当前位置:文档之家› 已读1——不同地形条件的风机基础设计特点及投资控制研究

已读1——不同地形条件的风机基础设计特点及投资控制研究

已读1——不同地形条件的风机基础设计特点及投资控制研究
已读1——不同地形条件的风机基础设计特点及投资控制研究

Research on design feature and investment control of the wind turbine foundation for

different terrain

ABSTRACT

This combination of different terrain, landform wind power project, on the foundation of fan design and investment undertook study, obtained valuable results for engineering, wind power wind turbine foundation design summary of the standard of the design concept, but also for the control of engineering cost to provide design support, practical experience.

This paper briefly introduces the different geological conditions the wind machine based design and cost analysis. In recent years, with the vigorous development of new energy industry, wind power as a clean energy a new force suddenly rises., and grow, the fan is a kind of new high-rise building, its load and the dynamic properties of complex, on the foundation of fan design put forward higher requirements. At the same time in different terrain conditions, wind turbine foundation design pattern also differ in thousands of ways, leading to cost and also significantly from, this article mainly aims at the plain, Gobi, mountainous, coastal beach besmear, collapsible loess, upland, Karst landforms typical topographical features of the wind farm wind turbine foundation type selection design and cost are expounded, may be a reference for the similar project, for the wind power standardization design foundation.

KEY WORDS wind turbine, terrain condition, foundation, design manufacturing cost

(3)

(1)

1.1 (1)

1.2 (2)

1.3 (5)

1.3.1 (5)

1.3.2 (8)

1.4 (11)

(12)

2.1 (12)

2.2 (13)

2.2.1 [17] (13)

2.2.2 [18] (14)

2.2.3 [19] (14)

2.2.4 (14)

2.2.5 (17)

2.3 (18)

2.3.1 (18)

2.3.2 (22)

2.3.3 (25)

2.3.4 (27)

2.3.5 (29)

2.3.6 (32)

2.3.7 (37)

(41)

3.1 (41)

3.2 (42)

3.2.1 (42)

3.2.2 (42)

(49)

(50)

(52)

(53)

1.1

2% [1] 1.1 13 [2]

1.1

19 [3]

20 70 1973

[4]

1.8 20%

2.53 2

1.2

1890 18 5-25 1.2 1918 120 [5]

1931 30 1.3 [6]

1.2 1.3

80 [7] 1987 3.2MW 1.4 4.0MW 90 200-600kW 21

1995 2002 33%[8]

1.4

1kW 100kW 1949 -1959 1960 -1977 1978 -1983 1984 -1990 1990 -1997 1998 [9]

70 50 500W 1.5

1.5

90 1994 1996 19 1.6

90 CO2 2005

1.6

2011 2011 2000 6500 “ ”

1.3

1.3.1

[10] 65

Q

M P q

n

[11]

[12]

1

2

[13]

1.7

1.7 Q G

M F P q n M

360

[14]

1.8

1.8

1.3.2

[15]

1.3.

2.1

1

c 2

3 [16]

3m 0.5m

)5.0()3( m m d s b ak a h b f f (1-1)

a f —— ak f ——

d b —— —— s b ——

m —— m h ——

1.3.

2.2

1. a k f p k P —— a f ——

2. a k f p a k f p 2.1max max k p ——

1.3.

2.3

1.

s E

n

i i i i i si

s n i i s z z E p s s 1110

1)( (1-2)

0p ——

s —— si E —— i

1, i i —— i 1i z s s 025.0

n

i i i i i si

e z z E p s 1

110

)( (1-3) e

2.

s

b s s 2

1tan

(1-4)

1s 2s —— s b ——

1.3.

2.4

1

3.1 S R

F F (1-5)

6.1 S R

M M (1-6)

R F —— S F —— R M —— S M ——

2

0.1'

'

S R F F (1-7) 0.1'

' S

R

M M (1-8)

'

F——

R

'

F——

S

'

M——

R

'

M——

S

1.4

1

2

3

4

2.1

0 500 0 200 200 500

, , ,

500

“ ”

500 200 91 130 1500kw

2.2

2.2.1 [17]

1

2

3

4

5

6

7

2.2.2 [18]

2.2.3 [19]

70 0.003

2.2.4

变桨

风力发电机变桨系统 所属分类:技术论文来源:电器工业杂志更新日期:2011-07-20 摘要:变浆系统是风力发电机的重要组成部分,本文围绕风力发电机变浆系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。 关键词:变桨系统;构成;作用;保护种类;故障分析 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

计算机控制课程设计

计算机控制技术课程设计报告 学院自动化科学与工程 学生姓名 学生学号 指导教师 __ 提交日期 2013 年 7 月 8 日

目录 一、设计题目及要求 ................................................................... 错误!未定义书签。 二、整体设计与结构图 (3) 1、计算机控制系统结构图 (3) 2、硬件结构图 (4) 三、电路硬件设计 (5) 1、电桥电路 (5) 2、放大环节 (6) 3、滤波电路 (6) 4、A/D转换器 (7) 5、D/A 转换电路 (8) 四、参数计算及分析 (9) 1.参数确定 (9) 2.系统性能分析 (9) 五、控制方案及仿真 (9) θ的分析.....................................................................................................,9 1、0 = 1)控制方案分析 (11) 2)数字控制器D(z)的实现 (11) 3)系统仿真 (14) θ的分析 (18) 2、870 .0 = 1)控制方案分析与选择 (18) 2)数字控制器D(z)的实现 (19) 3)系统仿真 (23) 六、心得与体会 (27)

一.课程设计题目及要求 1、 针对一个具有纯滞后的一阶惯性环节 ()1 s Ke G s Ts τ-=+ 的温度控制系统和给定的系统性能指标: ? 工程要求相角裕度为30°~60°,幅值裕度>6dB ? 要求测量范围-50℃~200℃,测量精度0.5%,分辨率0.2℃ 2、 书面设计一个计算机控制系统的硬件布线连接图,并转化为系统结构图; 3、 选择一种控制算法并借助软件工程知识编写程序流程图; 4、 用MA TLAB 和SIMULINK 进行仿真分析和验证; 对象确定:K=10*log(C*C-sqrt(C)),rand(‘state ’,C),T=rang(1), 考虑θ=0或T/2两种情况。 C 为学号的后3位数,如C=325,K=115.7,T=0.9824,θ=0或0.4912 5、 进行可靠性和抗干扰性的分析。 二、整体设计与结构图 1、计算机控制系统结构图

计算机控制课程设计电阻炉温度控制系统

计算机控制课程设计 报告 设计题目:电阻炉温度控制系统设计 年级专业:09级测控技术与仪器 化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产

生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1.1电阻炉组成及其加热方式 电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加

热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件, (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

计算机控制技术课程设计任务书

计算机控制技术课程设计任务书 题目1:通用数字PID调节器设计 1、主要技术数据和设计要求 主要技术数据:8路模拟量输入:适配1~5V输入,量程自由设定;8路输出控制信号:1~5V标准电压输出;输入模拟量转换精度:0.1%;RS232串行通讯通口。 控制模型:数字PID控制算法;PID参数范围:比例带Kp:1-999.9%,积分时间Ti:1-9999秒(Ti=9999时积分切除),微分时间Td::0-9999秒(Td=0时微分切除)。 调节控制器使用51内核的单片机,完成对8路模拟信号的切换、信号变换、A/D转换;单片机对数据处理后(含数字滤波、数值变换),送到显示和通讯部分,并经PID运算处理后通过D/A转换器输出。经信号变换和信号分配后输出8路控制信号。设计中应充分考虑干扰问题。 2、设计步骤 一、总体方案设计、控制系统的建模和数字控制器设计 二、硬件的设计和实现 1. 选择计算机机型(采用51内核的单片机); 2. 设计支持计算机工作的外围电路(EPROM、RAM、I/O端口等); 3. 设计键盘、显示接口电路; 4. 设计8路模拟量输入输出通道; 5. 设计RS232串行通讯通口; *6. 其它相关电路的设计或方案(电源、通信等)。 三、软件设计 1. 分配系统资源,编写系统初始化和主程序模块; 2. 编写数字PID调节器软件模块; 3. 编写数字滤波程序; *4. 编写A/D、D/A转换器处理程序模块; *5. 其它程序模块(显示与键盘等处理程序)。 四、编写课程设计报告,绘制完整的系统电路图。

计算机控制技术课程设计任务书 题目2:双闭环直流电动机数字调速系统设计 1、主要技术数据和设计要求 主要技术数据:直流电动机(对象)的主要技术参数如下:直流电动机Ped=3kW,Ued=220v ,ned=1500r/min,电枢回路总电阻R=2.50欧姆,电动机回路电磁时间常数TL=0.017s,机电时间常数TM=0.076s,电势常数Ce=0.1352V/r·min),晶闸管装置放大倍数Ks=30,整流电路滞后时间Ts=0.0017s。 主要技术指标:速度调节范围0-1500r/min,速度控制精度0.1%(额定转速时),电流过载倍数为1.5倍。 主要要求:直流电动机的控制电源采用PWM控制方式,在其输入电压为0-5伏时可以输出0-264伏电压,为电机提供最大25安培输出电流。速度检测采用光电编码器,且假定其输出的A、B两相脉冲经光电隔离辨向后获得每转1024个脉冲的角度分辨率和方向信号。电流传感器采用霍尔电流传感器,其原副边电流比为1000:1,额定电流为50安培。采用双闭环(速度和电流环)控制方式。 2、设计步骤 一、总体方案设计、控制系统的建模和数字控制器设计 二、硬件的设计和实现 1. 选择计算机机型(采用51内核的单片机); 2. 设计支持计算机工作的外围电路(EPROM、RAM、I/O端口等); 3. 设计键盘、显示接口电路; 4. 设计输入输出通道(速度反馈、电流反馈电路、输出驱动电路等); *5.它相关电路的设计或方案(电源、通信等)。 三、软件设计 分配系统资源,编写系统初始化和主程序模块; 2. 编写数字调节器软件模块; 3. 编写A/D转换器处理程序模块; *4.编写输出控制程序模块; *5.其它程序模块(数字滤波、显示与键盘等处理程序)。 四、编写课程设计说明书,绘制完整的系统电路图。

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

风机锚栓基础设计管理

风机锚栓基础设计管理 论文栏目:设计管理论文更新时间:2015/6/19 15:37:26 283 1前言 风机基础与塔筒的连接形式有很多种,最具代表性的有基础环与锚笼环两种形式。据不完全统计,目前国内已经建成风电场95%以上的风机塔筒与基础连接采用的基础环形式,该种连接方式被认为是安全可靠的。随着部分风电场陆续出现基础环松动的问题,风机供应商、设计单位、施工单位等各方专家进行了多次会诊,目前已基本达成如下共识:基础环直径较大、埋深不足、基础环与周边混凝土连接不可靠,其受力特性相比锚栓差。从设计角度来讲,单机容量1.5MW及以上容量的风机塔筒与基础连接宜采用锚栓[1][2][3]。但是,由于当前用于风机塔架与基础连接的锚栓存在材质无相应规程规范、防腐难度大、锚栓断裂不易更换等问题,由此增加的风险成本,风机供应商和设计单位都在回避。在此前提下,业主推出“风机锚栓基础设计及锚栓组件材料采购打捆”的招标采购形式,相当于EP承包,投标主体必须是设计院。根据目前市场环境条件,设计单位应充分掌握锚栓式基础的市场前景,本着尽最大可能的占领市场份额和为业主服务的目标,积极参与投标。只要做好锚栓材料市场调研,充分进行研究,详细设计,发现风险点,做好风险控制和转移,精工细作,做好设计优化工作,就能在新的市场条件下占据主动。设计单位既要作为设计的主体,同时又是采购的主体,除了要保证结构设计的可靠以外,还应对所需采购锚栓及组件材料的市场情况有充分的了解,这样才能保证整个项目的风险可控,以使效益最大化。因此,作者以下将针对该新的市场环境条件,对风电项目中“风机锚栓基础设计及锚栓组件材料采购打捆”的设计管理进行简单论述,为设计单位提供借鉴。 2产品调研 锚笼环高度一般在3.0m以上,除外露30cm左右之外,其余部分埋入风机基础混凝土。锚栓组件最重要的承力构件是高强预应力锚固螺栓及替代品,其不同于一般的高强预应力锚固螺栓,且国内没有专门针对风电机组的锚栓设计规程,造成目前市场材料供应良莠不齐。经资料收集整理,目前市场上较有名的主要有中船重工713研究所、江苏金海公司、青海金阳光生产的高强预应力锚固螺栓,以及天津二轧生产的精轧钢筋。通过掌握资料,首先应由项目负责人通过电话向供货商了解其产品基本性能,产品应用业绩,目前市场价格等,并初步了解其合作意向。其次,以公司名义向有意向参与合作的供应商发正式询价函件,由

计算机控制技术课程设计

计算机控制技术课程设计 业:自动化 班级:动201xxx 姓名:xxx 学号:2013xxxxxx 指导教师:xxx 兰州交通大学自动化与电气工程学院 2016 年 07 月 15 日

水箱液位控制系统设计 1设计目的 通过课程设计使学生掌握如何应用微型计算机结合自动控制理论中的各种控制算法构成一个完整的闭环控制系统的原理和方法;掌握工业控制中典型闭环控制系统的硬件部分的构成、工作原理及其设计方法;掌握控制系统中典型算法的程序设计方法;掌握测控对象参数检测方法、变送器的功能、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高解决实际工程问题的能力。 2 设计要求 设计双容水箱液位控制系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。设计串级控制系统以维持下水箱液位的恒定,双容水箱液位控制系统示意图如下图1所示。 图1 双容水箱液位控制系统示意图 3 设计方法 为保持水箱液位的稳定,设计中采用闭环系统,将下水箱液位信号经水位检测器送至控制器(PID),控制器将实际水位与设定值相比较,产生输出信号作用于执行器(控制阀),从而改变流量调节水位。当对象是单水箱时,通过不断调整PID参数,单闭环控制系统理论上可以达到比较好的效果,系统也将有较好的抗干扰能力。该设计对象属于双水箱系统,整个对象控制通道相对较长,如果采用单闭环控制系统,当上水箱有干扰时,此干扰经过控制通路传递到下水箱,会有很大的延迟,进而使控制器响应滞后,影响控制效果,在实际生产中,如果干扰频繁出现,无论如何调整PID参数,都将无法得到满意的效果。考虑到串级控制可以使某些主要干扰提前被发现,及早控制,在内环引入负反馈,检测上水箱液位,将液位信号送至副控制器,然后直接作用于控制阀,以此得到较好的控制效果。 4设计方案及原理 系统功能介绍 整个过程控制系统由控制器,执行器,测量变送,被控对象组成,在本次控制系统中控制器为单片机,采用算法为PID控制规律,执行器为电磁阀,采样采用A/D芯片,测量变送器为A,被控对象为流量B。整个控制过程,当系统受到扰

海上风力发电机组基础设计

摘要 这篇文章介绍了海上风电场建设概况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。 关键词电力系统;海上风电场;海上风电机组基础;设计

Abstract This article describes the overview of offshore wind farm construction, the composition ofthe offshore wind turbine, offshore wind turbines based on the form-based design ofoffshore wind turbines. Key Words electric power system;Offshore wind farm; Offshore wind turbine foundation; design

1前言 1.1全球海上风电场建设概况 截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增加了21%。 1.2 中国 截至2010年底,中国的风电累计装机容量达到44.7GW,首次居世界首位,亚洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。 1.3海上风力发电机组通常分为以下三个主要部分: (1)塔头(风轮与机舱) (2)塔架 (3)基础(水下结构与地基) ?与场址条件密切相关的特定设计;?约占整个工程成本的20%-30%; ?对整机安全至关重要。支撑结构

2 海上风电机组基础的形式 2.1海上风电机组基础的形式 目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括: ?单桩基础; ?重力式基础; ?吸力式基础; ?多桩基础; ?漂浮式基础 2.1.1单桩基础:(如图1所示) 采用直径3~5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡段,将塔架安装其上。单桩基础一般安装至海床下10-20m,深度取决于海床基类型。此种方式受海底地质条件和水深约束较大,需要防止海流对海床的冲刷,不适合于25m 以上的海域。 2.1.2重力式基础:(如图2所示) 图1 单桩基础示意图

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

计算机控制课程设计

目录

一、设计背景及意义 当今,红绿灯安装在个个道口上,已经成为疏导交通车辆最常见和最有效的手段。单片机具有性价比高、集成度高、可靠性好、抗干扰性强等特点,广泛运用于各种智能仪器中。基于新型规则的可编程交通控制系统,可以实现对车辆、行人的控制,使的交通便于管理。所以,采用单片机自动控制交通灯有现实的社会意义。 二、设计任务 1. 采用AT89C51芯片; 2. 使用发光二极管(红,黄,绿)代表各个路口的交通灯; 3. 用8段数码管对转换时间进行倒时; 4、带紧急按钮功能,当紧急按钮按下时,所有方向均亮起红灯; 5. 控制程序采用C语言编程。 三、控制系统设计原理 3.1 设计思路 利用单片机实现交通灯的控制,该任务分以下几个方面: a、实现红、绿、黄灯的循环控制。要实现此功能需要表示三种不同颜色的LED灯分别接在P1个管脚,用软件实现。 b、用数码管显示倒计时。可以利用动态显示或静态显示,串行并出或者并行并出实现。 c、紧急状况功能。这需要人工实现,编程时利用到中断才能带到目的,只要有按钮按下,那么四个方向全部显示红灯,禁止车辆通行。当情况解除(再次按下按钮),重新回到初始状态。

3.2 总体设计图 图1 3.2.1 交通灯循环控制 使用AT89C51单片机完成对十字路口交通灯的控制,十字路口的工作过程分为东西方向和南北方向两个干道的红绿黄灯工作状态(红灯亮表示禁止通行,绿灯亮表示允许通行,黄灯亮表示提醒红绿灯之间状态的切换)的控制,每个工作状态的时间设为40s,采用循环的控制方式,具体控制过程如下(如图2):1、系统工作开始后,首先进入初始设定阶段,东西方向亮红灯,南北方向亮绿灯; 2、进入状态1的倒计时阶段,东西方向的红灯开始40s倒计时,南北方向绿灯开始35s倒计时; 3、进入状态1过渡阶段,东西方向红灯开始最后5s倒计时,南北方向黄灯亮并开始5s倒计时; 4、过渡阶段1完成后,东西方向亮绿灯,南北方向亮红灯; 5、进入状态2的倒计时阶段,南北方向的红灯开始40s倒计时,东西方向绿灯开始35s倒计时; 6、进入状态2过渡阶段,南北方向红灯开始最后5s倒计时,东西方向黄灯亮并开始5s倒计时; 7、过渡阶段2完成后,进入状态1,开始循环。 图2

武汉理工大学模电课设温度控制系统设计

课程设计任务书 学生姓名:张亚男专业班级:通信1104班 指导教师:李政颖 工作单位:信息工程学院 题目: 温度控制系统的设计 初始条件:TEC半导体制冷器、UA741 运算放大器、LM339N电压比较器、稳压管、LM35温度传感器、继电器 要求完成的主要任务: 一、设计任务:利用温度传感器件、集成运算放大器和Tec(Thermoelectric Cooler, 即半导体致冷器)等设计一个温度控制器。 二、设计要求:(1)控制密闭容器内空气温度 (2)控制容器容积>5cm*5cm*5cm (3)测温和控温范围0℃~室温 (4)控温精度±1℃ 三、发挥部分:测温和控温范围:0℃~(室温+10℃) 时间安排:19周准备课设所需资料,弄清各元件的原理并设计电路。 20周在仿真软件multisim上画出电路图并进行仿真。 21周周五前进行电路的焊接与调试,周五答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

温度控制系统的设计 1.温度控制系统原理电路的设计 (3) 1.1 温度控制系统工作原理总述 (3) 1.2 方案设计 (3) 2.单元电路设计 (4) 2.1 温度信号的采集与转化单元——温度传感器 (4) 2.2 电压信号的处理单元——运算放大器 (5) 2.3 电压值表征温度单元——万用表 (7) 2.4 电压控制单元——迟滞比较器 (8) 2.5 驱动单元——继电器 (10) 2.6 TEC装置 (11) 2.7 整体电路图 (12) 3.电路仿真 (12) 3.1 multisim仿真 (12) 3.2 仿真分析 (14) 4.实物焊接 (15) 5.总结及体会 (16) 6.元件清单 (18) 7.参考文献 (19)

1.5兆瓦风力发电机组塔筒及基础设计解析

1.5兆瓦风力发电机组塔筒及基础设计 摘要:风能资源是清洁的可再生资源,风力发电是新能源中技术最成熟、开发条件最具规模和商业化发展前景最好的发电方式之一。塔筒和基础构成风力发电机组的支撑结构,将风力发电机支撑在60—100m的高空,从而使其获得充足、稳定的风力来发电。塔筒是风力发电机组的主要承载结构,大型水平轴风力机塔筒多为细长的圆锥状结构。一个优良的塔筒设计,可以保证整机的动力稳定性,故塔筒的设计不仅要满足其空气动力学上得要求,还要在结构、工艺、成本、使用等方面进行综合分析。基础设计与基础所处的地质条件密不可分,良好的地质条件可以为基础提供可靠的安全保证,从风机塔筒基础特点的分析可以看出,风机塔筒基础的重要性及复杂性是不言而喻的。在复杂地质条件下如何确定安全合理的基础方案更是重中之重。 关键词:1.5兆瓦;风力发电机组;塔筒;基础;设计 1、我国风机基础设计的发展历程 我国风机基础设计总体上可划分为三个阶段,即2003年以前小机组基础的自主设计阶段,2003— 2007年MW机组基础设计的引进和消化阶段,2007年以后MW机组基础的自主设计阶段, 在2003年以前,由于当时的鼓励政策力度不大,风电发展缓慢,2002年末累计装机容量仅为46.8万kw,当年新增装机容量仅为6.8万kw,项目规模小、单机容量小,国外风机厂商涉足也较少,风机基础主要由国内业主或厂商委托勘测设计单位完成,设计主要依据建筑类的地基规范。 从2003年开始,由于电力体制改革形成的电力投资主体多元化以及我国开始实施风电特许权项目,尤其是2006年《可再生能源法》生效以后,国外风机开始大规模进入中国,且有单机容量600kw、750kw很快发展到850kw、1.0MW、1.2MW、1.5MW 和2.0MW,国外厂商对风机基础设计也非常重视,鉴于国内在MW风机基础设计方面的经验又不够丰富,不少情况下基础设计都是按照厂商提供的标准图、国内设计院

风机变桨控制系统简介

风力发电机组变桨系统介绍

一.概述 双馈风机

风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。 风轮的工作原理:风轮产生的功率与空气的密度成正比。风轮产生的功率与风轮直径的平方成正比;风轮产生的功率与风速的立方成正比;风轮产生的功率与风轮的效率成正比。风力发电机风轮的效率一般在—之间(理论上最大值为。贝兹(Betz)极限 风机四种不同的控制方式: 1.定速定浆距控制(Fixed speed stall regulated) 发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2.定速变浆距控制(Fixed speed pitch regulated) 发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率 3.变速定浆距控制(Variable speed stall regulated) 变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4.变速变浆距控制(Variable speed pitch regulated) 变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 浆距控制用于调节功率.

计算机控制技术课程设计报告

《计算机控制技术》课程设计单闭环直流电机调速系统

1 设计目的 计算机控制技术课程是集微机原理、计算机技术、控制理论、电子电路、自动控制系统、工业控制过程等课程基础知识一体的应用性课程,具有很强的实践性,通过这次课程设计进一步加深对计算机控制技术课程的理解,掌握计算机控制系统硬件和软件的设计思路,以及对相关课程理论知识的理解和融会贯通,提高运用已有的专业理论知识分析实际应用问题的能力和解决实际问题的技能,培养独立自主、综合分析与创新性应用的能力。 2 设计任务 设计题目 单闭环直流电机调速系统 实现一个单闭环直流电机调压调速控制,用键盘实现对直流电机的起/停、正/反转控制,速度调节要求既可用键盘数字量设定也可用电位器连续调节,需要有速度显示电路。扩展要求能够利用串口通信方式在PC上设置和显示速度曲线并且进行数据保存和查看。

设计要求 2.2.1 基本设计要求 (1)根据系统控制要求设计控制整体方案;包括微处理芯片选用,系统构成框图,确定参数测范围等; (2)选用参数检测元件及变送器;系统硬件电路设计,包括输入接口电路、逻辑电路、操作键盘、输出电路、显示电路; (3)建立数学模型,确定控制算法; (4)设计功率驱动电路; (5)制作电路板,搭建系统,调试。 2.2.2 扩展设计要求 (1)在已能正常运行的微计算机控制系统的基础上,通过串口与PC连接; (2)编写人机界面控制和显示程序;编写微机通信程序;实现人机实时交互。 3方案比较 方案一:采用继电器对电动机的开或关进行控制。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

风电场风机基础设计方案标准

附件3 中国国电集团公司 风电场风机基础设计标准 1 目的 为规范中国国电集团公司的风力发电工程中的风机基础设计工作,统一风机基础设计的内容、深度,本着因地制宜、保护环境和节约资源的原则,做到技术先进、安全适用、经济合理、便于施工,特制定本标准。本标准主要规定了风力发电工程中风机基础设计基本原则和方法,涉及地基基础的工程地质条件、荷载、基础选型、设计流程、地基处理、基础构造等内容。 2 范围 本标准适用于中国国电集团公司全资和控股建设的的陆上风力发电工程风机的地基基础设计。 3 引用标准和文件 《风电场工程等级划分及设计安全标准》FD002-2007 《风电机组地基基础设计<试行)》FD003-2007 《建筑地基基础设计规范》GB 50007-2002 《高耸结构设计规范》GBJ 50135-2006 《混凝土结构设计规范》GB 50010-2018 《建筑地基处理技术规范》JGJ79-2002

《冻土地区建筑地基基础设计规范》JGJ 118-98 《建筑抗震设计规范》GB 50011-2018 《构筑物抗震设计规范》GB 50191-93 《建筑桩基技术规范》JGJ 94- 2008 《工业建筑防腐蚀设计规范》GB 50046-2008 《水工建筑物抗冰冻设计规范》DL/T 5082-1998 《混凝土外加剂应用技术规范》GB50119-2003 《大体积混凝土施工规范》GB50496-2009 《湿陷性黄土地区建筑规范》GB 50025-2004 《膨胀土地区建筑技术规范》GBJ 112-1987 《建筑变形测量规程》JGJ/T8-97 4 术语和定义 本标准中的术语定义与下列标准中的规定相同: 《风电机组地基基础设计设计规定<试行)》FD003-2007 《混凝土结构设计规范》GB50010-2018 5 一般规定 5.1基础设计应本着因地制宜、保护环境和节约资源的原则,做到安全适用、经济合理、技术先进、便于施工。 5.2风电机组地基基础主要按《风电机组地基基础设计规定<试行)》设计。对于湿陷性土、多年冻土、膨胀土和处于侵蚀环境、受温度影响的地基等,尚应符合国家现行有关标准的要求。 5.3风机基础设计采用极限状态设计方法,荷载和分项系数的取

计算机控制系统课程设计

《计算机控制》课程设计报告 题目: 超前滞后矫正控制器设计 姓名: 学号: 10级自动化 2013年12月2日

《计算机控制》课程设计任务书 指导教师签字:系(教研室)主任签字: 2013年11 月25 日

1.控制系统分析和设计 1.1实验要求 设单位反馈系统的开环传递函数为) 101.0)(11.0(100 )(++= s s s s G ,采用模拟设 计法设计数字控制器,使校正后的系统满足:速度误差系数不小于100,相角裕度不小于40度,截止角频率不小于20。 1.2系统分析 (1)使系统满足速度误差系数的要求: ()() s 0 s 0100 lim ()lim 100 0.1s 10.011V K s G s s →→=?==++ (2)用MATLAB 画出100 ()(0.11)(0.011) G s s s s = ++的Bode 图为: -150-100-50050 100M a g n i t u d e (d B )10 -1 10 10 1 10 2 10 3 10 4 P h a s e (d e g ) Bode Diagram Gm = 0.828 dB (at 31.6 rad/s) , P m = 1.58 deg (at 30.1 rad/s) Frequency (rad/s) 由图可以得到未校正系统的性能参数为: 相角裕度0 1.58γ=?, 幅值裕度00.828g K dB dB =, 剪切频率为:030.1/c rad s ω=, 截止频率为031.6/g rad s ω=

(3)未校正系统的阶跃响应曲线 024******** 0.20.40.60.811.2 1.41.61.8 2Step Response Time (seconds) A m p l i t u d e 可以看出系统产生衰减震荡。 (4)性能分析及方法选择 系统的幅值裕度和相角裕度都很小,很容易不稳定。在剪切频率处对数幅值特性以-40dB/dec 穿过0dB 线。如果只加入一个超前校正网络来校正其相角,超前量不足以满足相位裕度的要求,可以先缴入滞后,使中频段衰减,再用超前校正发挥作用,则有可能满足要求。故使用超前滞后校正。 1.3模拟控制器设计 (1)确定剪切频率c ω c ω过大会增加超前校正的负担,过小会使带宽过窄,影响响应的快速性。 首先求出幅值裕度为零时对应的频率,约为30/g ra d s ω=,令 30/c g rad s ωω==。 (2)确定滞后校正的参数 2211 3/10 c ra d s T ωω= ==, 20.33T s =,并且取得10β=

海上风力发电机组基础设计

近海风力发电(作业) 摘要 这篇文章介绍了海上风电场建设概况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。 关键词电力系统;海上风电场;海上风电机组基础;设计 1

Abstract This article describes the overview of offshore wind farm construction, the composition ofthe offshore wind turbine, offshore wind turbines based on the form-based design ofoffshore wind turbines. Key Words electric power system;Offshore wind farm; Offshore wind turbine foundation; design -2-

1前言 1.1全球海上风电场建设概况 截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增加了21%。 1.2 中国 截至2010年底,中国的风电累计装机容量达到44.7GW,首次居世界首位,亚洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。 1.3海上风力发电机组通常分为以下三个主要部分: (1)塔头(风轮与机舱) (2)塔架 (3)基础(水下结构与地基) 与场址条件密切相关的特定设计; 约占整个工程成本的20%-30%; 对整机安全至关重要。支撑结构 -3-

2 海上风电机组基础的形式 2.1海上风电机组基础的形式 目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括: 单桩基础; 重力式基础; 吸力式基础; 多桩基础; 漂浮式基础 2.1.1单桩基础:(如图1所示) 采用直径3~5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡段,将塔架安装其上。单桩基础一般安装至海床下10-20m,深度取决于海床基类型。此种方式受海底地质条件和水深约束较大,需要防止海流对海床的冲刷,不适合于25m 以上的海域。 2.1.2重力式基础:(如图2所示) 图1 单桩基础示意图 -4-

温度控制系统课程设计

前言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过AD 转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本较高。近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。 随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中.其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等. 智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶.目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路.有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。 为了准确获取现场的温度和方便现场控制,本系统采用了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测当前的温度值,通过和设定的参数进行比较,若实测温度高于设定温度,则通过555定时器产生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,到达设定温度后停止。在软件部分,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能。在近端与远端通信过程中,采用串行MAX232标准,实现PC机与单片机间的数据传输。

相关主题
文本预览
相关文档 最新文档