当前位置:文档之家› 专题五第4讲

专题五第4讲

专题五第4讲
专题五第4讲

第4讲 数列中不等式的证明问题

高考定位 1.数列中不等式的证明是浙江高考数学试题的压轴题;2.主要考查数学归纳法、放缩法、反证法等数列不等式的证明方法,以及不等式的性质;3.重点考查学生逻辑推理能力和创新意识.

真 题 感 悟

(2017·浙江卷)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1-x n ≤x n x n +12; (3)

12

n -1

≤x n ≤1

2

n -2.

证明 (1)用数学归纳法证明:x n >0. 当n =1时,x 1=1>0.

假设n =k (k ≥1,k ∈N *)时,x k >0,

那么n =k +1时,若x k +1≤0,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾,故x k +1>0, 因此x n >0(n ∈N *).

所以x n =x n +1+ln(1+x n +1)>x n +1, 因此0<x n +1<x n (x ∈N *). (2)由x n =x n +1+ln(1+x n +1)得,

x n x n +1-4x n +1+2x n =x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1). 记函数f (x )=x 2-2x +(x +2)ln(1+x )(x ≥0). f ′(x )=2x 2+x x +1

+ln ()1+x >0(x >0),

函数f (x )在[0,+∞)上单调递增,所以f (x )≥f (0)=0,

因此x 2

n +1-2x n +1+(x n +1+2)ln(1+x n +1)=f (x n +1)≥0,

故2x n +1-x n ≤x n x n +1

2(n ∈N *).

(3)因为x n =x n +1+ln(1+x n +1)≤x n +1+x n +1=2x n +1, 所以x n ≥12x n -1≥122x n -2≥…≥12n -1x 1=1

2n -1.

故x n ≥

1

2n -1.

由x n x n +1

2≥2x n +1-x n 得 1

x n +1-12≥2? ????

1x n -12>0,

所以1x n -12≥2? ????1x n -1-12≥…≥2n -1? ????1x 1-12=2n -

2,

故x n ≤

1

2n -2.

综上,1

2n -1≤x n ≤1

2

n -2(n ∈N *).

考 点 整 合

1.数学归纳法

证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;

(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立.

只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2.反证法

一般地,由证明p ?q 转向证明:綈q ?r ?…?t ,t 与假设矛盾,或与某个真命题矛盾,从而判定綈q 为假,推出q 为真的方法,叫做反证法. 3.放缩法

放缩法是利用不等式的传递性,证明不等式的方法,要证A

热点一 数学归纳法证明数列不等式

【例1】 (2017·金丽衢联考)设数列{a n }满足:a 1=a ,a n +1=2a n

a 2n +1(a >0且a ≠1,

n ∈N *).

(1)证明:当n ≥2时,a n

(b -a 2)(b +1)

a 2(1-

b )

+1时,a k +1>b .

证明 (1)由a n +1=2a n

a 2n +1知,a n 与a 1的符号相同,

而a 1=a >0,所以a n >0,

所以a n +1=

2

a n +1a

n

≤1,当且仅当a n =1时,a n +1=1, 下面用数学归纳法证明: ①因为a >0且a ≠1,所以a 2<1, a 3a 2=2a 22+1

>1,即有a 2

2

a k +1+

1a k +1

<1,

且a k +2a k +1=2a 2k +1+1

>1,即a k +1a k +1>a k ≥b ;

若a k

≥1+nx , 而a 2k +1

所以a k +1=a 2·a 3a 2

·a 4a 3

·…·

a k +1a k

=a 2·2k -1(1+a 22)(1+a 23)…(1+a 2k )>a 2? ????21+b 2k -1

> a 2? ??

??21+b k -1

=a 2? ????1+1-b 1+b k -1≥a 2??????

1+

1-b 1+b (k -1). 因为k ≥(b -a 2)(b +1)

a 2(1-

b )

+1,

所以1-b 1+b (k -1)+1≥b -a 2a 2+1=b a 2,

所以 a k +1>b .

探究提高 数学归纳法是解决和正整数有关命题的证明方法,可以借助递推公式,证明由特殊到一般的结论成立问题.因此,可以在数列不等式的证明中大显身手.在本例中,(1)首先根据条件等式的结构特征推出a n >0,然后用数学归纳法证明即可;(2)首先由(1)知当k ≥2时,1>a k +1>a k ≥b ,然后利用数列的递推公式证明即可.

热点二 反证法证明数列不等式

【例2】 (2017·台州调考)已知数列{a n }满足:a n >0,a n +1+1a n

<2(n ∈N *).

(1)求证:a n +21(n ∈N *).

证明 (1)由a n >0,a n +1+1

a n

<2,

得a n +1<2-1

a n

<2.

因为2>a n +2+1

a n +1>2

a n +2

a n +1

(由题知a n +1≠a n +2), 所以a n +2

(2)法一 假设存在a N ≤1(N ≥1,N ∈N *), 由(1)可得当n >N 时,a n ≤a N +1<1. 根据a n +1-1<1-1a n

=a n -1

a n

<0,而a n <1,

所以1a n +1-1>a n a n -1=1+1

a n -1,

于是1a N +2-1>1+1a N +1-1,

……

1a N +n -1>1+1a N +n -1-1

.

累加可得1a N +n -1>n -1+1a N +1-1

.(*)

由假设可得a N +n -1<0, 而当n >-

1a N +1-1+1时,显然有n -1+1

a N +1-1

>0,

因此有1a N +n -1

a N +1-1,

这显然与(*)矛盾. 所以a n >1(n ∈N *).

法二 假设存在a N ≤1(N ≥1,N ∈N *), 由(1)可得当n >N 时,0

a n <0,而a n <1,

所以11-a n +1

1-a n ,

所以1-a n +11-a n >1a n ≥1a N +1>1.

于是1-a n >(1-a n -1)? ????

1a N +1,

1-a n -1>(1-a n -2)? ????

1a N +1,

……

1-a N +2>(1-a N +1)? ??

??

1a N +1.

累乘可得1-a n >(1-a N +1)? ????1a N +1n -N -1

,(*)

由(1)可得1-a n <1, 而当n >log

1a N +1? ??

??11-a N +1+N +1时, 则有(1-a N +1)? ????1a N +1n -N -1

>1,

这显然与(*)矛盾. 所以a n >1(n ∈N *).

探究提高 数列不等式需要对数列的范围及变化趋势进行探究,而条件又少,因此,反证法就成为解决有关问题的利器.在本例中,(1)首先根据已知不等式由a n

+1

<2-1

a n

<2证明不等式的右边,再根据已知不等式利用基本不等式,可证明不

等式的左边;(2)考虑反证法,即假设存在a N ≤1,利用条件和(1),并结合放缩法逐步推出矛盾.进而证明不等式成立. 热点三 放缩法证明数列不等式 [命题角度1] 放缩为等比数列

【例3】 (2017·湖州调研测试)已知数列{a n }满足a 1=25,a n +1=2a n

3-a n ,n ∈N *.

(1)求a 2;

(2)求????

??

1a n 的通项公式;

(3)设{a n }的前n 项的和为S n ,求证:65? ????1-? ????23n ≤S n <2113.

(1)解 由条件可知a 2=

2a 13-a 1

=4

13. (2)解 由a n +1=2a n 3-a n 得1a n +1=32·

1a n -1

2, 即1a n +1

-1=32? ????

1a n -1,

所以????

??

1a n

-1是等比数列,

又1a 1-1=32,则1a n -1=32×? ????32n -1=? ????32n ,

所以1a n =? ????32n

+1.

(3)证明 由(2)可得

a n =1? ????32n +1≥1? ????32n +? ????32n -1=25? ????23n -1

.

所以S n ≥25+25·? ????231+…+25·? ????23n -1

=65?

????1-? ????23n ,

故S n ≥65?

????1-? ????23n 成立.

另一方面a n =1? ????32n +1<1? ????

32n =? ????23n

所以S n =a 1+a 2+a 3+…+a n <25+413+? ????233+? ????234+…+? ????23n

=4665+89-89·? ????23n -2<4665+89<2113,n ≥3, 又S 1=25<2113,S 2=4665<2113,因此S n <21

13. 所以65? ????1-? ????23n ≤S n <2113.

[命题角度2] 放缩为裂项求和

【例4】 (2017·温州联考)已知数列{a n }中,a 1=3,2a n +1=a 2n -2a n +4. (1)证明:a n +1>a n ; (2)证明:a n ≥2+? ??

??32n -1

(3)设数列????

??

1a n 的前

n 项和为S n ,求证:1-? ??

??23n

≤S n <1.

证明 (1)∵2a n +1-2a n =a 2n -4a n +4=(a n -2)2

≥0,

∴a n +1≥a n ≥3,∴(a n -2)2>0, ∴a n +1>a n .

(2)∵2a n +1-4=a 2n -2a n =a n (a n -2),

∴a n +1-2a n -2

=a n 2≥32, ∴a n -2≥32(a n -1-2)≥? ????322

(a n -2-2)≥…≥

? ????32n -1(a 1-2)=? ??

??32n -1,

∴a n ≥2+? ??

??32n -1

.

(3)∵2(a n +1-2)=a n (a n -2),

∴12(a n +1-2)=1a n (a n -2)=12? ????1

a n -2-1a n , ∴1a n +1-2=1a n -2-1a n ,∴1a n =1a n -2-1a n +1-2, ∴S n =1a 1

+1a 2

+…+1a n

=1a 1-2-1a 2-2+1a 2-2-1a 3-2+…+1a n -2-1a n +1-2

1a 1-2-1

a n +1-2

=1-

1

a n +1-2

.

∵a n +1-2≥? ????32n ,∴0<1a n +1-2≤? ????23n

∴1-? ????23n

≤S n =1-1a n +1-2

<1.

探究提高 数列中不等式的证明本身就是放缩的结果,在证明过程中,要善于观察数列通项的特点,结合不等式的结构合理地选择放大与缩小,常见的两种放缩方式是:①放缩成等比数列求和形式;②放缩成裂项求和形式.

数列、不等式是高中数学的重点内容之一,也是初等数学与高等数学的衔接点之一.命题方式灵活,对学生的数学思维要求较高,具有良好的高考选拔功能.数列中不等式的证明,是浙江省高考数学试题的特色,解决问题方法独特,需要综合运用分析法、放缩法、反证法、数学归纳法、以及构造函数借助导数的工具、不等式的性质等解决问题.

1.(2017·绍兴仿真考试)已知数列{a n }满足,a 1=1,a n =1a n +1-1

2.

(1)求证:2

3≤a n ≤1;

(2)求证:|a n +1-a n |≤1

3; (3)求证:|a 2n -a n |≤10

27. 证明 (1)用数学归纳法证明. ①当n =1时,命题显然成立;

②假设n =k (k ≥1,k ∈N *)时,有2

3≤a k ≤1成立, 则当n =k +1时,a k +1=

1

a k +12≤

123+

12<1, a k +1=1a k +12≥11+12=

2

3, 即当n =k +1时也成立, 所以对任意n ∈N *,都有2

3≤a n ≤1. (2)当n =1时,|a 2-a 1|=1

3,

当n ≥2时,∵? ?

???a n +12? ????a n -1+12=? ????a n +12·1a n =1+12a n ≥1+

12=32, ∴|a n +1-a n |=????????1

a n +12-1a n -1+12 =

|a n -a n -1|

? ?

???a n +12? ??

??a n -1+12 ≤23|a n -a n -1|≤…≤? ????23n -1|a 2-a 1|

=13·? ??

??23n -1<13. 综上所述,|a n +1-a n |≤1

3.

(3)当n =1时,|a 2-a 1|=13=927<10

27; 当n ≥2时,由(2)知

|a 2n -a n |≤|a 2n -a 2n -1|+|a 2n -1-a 2n -2|+…+|a n +1-a n |≤

13??????? ????232n -2+? ????232n -3+…+? ????23n -1 =? ????23n -1-? ????232n -1≤23-? ????233=1027. 综上所述,|a 2n -a n |≤1027.

2.(2017·浙东北大联盟考试)已知数列{a n }满足a 1=12,a n +1=a n -a 2n

n (n +1)

,数

列?

????????

?a n +1a n 的前n 项和为S n .证明:当n ∈N *时,

(1)0

(3)S n >n -1

2.

证明 (1)由于a n +1-a n =-a 2n

n (n +1)≤0,

则a n +1≤a n .

若a n +1=a n ,则a n =0,与a 1=1

2矛盾, 故a n ≠0,从而a n +1

2>a 2>a 3>…>a n .

又a n +1a n =1-a n n (n +1)≥1-12n (n +1)>0,

则a n +1与a n 同号.

又a 1=1

2>0,则a n +1>0,故0

则a n +1=a n -a 2n

n (n +1)

即1a n -1a n +1<-1n (n +1)=1n +1-1

n ,

1

a n +1-1a n >1n -1

n +1.

当n ≥2时,1a n =? ????1a n -1a n -1+? ????1a n -1-1a n -2+…+? ????1a 2-1a 1+1a 1>1

n -1-1n +1n -2-

1n -1+…+1-12+1a 1=3-1n =3n -1

n >0, 从而a n

当n =1时,a 1=1

2=

13×1-1,从而a n ≤n

3n -1

.

(3)由a n +1a n =1-a n n (n +1)≥1-a 1

n (n +1)

=1-12? ????1n -1n +1(当且仅当n =1时,取等号), 得S n =a 2a 1+a 3a 2+…+a n +1a n ≥n -12? ??

??1-1n +1>n -12.

3.(2017·杭州质量检测)已知数列{a n }的各项均为非负数,其前n 项和为S n ,且对任意的n ∈N *,都有a n +1≤a n +a n +2

2. (1)若a 1=1,a 505=2 017,求a 6的最大值;

(2)若对任意n ∈N *,都有S n ≤1,求证:0≤a n -a n +1≤2n (n +1).

(1)解 由题意知a n +1-a n ≤a n +2-a n +1, 设d i =a i +1-a i (i =1,2,…,504), 则d 1≤d 2≤d 3≤…≤d 504,

且d 1+d 2+d 3+…+d 504=a 505-a 1=2 016. ∵d 1+d 2+…+d 55≤d 6+d 7+…+d 504499

=2 016-(d 1+d 2+…+d 5)

499,

∴d 1+d 2+…+d 5≤20,

∴a 6=a 1+(d 1+d 2+…+d 5)≤21, a 6的最大值为21.

(2)证明 若存在k ∈N *,使得a k

则由a n +1≤a n +a n +2

2,得a k +1≤a k -a k +1+a k +2<a k +2,

因此,从第k 项a k 开始,数列{a n }严格递增, 故a 1+a 2+…+a n ≥a k +a k +1+…+a n ≥(n -k +1)a k .

对于固定的k ,当n 足够大时,必有a 1+a 2+…+a n >1,与题设矛盾,∴{a n }不可能递增,即只能a n -a n +1≥0. 令b k =a k -a k +1(k ∈N *),

由a k -a k +1≥a k +1-a k +2得b k ≥b k +1,b k ≥0, 故1≥a 1+a 2+…+a n =(b 1+a 2)+a 2+…+a n =b 1+2(b 2+a 3)+a 3+…+a n =…

=b 1+2b 2+…+nb n +na n +1≥(1+2+…+n )b n =n (n +1)

2

b n , ∴b n ≤2

n (n +1)

综上,对一切n ∈N *,都有0≤a n -a n +1≤2

n (n +1)

.

4.(2017·温州模拟)数列{a n }的各项均为正数,且a n +1=a n +2

a n

-1(n ∈N *),{a n }的

前n 项和是S n .

(1)若{a n }是递增数列,求a 1的取值范围;

(2)若a 1>2,且对任意n ∈N *,都有S n ≥na 1-1

3(n -1), 证明:S n <2n +1.

(1)解 由a 2>a 1?a 1+2

a 1

-1>a 1,

得0

又由a 3>a 2?a 2+2a 2-1>a 2?0

a 1-1<2,

得1

当1

(ⅱ)假设当n =k (k ≥1,k ∈N *)时,1

则当n =k +1时,a k +1=a k +2

a k

-1∈[22-1,2)?(1,2).

综上,可知1

a n

-1>0,即{a n }是递增数列.

所以a 1的取值范围是1

(2)证明 因为a 1>2,可用数学归纳法证明:a n >2对任意n ∈N *恒成立. 于是a n +1-a n =2

a n

-1<0,即{a n }是递减数列.

在S n ≥na 1-1

3(n -1)中,令n =2, 得2a 1+2a 1-1=S 2≥2a 1-1

3,解得a 1≤3,

故2

下证:①当2

3时, S n ≥na 1-1

3(n -1)恒成立. 事实上,当2

3时,

由于a n =a 1+(a n -a 1)≥a 1+? ?

?

??2-73=a 1-13,

于是S n =a 1+a 2+…+a n ≥a 1+(n -1)? ?

???a 1-13=na 1-13(n -1).

再证:②当7

37

3时,设a n =b n +2, 则由a n +1=a n +2a n -1可得b n +1=b n +2

b n +2-1,

得b n +1b n =b n +1b n +2≤b 1+1b 1+2≤2

3

? ??

??

因为由73

于是数列{b n }的前n 项和T n ≤b 1·

1-? ??

??23n 1-23<3b 1≤3, 故S n =2n +T n <2n +3=na 1+(2-a 1)n +3.(*) 令a 1=7

3+t (t >0),则由(*)式得

S n

3,

只要n 充分大,就有S n

3(n -1)矛盾. 所以7

3

3

.

于是b n +1b n

=b n +1b n +2≤b 1+1b 1+2≤47? ?因为2

?

??

≤13, 故数列{b n }的前n 项和T n ≤b 1·

1-? ????47n 1-47<7

3b 1<1, 所以S n =2n +T n <2n +1.

相关主题
文本预览