控技术与仪器

学生姓名:倪阳肖照飞

学生学号:20112341905 20112341910

指导老师:葛化敏

成绩:

二○一四年六月二十日

一、设计任务、目的与要求

1.1 设计任务

利用单片机AT89S52和ADC0809设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码管显示,要求使用的元器件数目尽量少。本电路主要采用AT89S51芯片和ADC0809芯片来完成一个简易的数字电压表,能够对输入的0~5V的模拟直流电压进行测量,并通过一个4位一体的7段LED数码管进行显示。该电压表的测量电路主要由三个模块组成:A/D转换模块、数据处理模块及显示控制模块。A/D转换主要由芯片ADC0809来完成,它负责把采集到的模拟量转换为相应的数字量再传送到数据处理模块。数据处理则由芯片AT89S51来完成,其负责把ADC0809传送来的数字量经一定的数据处理,产生相应的显示码送到显示模块进行显示;另外它还控制ADC0809芯片的工作。

1.2 设计目的

通过制作简易数字电压表,加深对所学专业知识的认识,提高分析、解决工程实际问题的能力,提高对单片机的应用能力,提高收集文献、资料的能力,从而达到综合运用所学的专业知识进行电子产品设计、制作与调试的能力。

1.3 设计要求

电路通电或按复位键时,通过改变电位器的阻值改变模拟输入电压,不断的将模拟电压转换成数字量,通过LED显示出所测得的模拟电压。在测试中测试的电压值必须和实际的电压值不超过0.5V的电压。在改变电压时,能够准确的侧量出电压的变化值。

二、系统总体方案设计

2.1 系统组成

本系统采用STC89C52单片机作为控制核心,对8路8位模数转换芯片ADC0809采集到的模拟电压信号进行分析处理,实现A/D转换,通过数码管显示其数字电压值。电压表的测量电路主要由三个模块组成:A/D转换模块、数据处理模块及显示控制模块。

2.2 系统工作原理

简易数字电压表测量电路由A/D转换、数据处理及显示控制等组成,A/D转换由集成电路ADC0809完成。ADC0809具有8路模拟输入端口,地址线(第23-25脚)可决定对哪一路模拟输入作A/D转换。第22脚位地址锁存控制,当输入为高电平时,对地址信号进行锁存。第6脚位测试控制,当输入一个2μs宽高电平脉冲时,就开始A/D转换。第7脚为A/D转换结束标志,当A/D转换结束时,第7脚输出高电平。第9脚为A/D转换数据输出允许控制,当OE脚为高电平时,A/D 转换数据从端口输出。第10脚为ADC0809的时钟输入端,利用单片机第30脚嘚分频晶振频率,再通过14024二分频得到1MHz时钟,单片机的P1、P3.0-P3.3端口作为4位LED数码管显示控制,P3.5端口用作单路显示/循环显示转换按钮。P3.6端口用作单路显示时选择显示的通道。P0端口用作A/D转换数据读入,P2端口用作ADC0809的A/D转换控制。这里主要是利用ADC0809模数串口芯片,ADC0809芯片的基准电压脚外接电压为5V,则最大可以测得的电压为5V,ADC0809芯片的模拟输入脚通过电位器接5V电压,进行模拟采样,通过调整电位器的值改变模拟量。输入的模拟量经过ADC0809芯片的内部8位开关电容逐次逼近A/D 转换器,转换成8为二进制数,其最小的分辨率为0.0196(VREF=0.0196V),D 为转化的数字量,再通过可以求得模拟电压,最后通过LED就可将所测得电压显示出来。

三、系统硬件设计

3.1 电源部分

电路主要是要求能提供稳定可靠的电压,使整个系统能正常的工作。采用

220V 的工频交流电压,而单片机的工作电压是直流+5V ,为此,先通过一个普通的变压器降低电压,再通过桥式整流,然后再通过7805芯片的进一步稳压,确保+5V 电源的稳定、可靠。而且7805集成稳压器是常用的固定输出+5V 电压的集成稳压器。它的内部含有限流保护、过热保护和过压保护电路,采用了噪声低、温度漂移小的基准电压源,工作稳定可靠。1脚为输入端,2脚为接地端,3脚为输出端,使用十分方便,可以在任何有交流电压的地方使用,不需另带电池。通过整流滤波以后输出直流电压,为了确保整个电路能正常工作,考虑到不接负载或电源电压有波动时电容能承受的耐压,必须加电容。发光二极管D2点亮表示电源电路正常工作,其电源电路如图所示:

VIN

1

G N D

2

VOUT

3

U57805123J1POWER

1

2

3

4

D1

BRIDGE1

C4

104C5104

C6470UF/25V

C7

470UF/16V

C8

1O4R142K

D2LED

VCC

3.2 A/D 转换电路

A/D 转换器是模拟量输入通道中的一个环节,单片机通过A/D 转换器把输入模拟量变成数字量再处理。随着大规模集成电路的发展,目前不同厂家已经生产出了多种型号的A/D 转换器,以满足不同应用场合的需要。如果按照工作原理划分,ADC 主要有4种类型,即双积分式A/D 转换器、逐次逼近式A/D 转换器和并行式A/D 转换器和计数比较式A/D 转换器。目前最常用的是双积分和逐次逼近式。

双积分式A/D 转换器具有抗干扰能力强、转换精度高、价格便宜等优点,比如ICL71XX 系列等,它们通常带有自动较零、七段码输出等功能。与双积分相比,逐次逼近式A/D 转换的转换速度更快,而且精度更高,比如ADC0808、ADC0809等,它们通常具有8路模拟选通开关及地址译码、锁存电路等,它们可以与单片机系统连接,将数字量送单片机进行分析和显示。本设计中采用具有逐次逼近式A/D 转换器的ADC0809芯片。ADC0809是典型的8位8通道逐次逼近式A/D 转换器。它可以和微型计算机直接接口。ADC0809转换器的系列芯片是ADC0808,可

以相互替换。

ADC0809的内部结构包括8路模拟选通开关、通道地址锁存器与译码器、8位A/D转换器和三态输出锁存器。多路开关接8路模拟量输入,可对8路0~5V 的输入模拟电压信号分时进行转换,输出具有TTL三态锁存器,可直接连到单片机数据总线上。多路模拟开关可选通8路模拟通道,允许8路模拟量分时输入,并共用一个A/D转换器进行转换。地址锁存与译码电路完成对A、B、C三个地址位进行锁存与译码,如表3.2所示。

表3.2 ADC0809通道选择表

C(ADDC) B(ADDB) A(ADDA) 选择的通道

0 0 0 IN0

0 0 1 IN1

0 1 0 IN2

0 1 1 IN3

1 0 0 IN4

1 0 1 IN5

1 1 0 IN6

1 1 1 IN7

各引脚功能如下:

1)IN7~IN0——模拟量输入通道。ADC0809对输入模拟量的要求主要有:信号单极性,电压范围0~5V,若信号过小,还需进行放大。另外,模拟量输入在A/D转换的过程中,其值应保持不变,因此,对变化速度快的模拟输入量,在输入前应增加采样保持电路。

2)A、B、C——地址线。A为低位地址,C为高位地址,用于对8路模拟通道进行选择。

3)ALE——地址锁存允许信号。由低至高电平正跳变将通道地址锁存至地址锁存器中。

4)START——启动转换信号。START上跳沿时所有内部寄存器清0;START

下跳沿时,开始进行A/D转换。在A/D转换期间,START应保持低电平。

5)D7~D0——数据输出线。为三态缓冲输出形式,可以和单片机的数据线直接相连。

6)OE——输出允许信号。用于控制三态输出锁存器向单片机上输出转换得到的数据。OE=0,输出数据线呈高电阻态;OE=1,输出转换得到的数据。

7)CLOCK——时钟信号。ADC0809内部没有时钟电路,所需时钟信号由外界提供,要求频率范围10kHz~1.2MHz。通常使用频率为500 kHz的时钟信号。

8)EOC——转换结束状态信号。EOC=0,正在进行转换;EOC=1,转换结束。该状态信号既可作为查询的状态标志,又可以作为中断请求信号使用。

9)VCC——+5V电源。

10)REF(+)、REF(-)——参考电压。参考电压用来与输入的模拟信号进行比较,作为逐次逼近的基准。其典型值为REF(+)=+5V,REF(-)=0V。

ADC0809的工作原理:

首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动 A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。

3.3 接口电路的设计

接口电路是ADC0809输出的BCD 码转换为七段译码输出,主要有时钟电路、复位电路和单片机芯片组成。

P1.0/T01P1.1/T2EX 2P1.23P1.34P1.45P1.56P1.67P1.78

P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/IT014P3.5/IT115P3.6/WR 16P3.7/RD

17

P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427P2.7/A15

28XTLA1

19

XTLA2

18

RST

9

PSEN 29ALE 30

EA

31

U1

Y1

XTAL

C1

20PF

C320PF

+C2

22UF

R11K

R6

510

R7510R8510R9510R10510R11510R12510R13510

D0D1D2D3D4D5D6D7

P0P1P2P3P4P5P6P7

VCC

A1接R2

接R3接U4A 接R4接R5接U4B 接CLK 接U4C

图3.3 单片机控制部分原理图

3.3.1时钟电路

单片机内部每个部件要想协调一致地工作,必须在统一口令——时钟信号的控制下工作。单片机工作所需要的时钟信号有两种产生方式,即内部时钟方式和外部时钟方式。图3.5是内部时钟方式:单片机内部有一个构成振荡器的增益反相放大器,引脚XTAL1和XTAL2分别是此放大器的输入端和输入端,这个放大器与作为反馈元件的片外晶振一起构成自激振荡器。在该图中,电容C1和C2取20PF ,晶体的振荡频率取12MHz,晶体振荡频率高,则系统的时钟频率也高,单片机运行速度也就快。实际连接如图所示:

3.3.2 复位电路部分

AT89S51的复位电路如图所示。当单片机一上电,立即复位。电容C和电阻R1实现上电自动复位。复位也是使单片机退出低功耗工作方式而进入正常状态的一种操作。

3.4显示电路的设计

本次设计中有显示模块,而常用的显示器件比较多,有数码管,LED点阵,1602液晶,12864液晶等。数码管是最常用的一种显示器件,它是由几个发光二极管组成的8字段显示器件,其特点是价格非常的便宜,使用也非常的方便,显示效果非常的清楚。小电流下可以驱动每光,发光响应时间极短,体积小,重量轻,抗冲击性能好,寿命长。但数码管只能是显示0——9的数据。不能够显示字符。这也是数码管的不足之处。LED点阵显示器件是由好多个发光二极管组成的。具

有高亮度,功耗低,视角大,寿命长,耐湿,冷,热等特点,LED 点阵显示器件可以显示数字,英文字符,中文字符等。 1602液晶是工业字符型液晶,能够同时显示16*2即32个字符。1602液晶模块内部的字符发生存储器已经存储了160个不同的点阵字符图形,这些字这些字符有:阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码。使用时直接编写软件程序按一定的时序驱动即可。它的特点是显示字迹清楚,价格相对便宜。 12864液晶也是一种工业字符型液晶,它不仅能够显示1602液晶所可以显示的字符,数字等信息,而且还可以显示8*4个中文汉字和一些简单的图片,显示信息也非常的清楚。使用时也直接编写软件程序按一定的时序驱动即可。不过它的价格比1602液晶贵了很多。综合上述,根据本设计的要求和价格的考虑,选择数码管显示器。

a b

c d e g GND f dp

GND a b c

e

f g

d ·

dp

a

b c d e f g dp

dp

g f e d c b a +5V

(a)

(b)

共阴极

共阳极

3.5 STC89C52RC结构与控制原理

在本次课题设计中我们选择了STC89C52芯片。STC89C52是一种带8K字节闪烁可编程可檫除只读存储器的低电压,高性能COMOS8的微处理器,俗称单片机。该器件采用ATMEL搞密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

主要功能特性

兼容MCS51指令系统8K可反复擦写Flash ROM

32个双向I/O口256x8bit内部RAM

3个16位可编程定时/计数器中断时钟频率0-24MHz

2个串行中断可编程UART串行通道

2个外部中断源共6个中断源

2个读写中断口线3级加密位

低功耗空闲和掉电模式软件设置睡眠和唤醒功能

P0-P3口结构

P0口功能:P0口具有两种功能:第一,P0口可以作为通用I/O接口使用,P0.7—P0.0用于传送CPU的输入/输出数据。输出数据时可以得到锁存,不需外接专用锁存器,输入数据可以得到缓冲。第二,P0.7—P0.0在CPU访问片外存储器时用于传送片外存储器de低8位地址,然后传送CPU对片外存储器的读写P1口功能:P1口的功能和P0口de第一功能相同,仅用于传递I/O输入/输出数据。

P2口的功能:P2口的第一功能和上述两组引脚的第一功能相同,即它可以作为通用I/O使用。它的第二功能和P0口引脚的第二功能相配合,作为地址总线用于输出片外存储器的高8位地址。

P3口功能:P3口有两个功能:第一功能与其余三个端口的第一功能相同;第二功能作控制用,每个引脚都不同。

表3.5 P3口第二功能

引脚名称功能

P3.0 RXD 串行数据接收口

P3.1 TXD 串行数据发送口

P3.2 INT0 外中断0输入

P3.3 INT1 外中断1输入

P3.4 T0 计数器0计数输入

P3.5 T1 计数器1计数输入

P3.6 WR 外部RAM写选通信号

P3.7 RD 外部RAM读选通信号

四、系统软件设计

4.1 系统程序设计

初始化中主要对STC89C52,ADC0809的管脚和数码管的位选及所用到的内存单元进行初始化设置。准备工作做好后便启动ADC0809对IN0脚输入进的0~5V电压模拟信号进行数据采集并转换成相对应的0~255十进制数字量。在数据处理子程序中,运用标度变换知识,编写算法将0~255十进制数字量转换成0.0~5.0V 的数据,输出到显示子程序进行显示。整个主程序就是在A/D转换,数据处理及显示程序循环执行。整个程序流程框图如图4.1所示:

初始化开始

定时每隔500ms转换一次

ST、OE端口拉低

ST上升沿清除AD缓存器

ST下降沿,AD开始转换

转换结束?

P1口读取数据,

数据除以51,商为电压整数

部分,

余数>25?

电压小数相应位加5调整

余数乘以10后,再除以51,

为电压小数相应位部分,

N 四位处理完?

Y

4.2 系统源程序

#include

#define uchar unsigned char #define uint unsigned int

double dist,speed,len,temp,cha; sbit rs=P1^7; sbit rw=P1^6; sbit e=P1^5; sbit st=P1^4; sbit oe=P1^3; double volt2;

P2口为位选

P0口为段选

查询数码管显示表

四位显示完?

返回程序开始

图 4.1 程序流程图

N

Y

uint num;

int a,b,c,volt1;

uchar volt0;

uchar table[]="the voltage is V"; uchar table1[]="0123456789."; void delay(uint z) //延时子程? {

uint x,y;

for(x=z;x>0;x--)

for(y=110;y>0;y--); }

void write_com(uchar com) {

rs=0;

P2=com;

e=1;

delay(5);

e=0;

}

void write_dat(uchar dat)

{

rs=1;

P2=dat;

e=1;

delay(5);

e=0;

}

void init()

{

rw=0;

e=0;

write_com(0x38);

write_com(0x0f);

write_com(0x06);

write_com(0x01);

}

void main()

{

EA=1;

EX0=1;

IT0=1;

init();

write_com(0x80);

for(num=0;num<14;num++)

write_dat(table[num]);

write_com(0x80+0x46);

write_dat(table[15]); while (1)

{

st=0;

st=1;

st=0;

volt1=(int)volt0;

volt2=volt1/255.0*435;

volt1=(int)volt2;

write_com(0x80+0x40);

a=volt1/100;

b=volt1/10-a*10;

c=volt1%10;

write_dat(table1[a]);

write_dat(table1[10]);

write_dat(table1[b]);

write_dat(table1[c]);

}

}

void inte () interrupt 0

{

oe=1;

volt0=P0;

oe=0;

}

五、设计实物图片展示

六、课程设计总结(心得体会)

经过近2周的单片机课程设计,终于完成了我的数字电压表的设计,基本达到设计要求。

对于此次课程设计,有许多的感触与体会,遇到的难题多,学习到的知识也就更多。

第一,硬件电路遇到了ADC0809无内部时钟,需外接外部时钟,如何解决这个问题,我们小组进行了多次讨论,最终确定了在程序中提供时钟信号,大大降低了硬件电路的复杂度。

第二,则是解决程序设计的问题,而程序设计是一个很灵活的东西,它反映了你解决问题的逻辑思维和创新能力,它才是一个设计的灵魂所在。因此在整个设计过程中大部分时间是用在程序上面的。其中,我遇到了很多的问题,虽然以前还做过这样的设计,但是以前的都是用C语言进行编程。而此次运用汇编语言编程,着实让我当头一棒,因为除了微机原理实验进行过相关编程,汇编语言的编程能力还停留在理论阶段。在此次编程中,首先,我是先用C语言编程,进行调试后,成功的达到了课程设计的要求。其次,查找汇编语言的相关资料,经过不懈的努力与调试,终于将汇编语言版的成功编程出来。

第三,在一个课题中,要设计一个成功的电路,必须要有耐心,要有坚持的毅力。在整个电路的设计过程中,重要的是各个单元电路的连接及电路的细节设计上,如在多种方案的选择中,我们仔细比较分析其原理以及可行的原因。这就要求我们对硬件系统中各组件部分有充分透彻的理解和研究,并能对之灵活应用。完成这次设计后,我在书本理论知识的基础上又有了更深层次的理解。

第四,在本次设计的过程中,我还学会了高效率的查阅资料、运用工具书、利用网络查找资料。我发现,在我们所使用的书籍上有一些知识在实际应用中其实并不是十分理想,各种参数都需要自己去调整,这就要求我们应更加注重实践环节。

最后,还要在此感谢课程设计的指导老师们和我的组员们,他们在整个过程中都给予了我充分的帮助与支持。

参考文献

[1]李华.MCS-51系列单片机实用接口技术[M].1989.

[2]周立功.单片机实验与实践.北京:北京航空航天大学出版社.

[3]吴国经.单片机应用技术.北京:中国电力出版社,2003.

[4]徐惠民安德宁丁玉珍.单片微型计算机原理、接口及应用.北京:北京邮电大学出版

社,2007年.

[5]徐爱钧.《智能化测量控制仪表原理与设计》(第二版)[M].北京:北京航空航天大学出

版社,2004.

直流数字电压表课程设计报告设计

电子技术基础 课程设计 题目名称:直流数字电压表 指导教师:唐治德 学生班级: 学号: 学生姓名: 评语: 成绩: 重庆大学电气工程学院 2015年7月3日

目录一、内容摘要 二.课程设计任务与要求 2.1设计目的 2.2设计求 三.设计思路和方案选择 3.1 设计思路 3.2 方案选择 四.工作原理 4.1 基本原理框图 4.2 ICL7107的工作原理 4.3原理图 五.电路设计与仿真 六、系统调试与结果分析 6.1调试方法 6.2测试结果分析 六.元器件清单 八、总结及心得体会 九、参考文献

内容摘要 伴随着电子技术科学的发展,电子测量技术已成为广大电子技术工作者必须掌握的一门科学技术,同时对测量的精度和功能的有着更高的要求。电压是电子测量的一个主要参数,由于电压测量在电子测量中的普遍性与重要性,因此对电压测量的研究与设计有着非常重要的意义。本次设计的主要设计内容为三档直流电压表。在设计过程中由于第一次接触这种芯片,对该芯片不是很熟悉,我们参阅了大量前人的设计,在此基础上,运用A / D转换器ICL7107构建了一个直流数字电压表。本设计首先简要介绍了设计电压表的主要方式,然后详细介绍了直流数字电压表的设计流程和芯片的工作原理,本设计中我们展示了两种方案,手动换挡的自动换挡,在各方案中也给出了两种方案的优缺点。同时也给出了硬件电路的设计细节,包括各部分电路的走向、芯片的选择以及方案的可行性分析等。 关键字:ICL7107芯片,数字电压表,A\D转换,比较器,CC4006双向模拟开关。 课程设计任务及要求 2.1设计目的 1、掌握双积分A/D转换的工作原理和集成双积分A/D转换器件的设计方法 2、掌握常用数字集成电路的功能和使用 2.2设计要求 1.设计直流数字电压表 2.直流电压测量范围: 0V~1.999V,0V~19.99V,0V~199.9V。 3.直流输入电阻大于100kΩ。 4.画出完整的设计电路图,写出总结报告。 5.选做内容:自动量程转换。 设计思路和方案选择

单片机课程设计-数字电压表

目录 1 引言 (1) 2设计原理及要求 (2) 2.1数字电压表的实现原理 (2) 2.2数字电压表的设计要求 (2) 3软件仿真电路设计 (3) 3.1设计思路 (3) 3.2仿真电路图 (3) 3.3设计过程 (3) 3.4 AT89C51的功能介绍 (4) 3.4.1简单概述 (4) 3.4.2主要功能特性 (5) 3.4.3 AT89C51的引脚介绍 (5) 3.5 ADC0808的引脚及功能介绍 (7) 3.5.1芯片概述 (7) 3.5.2 引脚简介 (7) 3.5.3 ADC0808的转换原理 (7) 3.6 74LS373芯片的引脚及功能 (8) 3.6.1芯片概述 (8) 3.6.2引脚介绍 (8) 3.7 LED数码管的控制显示 (8) 3.7.1 LED数码管的模型 (8) 3.7.2 LED数码管的接口简介 (9) 4系统软件程序的设计 (10) 4.1 主程序 (10) 4.2 A/D转换子程序 (10) 4.3 中断显示程序 (12) 5电压表的调试及性能分析 (13) 5.1 调试与测试 (13) 5.2 性能分析 (13) 6电路仿真图 (14) 7总结 (15) 参考文献 (16)

附录1 源程序 (17) 附录2 仿真原理电路 (23)

1 引言 随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。 数字电压表(DigitalVoltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本章重点介绍单片机A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力理。 本设计AT89C51单片机的一种电压测量电路,该电路采用ADC0808一种基于A/D转换电路,测量围直流0~5V 的4路输入电压值,并在四位LED数码管上显示或单路选择显示。测量最小分辨率为0.019V,测量误差约为正负0.02V。

基于单片机的数字电压表设计

引言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本论文重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

1 实训要求 (1)基本要求: ①实现8路直流电压检测 ②测量电压范围0-5V ③显示指定电压通道和电压值 ④用按键切换显示通道 (2)发挥要求 ①测量电压范围为0-25V ②循环显示8路电压 2 实训目的 (1)进一步熟悉和掌握单片机的结构和工作原理; (2)掌握单片机的借口技术及,ADC0809芯片的特性,控制方法; (3)通过这次实训设计,掌握以单片机为核心的电路设计的基本方法和技术;(4)通过实际程序设计和调试,逐步掌握模块化程序设计的方法和调试技术。 3 实训意义 通过完成一个包括电路设计和程序开发的完整过程,使自身了解开发单片机应用系统的全过程,强化巩固所学知识,为以后的学习和工作打下基础。 4 总体实训方案 测量一个0——5V的直流电压,通过输入电路把信号送给AD0809,转换为数字信号再送至89s52单片机,通过其P1口经数码管显示出测量值。 4.1 结构框图 如图1—1所示 图1—1

单片机课程设计报告——数字电压表[1]剖析

数字电压表 单片机课程设计报告 班级: 姓名: 学号: 指导教师: 2011 年3 月29 日

数字电压表电路设计报告 一、题目及设计要求 采用51系列单片机和ADC设计一个数字电压表,输入为0~5V线性模拟信号,输出通过LED显示,要求显示两位小数。 二、主要技术指标 1、数字芯片A/D转换技术 2、单片机控制的数码管显示技术 3、单片机的数据处理技术 三、方案论证及选择 主要设计方框图如下: 1、主控芯片 方案1:选用专用转化芯片INC7107实现电压的测量和实现,用四位数码管显示出最后的转换电压结果。缺点是京都比较低,内部电压转换和控制部分不可控制。优点是价格低廉。 方案2:选用单片机AT89C51和A/D转换芯片ADC0809实现电压的转换和控制,用四位数码管显示出最后的转换电压结果。缺点是价格稍贵;优点是转换京都高,且转换的过程和控制、显示部分可以控制。 基于课程设计的要求和实验室能提供的芯片,我选用了:方案2。 2、显示部分 方案1:选用4个单体的共阴极数码管。优点是价格比较便宜;缺点是焊接时比较麻烦,容易出错。 方案2:选用一个四联的共阴极数码管,外加四个三极管驱动。这个电路几乎没有缺点;优点是便于控制,价格低廉,焊接简单。 基于课程设计的要求和实验室所能提供的仪器,我选用了:方案2。

四、电路设计原理 模拟电压经过档位切换到不同的分压电路筛减后,经隔离干扰送到A/D 转换器进行A/D 转换。然后送到单片机中进行数据处理。处理后的数据送到LED 中显示。同时通过串行通讯与上位通信。硬件电路及软件程序。而硬件电路又大体可分为A/D 转换电路、LED 显示电路,各部分电路的设计及原理将会在硬件电路设计部分详细介绍;程序的设计使用汇编语言编程,利用Keil 和PROTEUS 软件对其编译和仿真。 一般I/O 接口芯片的驱动能力是很有限的,在LED 显示器接口电路中,输出口所能提供的驱动电流一般是不够的尤其是设计中需要用到多位LED ,此时就需要增加LED 驱动电路。驱动电路有多种,常用的是TTL 或MOS 集成电路驱动器,在本设计中采用了74LS244驱动电路。 本实验采用AT89C51单片机芯片配合ADC0808模/数转换芯片构成一个简易的数字电压表,原理电路如图1所示。该电路通过ADC0808芯片采样输入口IN0输入的0~5 V 的模拟量电压,经过模/数转换后,产生相应的数字量经过其输出通道 D0~D7传送给AT89C51芯片的P0口。AT89C51负责把接收到的数字量经过数据处理,产生正确的7段数码管的显示段码,并通过其P1口传送给数码管。同时它还通过其三位I/O 口P1.0、P1.1、P1.2、P1.3产生位选信号,控制数码管的亮灭。另外,AT89C51还控制着ADC0808的工作。其ALE 管脚为ADC0808提供了1MHz 工作的时钟脉冲;P2.4控制ADC0808的地址锁存端 (ALE);P2.1控制ADC0808的启动端(START);P2.3控制ADC0808的输出允许端(OE);P2.0控制ADC0808的转换结束信号(EOC)。 电路原理图如下所示,三个地址位ADDA,ADDB,ADDC 均接高电平+5V 电压,因而所需测量的外部电压可由ADC0808的IN7端口输入。由于ADC0808

单片机课程设计数字电压表

单片机课程设计 ——电压表的设计 学院:信息工程学院 专业:电子信息科学与技术 班级:2011150 学号:201115002 姓名:王冬冬 同组同学:凡俊兴 201115001

目录 1 引言 (1) 2设计原理及要求 (2) 2.1数字电压表的实现原理 (2) 2.2数字电压表的设计要求 (2) 3软件仿真电路设计 (2) 3.1设计思路 (2) 3.2仿真电路图 (3) 3.3设计过程 (3) 3.4 AT89C51的功能介绍 (4) 3.4.1简单概述 (4) 3.4.2主要功能特性 (5) 3.4.3 AT89C51的引脚介绍 (5) 3.5 ADC0809的引脚及功能介绍 (7) 3.5.1芯片概述 (7) 3.5.2 引脚简介 (8) 3.5.3 ADC0809的转换原理 (8) 3.6 74LS373芯片的引脚及功能 (8) 3.6.1芯片概述 (8) 3.6.2引脚介绍 (9) 3.7 LED数码管的控制显示 (9) 3.7.1 LED数码管的模型 (9)

LED数码管模型如图3-6所示。 (9) 3.7.2 LED数码管的接口简介 (9) 4系统软件程序的设计 (9) 4.1 主程序 (10) 4.2 A/D转换子程序 (11) 4.3 中断显示程序 (12) 5使用说明与调试结果 (13) 6总结 (13) 参考文献 (14) 附录1 源程序 (15) 附录2原理电路 (19)

1 引言 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。 传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。数字电压表是诸多数字化仪表的核心与基础[2]。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。 最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[4]。数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC 化),另一方面,精度也从0.01%-0.005%。 目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[3]。 本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号

基于51单片机的数字电压表设计

目录 摘要........................................................................ I 1 绪论. (1) 1.1数字电压表介绍 (1) 1.2仿真软件介绍 (1) 1.3 本次设计要求 (2) 2 单片机和AD相关知识 (3) 2.1 51单片机相关知识 (3) 2.2 AD转换器相关知识 (4) 3 数字电压表系统设计 (5) 3.1系统设计框图 (5) 3.2 单片机电路 (5) 3.3 ADC采样电路 (6) 3.4显示电路 (6) 3.5供电电路和参考电压 (7) 3.6 数字电压表系统电路原理图 (7) 4 软件设计 (8) 4.1 系统总流程图 (8) 4.2 程序代码 (8) 5 数字电压表电路仿真 (15) 5.1 仿真总图 (15) 5.2 仿真结果显示 (15) 6 系统优缺点分析 (16) 7 心得体会 (17) 参考文献 (18)

1 绪论 1.1数字电压表介绍 数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。因此AD转换是此次设计的核心元件。输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。 本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。其实也为建立节约成本的意识有些帮助。本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。 1.2仿真软件介绍 Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。它运行于Windows 操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是: (1)现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 (2)支持主流单片机系统的仿真。目前支持的单片机类型有:68000系列、8051系列、 A VR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 (3)提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 (4)具有强大的原理图绘制功能。 可以仿真51系列、A VR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的

直流数字电压表毕业设计

毕业设计 姓名:孟冬冬 专业:电气自动化 班级:电气1001班 设计课题:数字电压表的设计指导教师:杨喜录 电子信息工程系印制 二○一二年九月

宝鸡职业技术学院毕业设计任务书 姓名:孟冬冬 专业:电气自动化 班级:电气1001班 设计课题:数字电压表的设计 指导教师:杨喜录 电子信息工程系印制 二○一二年九月

引言 数字电压表是采用数字化电路测量的电压仪表。它以其高准确度、高可靠性、高分辨率、高性价比、读数清晰方便、测量速度快、输入阻抗高等优良特性而倍受人们的青睐。数字电压表是诸多数字化仪表的核心与基础。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表(如:温度计、湿度计、酸度计、重量、厚度仪等),几乎覆盖了电子电工测量、工业测量、自动化仪表等各个领域。因此对数字电压表作全面深入的了解是很有必要的。传统的模拟式(即指针式)电压表已有100多年的发展史,虽然不断改进与完善,仍无法满足现代电子测量的需要,数字电压表自1952年问世以来,显示强大的生命力,现已成为在电子测量领域中应用最广泛的一种仪表。

数字电压表简称DVM (Digital Voltmeter ),它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等领域,显示出强大的生命力。与此同时,由DVM 扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。智能化数字电压表则是最大规模集成电路(LSI )、数显技术、计算机技术、自动测试技术(ATE )的结晶。一台典型的直流数字电压表主要由输入电路、A/D 转换器、控制逻辑电路、计数器(或寄存器)、显示器,以及电源电路等级部分组成。它的数字输出可由打印机记录,也可以送入计算机进行数据处理。 系统概述 数字电压表是将被测模拟量转换为数字量,并进行实时数字显示的数字系统。 该系统(如图1所示)可由MC14433--32 1位A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD 到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED 发光数码管组成。

数字电压表设计课程设计

东北石油大学课程设计 2

东北石油大学课程设计任务书 课程硬件课程设计 题目数字电压表设计 专业 主要内容、基本要求等 一、主要内容: 利用EL教学实验箱、微机和QuartusⅡ软件系统,使用VHDL语言输入方法设计数字钟。可以利用层次设计方法和VHDL语言,完成硬件设计设计和仿真。最后在EL教学实验箱中实现。 二、基本要求: 1、A/D转换接口电路的设计,负责对ADC0809的控制。 2、编码转换电路设计,负责把从ADC0809数据总线中读出的电压转换成BCD码。 3、输出七段显示电路的设计,负责将BCD码用7段显示器显示出来。 三、参考文献 [1] 潘松.EDA技术实用教程[M].北京:科学出版社, 2003.11-13. [2] 包明.《EDA技术与数字系统设计》.北京航天航空大学出版社. 2002. [3] EDA先锋工作室.Altera FPGA/CPLD设计[M].北京:人民邮电出版社 2005.32-33. [4] 潘松.SOPC技术实用教程[M] .清华大学出版社.2005.1-15. 完成期限第18-19周 指导教师 专业负责人

摘要 本文介绍了基于EDA技术的8位数字电压表。系统采用CPLD为控制核心,采用VHDL语言实现,论述了基于VHDL语言和CPLD芯片的数字系统设计思想和实现过程。在硬件电子电路设计领域中,电子设计自动化(EDA)工具已成为主要的设计手段,而VHDL语言则是EDA的关键技术之一,。VHDL的英文全名是 Very-High-Speed Integrated Circuit HardwareDescription Language,它采用自顶向下的设计方法,即从系统总体要求出发,自上至下地将设计任务分解为不同的功能模块,最后将各功能模块连接形成顶层模块,完成系统硬件的整体设计。 电子设计自动化技术EDA的发展给电子系统的设计带来了革命性的变化,EDA软件设计工具,硬件描述语言,可编程逻辑器件(PLD)使得EDA技术的应用走向普及。CPLD是新型的可编程逻辑器件,采用CPLD进行产品开发可以灵活地进行模块配置,大大缩短了产品开发周期,也有利于产品向小型化,集成化的方向发展。而 VHDL语言是EDA的关键技术之一,它采用自顶向下的设计方法,完成系统的整体设计。 本文用CPLD芯片和VHDL语言设计了一个八位的数字电压表。它的计时周期为24小时,显示满刻度为23时59分59秒,另外还具有校时功能和闹钟功能。总的程序由几个各具不同功能的单元模块程序拼接而成,其中包括分频程序模块、时分秒计数和设置程序模块、比较器程序模块、三输入数据选择器程序模块、译码显示程序模块和拼接程序模块。 关键词:数字电压表;QuartusⅡ软件;EDA(电子设计自动化)

#简易数字电压表的设计

一、简易数字电压表的设计 l .功能要求 简易数字电压表可以测量0~5V 的8路输入电压值,并在四位LED 数码管上轮流显示或单路选择显示。测量最小分辨率为0.019 V ,测量误差约为土0.02V 。 2.方案论证 按系统功能实现要求,决定控制系统采用A T89C52单片机,A /D 转换采用ADC0809。系统除能确保实现要求的功能外,还可以方便地进行8路其它A /D 转换量的测量、远程测量结果传送等扩展功能。数字电压表系统设计方案框图如图1-1。 3.系统硬件电路的设 计 简易数字电压测量电 路由A /D 转换、数据处 理及显示控制等组成,电 路原理图如图1-2所示。A /D 转换由集成电路0809完 成。0809具有8路模拟输人 端口,地址线(23~25脚)可决定对哪一路模拟输入作A /D 转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存,6脚为测试控制,当输入一个2us 宽高电平脉冲时,就开始A /D 转换,7脚为A /D 转换结束标志,当A /D 转换结束时,7脚输出高电平,9脚为A /D 转换数据输出允许控制,当OE 脚为高电平时,A /D 转换数据从该端口输出,10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1 MHz 时钟。单片机的P1、P3.0~P3.3端口作为四位LED 数码管显示控制。P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。P0端口作A /D 转换数据读入用,P2端口用作0809的A /D 转换控制。 4.系统程序的设计 (1)初始化程序 系统上电时,初始化程序将70H ~77H 内存单元清0,P2口置0。 (2)主程序 在刚上电时,系统默认为循环显示8个通道的电压值状态。当进行一次测量后,将 图1-1 数字电压表系统设计方案

直流电压表的设计

目 录 一、设计要求 (2) 二、设计目的 (2) 三、设计的具体实现 (2) 1. 系统概述 (12) 2. 单元电路设计 (15) 3. 软件程序设计 (18) 四、结论与展望 (21)

五、心得体会及建议 (23) 六、附录 (26) 七、参考文献 (30) 一﹑设计要求 设计一个由8051MCU组成的简易直流电压表系统。能够测量一定范围的电压值,并以数字形式进行显示。通过这个过程熟悉A/D转换、键盘控制、串口通信和七段数码管的使用,掌握51系列单片机控制和测试方法。设计以AT89C51单片机为核心,对电压信号首先进行比例调节以满足A/D的需要;设置按键用于调节不同的电压档位;用LED显示测量得到的电压值;设计通信接口电路以实现测量数据的传送。完成基本要求,可以适当发挥进行扩展设计。 ①测量范围0-200V ②10位模数转换 ③采样结果通过LED数码管显示 ④通过串行口与PC通信 二、设计目的 (1)利用所学单片机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。

(2)我们这次的课程设计是以单片机为基础,设计并开发直流电压表。 (3)掌握各个接口芯片(如ADC0808等)的功能特性及接口方法,并能运用其实现一个简单的微机应用系统功能器件。 三、设计的具体实现 技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表.传统的指针式电压表功能单一、精度低,不能满足现代测量的需求,采用单片机的数字电压表,它的精度高、抗干扰能力强。可扩展性强、集成方便,还可与PC进行实时通信。目前,有各种单片A/D转换器构成的数字电压表,以被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能测量领域,与此同时,也能把电量及非电量测量技术提高到崭新水平。该系列产品是一种高精度的安装式仪表. 本设计为简易直流数字电压表, A/D转换器部分采用普通元器件构成模拟部分,利用MCS-51单片机借助软件实现数字显示功能,自动校零、LED显示等功能时采用AT89C51单片机编程实现直流电压表量程的自动转换。 本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号。总体结构框图如图1所示 模拟电压 AT89C51 单 片 机

双通道数字电压表课程设计

目录 1 引言.......................................................... - 2 - 2设计原理及要求................................................ - 2 - 2.1数字电压表的实现原理..................................... - 2 - 2.2数字电压表的设计要求..................................... - 2 - 3软件仿真电路设计................................. 错误!未定义书签。 3.1设计思路.................................... 错误!未定义书签。 3.3设计过程.................................... 错误!未定义书签。 3.4 AT89C51的功能介绍....................................... - 3 - 3.4.1简单概述........................................... - 3 - 3.4.2主要功能特性....................................... - 3 - 3.4.3 AT89C51的引脚介绍................................. - 3 - 3.5 ADC0808的引脚及功能介绍................................. - 5 - 3.5.1芯片概述........................................... - 5 - 3.5.2 引脚简介........................................... - 5 - 3.5.3 ADC0808的转换原理................................. - 6 - 3.6 74LS373芯片的引脚及功能................................. - 6 - 3.6.1芯片概述........................................... - 6 - 3.6.2引脚介绍........................................... - 6 - 3.7 LED数码管的控制显示..................................... - 7 - 3.7.1 LED数码管的模型................................... - 7 - 3.7.2 LED数码管的接口简介............................... - 7 - 4系统软件程序的设计............................... 错误!未定义书签。 4.1 主程序................................................. - 15 - 4.2 A/D转换子程序.......................................... - 16 - 4.3 中断显示程序............................... 错误!未定义书签。5电压表的调试及性能分析........................... 错误!未定义书签。 5.1 调试与测试................................. 错误!未定义书签。 5.2 性能分析............................................... - 17 - 6电路仿真图....................................... 错误!未定义书签。7总结......................................................... - 14 - 参考文献........................................... 错误!未定义书签。

简易交直流电压表

沈阳航空航天大学 课程设计任务书 课程名称电子技术综合课程设计 院(系)专业 班级学号姓名 课程设计题目简易数字电压表电路的设计 课程设计时间: 年月日至年月日 课程设计的内容及要求: 一、设计说明 设计一个简易数字电压表,它可以测量直流、交流电压。其参考原理框图如图1所示。 图1数字电压表的原理框图 二、技术指标 测量电压的技术指标如表所示。 三、设计要求 1.在选择器件时,应考虑成本,要求采用LED显示。各量程的转换采用开关转换。

2.根据技术指标,通过分析计算确定电路和元器件参数。 3.画出电路原理图(元器件标准化,电路图规范化)。 四、实验要求 1.根据技术指标制定实验方案;验证所设计的电路。 2.进行实验数据处理和分析。 五、推荐参考资料 1.沙占友、李学芝著.中外数字万用表电路原理与维修技术. [M]北京:人民邮电出版社,1993年 2. 阎石. 数字电子技术基础. [M]北京:高等教育出版社,2006年 3. 童诗白、华成英.模拟电子技术基础. [M]北京:高等教育出版社,2006年 4. 戴伏生.基础电子电路设计与实践. [M]北京:国防工业出版社,2002年 5. 谭博学主编.集成电路原理与应用. [M]北京:电子工业出版社,2003年 六、按照要求撰写课程设计报告 指导教师年月日 负责教师年月日 学生签字年月日 成绩评定表

一、概述 数字电压表既是常用的一种数字电压表,也是构成数字万用表的基本电路。随着科技的发展,电子产品在不断更新,但数字电压表是永远不会在电子产品中消失。 设计一个简易数字电压表,它可以测量直流、交流电压。测量电压量程为2V、20V,输入电阻为10MΩ,分辨率分别对应为1mV、10mV;准确度是在温度为23±5℃情况下测直流时为±(0.5%RDG+3字),测交流时为±(1.0%RDG+3字);输入电阻为10MΩ;最大允许直流电压为±500V,最大允许交流电压为500V。 本设计是对电压测量电路作单独的研究,从实质上去了解万用表中测量电压的过程。电路涉及到对电路、低频、数字电路等知识的考查。 二、方案论证 方案一: 方案一原理方框图如图1所示。数字电压表由分压电路,输入保护及缓冲电路,交、直流变换电路,压频转换电路、译码显示电路组成。分压电路在电路中实现电压倍率变换起到将大电压转换成小电压的作用;输入保护及缓冲电路在电路中起到避免大电压输入对电路的烧坏;交、直流变换电路起到将交流电压转换成直流电压,且直流电压值为交流电压的有效值;压频转换电路将电压转换成对应的线性频率。译码显示电路时将频率的数值通过LED数码管显示出来。 图1 方案1的原理框图 方案二: 方案二的原理框图如图2所示,电路由分压电路,输入保护及缓冲电路,交、直流变换电路,A/D转换电路,单片机及译码显示电路组成。前几个模块的功能与方案一相同,不同的是方案中用到单片机对经过A/D转换器后的数字信号进行记录然后通过译码显示电路进行显示。

单片机课程设计报告数字电压表

University of South China 单片机课程设计报告 设计课题:基于单片机的数字电压表设计专业班级:电卓103班 学生姓名:李文帅 指导教师:朱卫华 设计时间:2012年1月10日

内容摘要 电压表是测量仪器中不可缺少的设备,目前广泛应用的是采用专用集成电路实现的数字电压表。本系统以8051单片机为核心,以逐次逼近式A/D转换器ADC0809、数码管显示器为主体,设计了一款简易的数字电压表,能够测量0~5V的直流电压,最小分辨率为0.02V。 该设计大体分为以下几个部分,同时,各部分选择使用的主要元器件确定如下: 1、单片机部分。使用常见的8051单片机,同时根据需要设计单片机电路。 2、测量部分。该部分是实验的重点,要求将外部采集的模拟信号转换成数字信号,通过单片机的处理显示在显示器上,该部分决定了数字电压表的精度等主要技术指标。根据需要本设计采用逐次逼近型A∕D转换器ADC0809进行模数转换。 3、数码管显示部分。其中一位为整数部分,其余位小数部分。 索引关键词:8051 模数转换数码管显示

Contents Abstract The voltmeter is indispensable in measuring instruments and equipment, is widely used digital voltmeter ASIC implementation. 8051, successive approximation type A / D converter ADC0809 digital tube display as the main design of a simple digital voltmeter capable of measuring 0 to 5V DC voltage, minimum resolution of 0.02V . The design is divided into several parts, each part of the main components selected for use are determined as follows: 1, microcontroller part. Using a common 8051, according to the need to design a microcontroller circuit. 2, the measurement section. This part is the focus of the experiment, require external acquisition of the analog signal is converted into a digital signal through the microcontroller of the processing and display on the display, the portion determines the main technical indicators such as the precision of the digital voltmeter. According to the needs of the design using successive approximation type A / D converter ADC0809 analog-to-digital conversion. 3, the digital display section. One for the integer part, the remaining bits of the fractional part. Index Keywords: 8051 Analog-to-digital Conversion digital display.

虚拟数字电压表的设计

摘要 LabVIEw 8.5版本的工程技术比以往任何一个版本都丰富.它采用了中文界面,各个控件的功能一目了然。利用它全新的用户界面对象和功能,能开发出专业化、可完全自定义的前面板。LabVIEw 8.5对数学、信号处理和分析也进行了重大的补充和完善,信号处理分析和数学具有更为全面和强大的库,其中包括500多个函数。所以在LabVIEw 8.5版本下能够更方便地实现虚拟电压表的设计。 虚拟电压表是基于计算机和标准总线技术的模块化系统,通常它由控制模块、仪器模块和软件组成,由软件编程来实现仪器的功能。在虚拟仪器中,计算机显示器是惟一的交互界面,物理的开关、按键、旋钮以及数码管等显示器件均由与实物外观相似的图形控件来代替,操作人员只要通过鼠标或键盘操作虚拟仪器面板上的旋钮、开关、按键等设置各种参数,就能根据自己的需要定义仪器的功能。在虚拟电压表的设计中,考虑到仪器主要用于教学和实验,使用对象是学生,因此将引言中提到的三种检波方式的仪器合为一体,既简化了面板操作,又便于直接对比。 该电压表主要用于电路分析和模拟电子技术等实验课的教学和测量仪器,能够使学习者了解和掌握电压的测量和电压表对各种波形的不同响应。因此,虚拟电压表应具备电源开关控制、波形选择,以及显示峰值、有效值和平均值三种结果,且输入信号的大小可调节等功能。虚拟电压表由硬件设备与接口、设备驱动软件和虚拟仪器面板组成。其中,硬件设备与接口包括仪器接口设备和计算机,设备驱动软件是直接控制各种硬件接口的驱动程序,虚拟仪器通过底层设备驱动软件与真实的仪器系统进行通信,并以虚拟仪器面板的形式在计算机屏幕上显示与真实仪器面板操作相对应的各种控件。在此,用软件虚拟了一个信号发生器。该信号发生器可产生正弦波、方波和三角波,还可以输入公式,产生任意波形。根据需要,可调节面板上的控件来改变信号的频率和幅度等可调参数,然后检测电压表的运行情况。因此,在LabVIEW图形语言环境下设计的虚拟电压表主要分为两个部分:第一部分是虚拟电压表前面板的设计;第二部分是虚拟电压表流程图的设汁。

直流数字电压表设计说明书

专业资料 《电子测量技术》直流数字电压表设计 院系软件职业技术学院 专业应用技术2班 学生姓名郭妍 学号 5103130016

目录 一、题目及设计要求……………………………………………………………………3页 二、主要技术……………………………………………………………………………3页 三、方案选择…………………………………………………………………………… 3页 四、电路设计原理……………………………………………………………………… 3页 4.1 模数转换………………………………………………………………………… 4页 4.2 数字处理及控制……………………………………………………………………5页 五、电路图分介绍……………………………………………………………………… 5页 5.1 AT89C51介绍………………………………………………………………………6页 5.2排阻介绍……………………………………………………………………………7页 5.3 晶振电路……………………………………………………………………………7页 5.4 复位电路……………………………………………………………………………8页 5.5 ADC0808介绍………………………………………………………………………8页 5.6共阴极数码管………………………………………………………………………9页 5.7模拟输入电路………………………………………………………………………9页5.8总设计图……………………………………………………………………………10页 5.9仿真图………………………………………………………………………………10页 六、设计程序……………………………………………………………………………11页 七、心得体会……………………………………………………………………………14 页

单片机课程设计 数字电压表设计

《单片机原理及应用》课程设计报告书 课题名称数字电压表设计 名姓 学号 专业

指导教师 机电与控制工程学院月年日 1 任务书 电压表是测量仪器中不可缺少的设备,目前广泛应用的是采用专用集成电路实现的数字电压表。本系统以8051单片机为核心,以逐次逼近式A/D转换器ADC0809、LED显示器为主体,设计了一款简易的数字电压表,能够测量0~5V的直流电压,最小分辨率为0.02V。 该设计大体分为以下几个部分,同时,各部分选择使用的主要元器件确定如下: 1、单片机部分。使用常见的8051单片机,同时根据需要设计单片机电路。 2、测量部分。该部分是实验的重点,要求将外部采集的模拟信号转换成数字信号,通过单片机的处理显示在显示器上,该部分决定了数字电压表的精度等主要技术指标。根据需要本设计采用逐次逼近型A∕D转换器ADC0809进行模数转换。 3、键盘显示部分。利用4×6矩阵键盘的一个按键控制量程的转换,3或4位LED显示。其中一位为整数部分,其余位小数部分。 关键词:8051 模数转换LED显示矩阵键盘 2 目录

1 绪论 (1) 2 方案设计与论证 (2) 3 单元电路设计与参数计算 (3) 4 总原理图及参考程序 (8) 5 结论 (14) 6 心得体会 (15) 参考文献16 (7) 3 1.绪论 数字电压表的基本工作原理是利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后将测试结果以数字形式显示出来的一种电压表。较之于一般的模拟电压表,数字电压表具有精度高、测量准确、读数直观、使用方便等优

点。 电压表的数字化测量,关键在于如何把随时连续变化的模拟量转化成数字量,完成这种转换的电路叫模数转换器(A/D)。数字电压表的核心部件就是A/D转换器,由于各种不同的A/D转换原理构成了各种不同类型的DVM。一般说来,A/D 转换的方式可分为两类:积分式和逐次逼近式。 积分式A/D转换器是先用积分器将输入的模拟电压转换成时间或频率,再将其数字化。根据转化的中间量不同,它又分为U-T(电压-时间)式和U-F(电压-频率)式两种。 逐次逼近式A/D转换器分为比较式和斜坡电压式,根据不同的工作原理,比较式又分为逐次比较式及零平衡式等。斜坡电压式又分为线性斜坡式和阶梯斜坡式两种。 在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D转换器。本设计以8051单片机为核心,以逐次比较型A/D转换器ADC0809、LED 显示器为主体,构造了一款简易的数字电压表,能够测量1路0~5V直流电压,最小分辨率0.02V。 4 2.方案设计与论证 基于单片机的多路数字电压表电路的基本组成如图3.1所示。

相关主题
文本预览
相关文档 最新文档