当前位置:文档之家› 第三章静电场中的电介质

第三章静电场中的电介质

第三章静电场中的电介质
第三章静电场中的电介质

第三章 静电场中的电介质

§1 概述

1)媒质中的电场

媒质由电粒子和中性粒子构成,电场与媒质中的电粒子产生作用。 大量的微观作用可能会表现出宏观现象。 2)微观量与宏观量

微观量:媒质中各微观点的值,具有时间上起伏性。

宏观值:是大量微观现象在物理无限小体积元中对应的平均值,具有相对的稳定性(在静电场的条件下)。

宏观电磁现象是大量的微观电磁作用的综合平均效应。

§2、电偶极子

1、电介质

电介质即通常所指的绝缘体(其特点为体内无自由

电子)。

a) 电介质与电场的相互作用。

实验介质为玻璃。

介质插入电容器极板之前,电压为U ;

介质插入电容器极板之后, ① d /U E E U =↓?↓

此种静电现象表明,介质对电场产生了作用。

②介质两侧表面出现了不能作宏观运动的异号电荷。此种现象表明电场对介质产生了作用。

此种静电现象称之为极化。

极化:中性介质受电场作用后在宏观上表现出电性。 束缚电荷:介质中不能产生宏观移动的电粒子。

特点:电粒子受分子力的约束,只能为生微观移动,其活动区域为原子的线度数

量级。

研究大量微观粒子产生的宏观电现象时,可将分子、原子等效成两个等量异号的正电荷重心和负电荷重心,从而可以达到简化问题目的。

处在电场中的正负电重心受力方向相反,会产生重心之间距离的拉伸与压缩、重心的相对偏转等位置变化,在宏观上呈现出电性,使介质产生极化。

重合的正负电荷重心被电场拉开。

不重合的电重心整体产生偏转,相对位置亦为生变化。

2 电偶极子

电偶极子是由两个等量异号且相距很近的点电荷构成的电荷体系,(l<

介质中的分子或原子与外电场为生相互作用时,均可采用电偶极子来处理,即把介质中的分子、原子等效为对应的电偶极子,介质等效为一群电偶极子来看待。

电偶极子既受外场作用同时自身也激发电场。与外电场产生相互作用。 电偶极子的一些基本特性 1)外电场对电偶极子的作用

处在均匀电场中的电偶极子所受到的作用力

电偶极子所受

的力矩

E

转动

合0

T 0F ≠=E

稳定平衡

不0

T 0F ==E

F E

稳定平衡

0T 0F ==氢原子电重心图?

±

水分子电重心图

?-

+

+

-

2

-O H

H

+

()+

-++

++-++--?-=?+?-=?+?=F r r F r F r F r F r T

E l T ?=q

令p =q l (电偶极矩定义式) 则 E l T ?=q =pEsinθθe

系统的转矩最大

系统处在平衡状态

PE T /======0F 0T 0F 20πθθ

电偶极矩是描述电偶极子本身电学特性的物理量,电偶极子产生电场、电势、辐射以及在电场中受到的力矩等电学特性均可由电偶极矩体现出来。 2)电偶极子激发的电场 电偶极子延长线上的电场

()

()2

02

02424/l r q /l r q

+=

-=-+πεπεE E

()()()

44222242202

20/l r qlr

/l r /l r rl

q

E E E -=-+=

-=-

+πεπε

对于电偶极子有条件 r>>l 则 l 2 为二级小量,可以略去不计。

30304242r p

r ql E πεπε=

=

电偶极子在中垂面上产生电场

()

44220/l r q

E E +=

=-+πε

-++=E E E

4222/l r /l c o s +=

α

()

2

32204

42//l r ql

cos E E +=

=+πεα

p

E

2

略去二级小量有

304r p E πε=

其中r 为l 的中点到空间考察点的距离。电场由p 和r 来决定,可见p 可以用来量化表征电偶极子产生电场的特性。

一般情况下,31r /E p E ∝∝ 的比例关系仍然成立,但E 与图中的θ有

关。

3)、电偶极子产生的电势

???? ??-

=

-=r r q U 1140

πε

其中 22/c o s l r r /c o s l r r θ

θ+≈-≈-+ 3

0302204444r r r cos p cos l r cos ql U πεπεθθπεθ

r p ?≈≈

???

?

??-=

p 也可以用来量化表示电偶极子产生势的基本特性。 4)、电偶极子的电力线及其等位面。(见教材)

电偶极子产生的电场、电势以及其在电场中受到的力矩等特性均可由p 来定量地量化表示,可见p 反映了电偶极子本身的物理特性。

§3电介质的极化

1、位移极化与取向极化

1)两类电介质 无极分子构成的介质

无极分子的特点:无外电场时,分子的正负电重心重合,宏观上不显电性,偶极矩为零。(例如:甲烷等物质CH 4)

有极分子构成的介质

有极分子的特点:无外电场时,分子的正负电重心不重合,形成电偶极子,具有确定的电偶

极矩,介质中的这种电偶极子的取向杂乱无章,θ

2/l r

+

-

-

r +

r 4

-C

+

H +

H +

H +

H ?-

+

+

-

2-O

H

H

+

介质在整体上对外不显示宏观上的电性。(例如:水分子) 2)介质的极化机制 无极分子的位移极化

正负电重心在外电场的作用下,使重合的电重心产生反向位移,形成电偶极

上图为氢原子的极化示意图,对于分子亦有类似的机制。

这种极化是由正负电荷的反向位移造成,所以称之为位移极化。 极化特点:电偶极矩方向与外电场方向一致。介质中众多的分子均产生此种类似的位移极化,介质由众多的方向一致的电偶极子构成,对外呈现出宏观电场。

有极分子的取向极化

极分子介质处在电场中时,其中原本杂乱无章的电偶极子将会向电场方向偏转,介质整体对外呈现出电性。

这种极化是由电偶极子的定向偏转造成的,所以称之为取向极化。

有极分子同时也产生们位移极化,相对于取向极化而言,其效应较弱,一般不考虑。在高频电场的情况下则类外。此时,由于分子的惯性较大,取向极化跟不上电场的变化(分子几乎无法偏转或偏转幅度很小),对外难以呈现出取向极化的效应,但电子的惯性较小,能跟上电场的变化,故位移极化他然存在,此时介质极化的主要是

无电偶极矩-

有电偶极矩

E

外电场观电场

介质自身对外不呈现宏E '电场介质自身对外呈现宏观

位移极化。

位移极化与取向极化的区别

位移极化 电偶极子与电场平行 主要由电子移动形成 取向极化 电偶极子顺向电场(一般不平行) 分子产生偏转 2、极化强度矢量

介质的极化强弱是由介质体内的电偶极子的密度、偶极矩的大小以及集体向电场方向的顺向程度(有序度)来综合体现。可采用下述量化表示来体现。

τ?=

∑=m

i i

1

p

P

内的电偶极子数为τ?m

为物理无穷小体积元τ?,

(宏观上足够小,相对线度而言;微观上足够大,包含有大量的分子或原子)

个电偶极子的电偶极矩中的第为i i τ?p

极化强度矢量的定义式中的偶极数与物理体积元的比值体现了电偶极子的密度;矢量和体现了电偶子的有序度;从总体上全面体现了介质极化强弱的特点。

P 是一个宏观物理量,由外电场和介质自身的特性来共同决定。其在数学上的意义可以简单地理解为单位体积的偶极矩矢量和。单位为:库/米2

P 为一点函数,若P =C (常矢量)则称为均匀极化。 3、极化强度与电场强度的关系

讨论各向同性的电介质,有实验关系:

为电介质的极化率χχεαE

E P 0==

E 为总电场,即外电场和介质极化后自身的电偶极子产生电场的迭加。 线性指P 与E 之间的关系为一次关系。

各向同性指从任意一个方向对介质进行极化,其极化强度和电场强度的矢量依赖关系相同。

§4 极化电荷

1、极化电荷

极化:介质处在电场中,其内部或表面出现束缚电荷的现象称之为极化。 极化电荷:因极化而产生的束缚电荷。束缚电荷仅只是运动方式与自由电荷不同,

被约束在介质的晶格附近,但其激为电场的机制他仍遵守库仑定律。

极化电荷的符号规则:与自由电荷对应的量上加撇号表示相应的束缚电荷对应的物理量。

例如:度、体密度。表示极化电荷及其面密分别ρσ''',,q 2、ρ’与极化强度矢量之间的关系

在一介质体内任意围定一区域,求其中的q 、

计算τ?内的电荷q ’,只需计算穿过周界面的电偶极子留在面内的电荷的代数和即可。在界面上取一个小面元dS,并作如图所示的小柱体,考察穿过此小面元产电偶极子留在界面内的电荷。

假定:dS 足够小,其上的p 基本都平行于斜柱边,且认为分布均匀,电偶极子具有同样的长度。

以正电荷穿出为例阐明(负电荷穿出则反之) 过dS 面的电偶极子个数等于留在面内的负电荷数。

N =过dS 的电偶极子数=柱内负电荷数=柱面内的平均电偶极子数=ndV 电偶极子的几何中心在柱内,则可认为此电偶极子在柱内,很明显几何中心数与电偶极子负电荷数相同。

θcos nldS N =

留在面内的电荷为

S P S p d d n dS cos np dS

cos qnl qndV q d ?-=?-=-=-=-='θθ 其中P 为极化强度

矢量

p

单位体积的电偶极子数n n m m

i i

p

p

p

P =?=

?=

∑=τ

τ1

体内的产极化电荷为

???-='='S

P d q d q

τ

ρ??-=

'?S P d

对于均匀极化,则P 应为常矢量。则有

=?-=?-='??S

S

d d Q S P S P

(例如匀强电场有 0

0=?=?=????S

S S

d d d S S E S E )

所以均匀极化有,0='ρ 反之不一定成立。

注意:均匀介质与均匀极化的区别 3、的关系与P σ'

两种不同的介质,由于其极化状态不同,各自的极化电荷分布也存在差异,所以二者的分界面上一般存在极化电荷分布。

作如图所示的闭合面,为物理无穷小扁柱体,远小于足够小,且h S ?面元的线度。即扁柱体内在微观上含有足够多的电偶极子宏观上又可以认为是无穷小。

法向规定:

n 表示界面的水法向,从2指向1。

此时,扁柱面内的极化电荷为

()()S

S

S d q S

??--=→???<

P 2122110

()n P P ?-=?'='12S /q σ

点极化强度矢量为界面下邻域靠近点极化强度矢量,为界面上邻域靠近a a 21P P ,二者一般并不相等,所以界面上存在极化电荷分布。

实例讨论:

1)1,3为真空,2为介质

00

11==P P 区

区b a

n P 2=?='n P σ

E

00

0022>'>'<σσn n P b P a 区<区

极化电荷产生的电场在介质中将削弱原来的外电场。

2)2是媒质 1为金属

n P 22110

0=?='?==n P P E σ

1)2)两种媒质的分界面 n n P P 12-='σ

§5 电位移矢量D 有介质时高斯定理

1 电位移矢量D 有介质时高斯定理 简述真空中的高斯定理 介质存在时新现象

有极化电荷存在,但此电荷产生电场的规律自由电荷相同。 总电场为 电荷产生的电场介质中极化产生的电场

自由电荷q q '''

+=E E E E E 0

0 由电荷激为电场的因果关系图可知:

若自由电荷和介质的分布给定,则

总电场确定,总电场与q 之间存在对

应的关系。即可由q 和介质材料的性能来表示总电场,不必一定要求极化电荷分布。

()∑?∑??-='+==?)

d q (/q q /Q d S P S E 0

000

1

εεε

()∑?=?+0

q d S P E ε

令 P E D +=0ε 定义为电位移矢量

电位移矢量为辅助物理量,无具体的物理意义。 由此可得介质中的高斯定理为

q

d S

=??S D

D 为中间桥梁量,需要给出其与电场强度的关系式,才有实用价值 设介质为各向同性的介质,则有

E P 0χε=

()E

E E

E P E D εχεεχεε=+=+=+=1000

()()()相对介电常数为介质的相对电容率

绝对介电常数为介质的电容率

001εεεχεε/r =+= 任何电介质真空=0000>>=χεχεε

ε 越大削弱介质中电场的能力就越强,则耐电压程度高,即介电性能

好。所以电容一般通过在其极板间充满介质来提高其耐电压能力。

由 0

q d S =??S D 和 E D ε= 两式可知,只要知道介质的电容率ε和自由电荷分布q 0,就可按真空情况 中的方法来处理对应的介质静电场问题。 所以电容一般通过在其极板间充满介质来提高其耐电压能力。 证明均匀介质中的极化电荷密度为零。

000

00

ρεχεετεχεε

χ

ετεχετ

ρ-=?-==

??-=??=

'??常数

其中q d d D P S

D S P

在介质中,一般不存在自由电荷,即

0='?

=ρρ

可见,极化电荷为零不一定就是均匀极化。 2、介质中的高斯定理的应用

例题1、半径为R ,电量为q 的金属球埋在绝对电容率为ε的均匀介质中,求电场分布以及极化电荷分布。

电场分布分析:

由于球对称性,自由电荷和极化电荷分布均为球对称,所以 电场和电位移矢量的分布亦为球对称。 作如图所示的球形高斯面

r E r D ?r q ?r q q D r 2

22

444πεππ=?=?= (球外)

0E = (球内)对于均匀介质,其极化电荷的体密度为零

()()r

P n P n P P 0

P E P ??=?=?-='=-=2212201σεε ()()

()

002

04σε

εεε

εεπεεεσ--

=--

=--

='R q

+E

讨论:a ) 极化电荷与自由电荷异号,电场极化所致。

b ) 交界面上的总电荷为

q

q q R q <'?--

='='ε

εεσπε0

24

极化电荷产生的电场只能部分削弱自由电荷在介质中产生的电场,介质中仍然存在电场,但比对应真空情况要弱。

c ) 总电场与自由电荷产生的电场的比值。

1440

2020<=εεπεπε???? ????? ??=r q /r q E E

11100<=--='

+='+εεεεεq q q q q 总电荷减少到原来的r /ε1倍; 总电场减少到原来的r /ε1倍。

极化电荷对电场有一定的屏蔽作用。从能量的角度讲,电场削弱了,能量减少了,其原因在于介质极化时要消耗掉部分电场能量。 例题2 平行板电容器中充满电容率为ε均匀介质,已知两极板电荷等是异号,求电容和化电荷。 1)求电场

由对称性可知,电场和电位移分布如图所示。板外电场为零。

越过01σ面作柱形高斯面,有

n E εσσσ01

01

01=

?=?

=D S

DS

2)求极化电荷分布

()式对应

与极化电荷体密度关系=-010

011

σε

εεεεσ--=?--=?'n E n P 均匀介质极化电荷的体密度为零。 由电荷守恒律可得,

σσσσ'-='?='+'2

21

0S S 3)求电容

2

01

σ02

σ2n

E

εεσS d

q d Ed U 001===

d S U q C ε==

0 100>=εε/C /C

当电容器中填充电介质时,其电容值将增大到r ε倍。

其原因是由于极化电荷削弱了自由电荷的场,在相同自由电荷的情况下,介质电容器的极间电压降低。

此时电容器的耐压能力和储能能力都被提高。

§6 有介质时静电场方程

=?==??∑?l

S

d q

d l E E

D S D ε

此为静电场和积分方程,还有对应的微分方程。有侍后续讨论

§7 电场的能量

静电体系的静电能

多个导体系统

多个点电荷系统连续分布的电荷体系∑∑?=====

n

i i

i m

i i

i U Q W U q W UdV W 1

1212121

ρ

W 与电荷相取联系,并非电能储存在带电体中此仅只是一种数量关系。 实质上电能是定域在场所充斥的空间中,由电场所携带。

电场强的地方,则能量分布相对比较集中,能量的量化表示应与电场强度矢量相关。引入能量密度描述电场的能量分布。

讨论均匀电场这种特殊情况,导出能量密度表示式 电容器中的电场为均匀场,其电能为

E D E D E E ?=?==

???

?

? ??=V V W w V d U d S CU W 2

1

2

1

21

21212

2εε==

此由特殊情况导出的电场能量密度表示结果,可推广到任意情况。此式表明电场可能是一种物质。

全空间的电场能量表示式为

???=

=V dV wdV W E D 21

例题1 半径为R 带电为Q 0的导体球处在电容率为ε的均匀介质中,求电场

能。

R

r ?r Q R r ?r Q >=>=

r E r D 2

2

44πεπ

R

Q dr r Q dr r r Q W R R εππεππε818416212022024

22

0=

==??∞∞

或由导体系统的电能公式计算,

R Q R Q Q U Q W i i i πεπε8421

212

00011=

==∑=

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

电介质中电场

第九章 导体和电介质中的静电场 §9-1静电场中的导体 一.导体的静电平衡条件 1.静电感应现象 a.静电感应:外电场的作用导致导体中电荷重新分布而呈现出带电的现象 b.静电平衡状态:导体内部和表面上都没有电荷的定向移动状态 2.导体的静电平衡条件 (1).静电平衡条件: a.导体内部任何一点的场强为零 b.导体表面上任何一点的场强方向垂直于该点的表面 (2).等价条件: 静电平衡时,导体为等势体. 证:设a 和b 为静电平衡导体上任意两点 单位正电荷由a 移到b ,电场力的功为 b a b a U U l d E -=?? U ?= (1).a 、b 在导体内部: 0=E 0=?∴U (2).a 、b 在导体表面: l d E ⊥0=?∴l d E 即0=?U ----静电平衡的导体是等势体 二.静电平衡导体的电荷分布 1.导体处于静电平衡时,导体内部没有净电荷,电荷只能分布在导体表面上 证:在导体内任一点P 处取一任意小的高斯面S 静电平衡导体内0≡E ?=?∴S S d E 0 →0=∑内 S i q ----体内无净电荷 即电荷只能分布在导体表面上 2.有空腔的导体:设空腔导体带电荷Q 空腔内没有电荷时:导体内部和空腔内表面上都没有净电荷存在,电荷只分布在导体外表面 证:在导体内作一包围空腔的高斯面 S 导体内0≡E ?=?∴S S d E 0 导体的静电感应过程 静电平衡状态 + + + +

即 0=∑内 S i q ----S 内无净电荷存在 问题:会不会出现空腔内表面分布有等量 异号电荷的情况呢? 空腔内有电荷q 时:空腔内表面感应出等值异号电量-q ,导体外表面的电量为导体原带电量Q 与感应电量q 的代数和 由高斯定理和电荷守恒定律可证 3.静电平衡导体,表面附近场强的大小与 该处表面的电荷面密度成正比 证:过紧靠导体表面的P 点作垂直于导体 表面的小圆柱面,下底△S ’在导体内部 ??S S d E ???=S S d E S E ?=0 εσS ??= εσ= ∴E 4.静电平衡导体,表面曲率越大的地方,电荷面密度越大 以一特例说明: 设有两个相距很远的导体球,半径分别 为R 和r (R >r ),用一导线将两球相连 R Q U R 041πε= R R R 02 44πεσπ= εσR R = r q U r 041 πε=r r r 0244πεσπ= 0εσr r = r R R r =∴ σσ 三.导体静电平衡特性的应用 1.尖端放电 年美富兰克首先发明避雷针 2.静电屏蔽 静电屏蔽:隔绝电的相互作用,使内外互不影响的现象. a.对外电场的屏蔽 ++ ++ +

静电场中的导体和电介质作业

第6章 静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一 种情况? [ ] (A)对球壳内外电场无影响 (B)球壳内外电场均改变 (C)球壳内电场改变, 球壳外电场不变 (D)球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ](A)表面上电荷密度较大处电势较高(B)表面上曲率较大处电势较高 (C)表面上每点的电势均相等(D)导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ](A)导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C)导体内的电势与导体表面的电势相等 (D)导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ](A)导体内任一点与其表面上任一点的电势差为零 (B)表面曲率较大处电势较高 (C)导体内部的电势比导体表面的电势高 (D)表面上电荷密度较大处电势较高 5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) 2q (B)2 q -(C)q (D)q - 6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若 使q 偏离球心, 则表面电荷分布情况为 [ ] (A)内、外表面仍均匀分布(B) 内表面均匀分布, 外表面不均匀分布 (C)内、外表面都不均匀分布 (D)内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比σm /σn 为 [ ] (A)n m (B)m n (C)22n m (D)22m n 8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A)0(B)-q (C)2Q q +-(D)2 Q q + T6-1-1图 T6-1-5图 T6-1-8图

精选高中物理静电场知识点总结及题型分析.doc

静电场 一、静电场公式汇总 1、公式计算中的 q、φ的要求 电场中矢量(电场力 F、电场 E)的运算:q 代绝对值 电场中标量(功 W 、电势能 E p、电势差 U AB、电势φ)的运算:q 、φ 代正、负 2、公式: (1)点电荷间的作用力: F=kQ1Q2/r 2 (2) 电荷共线平衡:Q 外1 Q 外 2 Q 内 Q 外 1 Q 内 Q 外2 ... ( 3)电势φA: φA=Ep A /q (φA电势 =Ep A电势能 / q 检验电荷量;电荷在电场中某点的电势能与电荷量的比值跟试探电荷无关) (4)电势能 Ep A:Ep A=φA q (5)电场力做的功 W AB W=F d =F S COSθ=Eqd W AB=E pA-E pB W AB= U AB q(电场力做功由移动电荷和电势差决定,与路径无关)( 6)电势差 U AB: U AB=φA-φB(电场中,两点电势之差叫电势差) U AB=W AB / q(W AB电场力的功) U= E d(E数值等于沿场强方向单位距离的电势差) ( 7)电场强度 E E=F/q(任何电场); E kQ / r 2(点电荷电场);E U /d (匀强电场) ( 8)电场力: F=E q (9)电容:C Q (10)平行板电容器: C S U 4 kd 3、能量守恒定律公式 ( 1)、动量定理:物体所受合外力的冲量等于它的动量的变化 . 公式: F 合 t = mv 2一 mv1(解题时受力分析和正方向的规定是关键) 动量守恒定律:相互作用的物体系统 , 如果不受外力 , 或它们所受的外力之和为零 , 它们的总动量保持不变 . (研究对象:相互作用的两个物体或多个物体) 公式: m1v1 + m 2 v2 = m 1 v 1' + m2 v2'

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

静电场经典例题分析

《静电场》经典例题分析 1、已知π+介子、π-介子都是由一个夸克(夸克u或夸克d)和一个反夸克(反夸克u或反夸克d)组成的,它们的带电荷量如下表所示,表中e为元电荷. π+π-u d u d 带电荷量+e-e+2 3 e- 1 3 e- 2 3 e+ 1 3 e 下列说法正确的是( ) A.π+由u和d组成B.π+由d和u组成 C.π-由u和d组成 D.π-由d和u组成 思维建模——库仑力作用下的平衡问题 2、如图所示,在一条直线上有两个相距0.4 m的点电荷A、B,A带电荷量+Q,B带电荷量-9Q.现引入第三个点电荷C,恰好使三个点电荷都处于平衡状态,问:C应带什么性质的电?应放于何处?所带电荷量为多少? 3题图 3、如图所示,大小可以忽略不计的带有同种电荷的小球A和B相互排斥,静止时绝缘细线与竖直方向的夹角分别为α和β,且α<β,两小球在同一水平线上,由此可知( ) A.B球受到的库仑力较大,电荷量较大

B.B球的质量较大 C.B球受到的拉力较大 D.两球接触后,再处于静止状态时,悬线的偏角α′、β′仍满足α′<β′ 4、如图所示,完全相同的两个金属小球A和B带有等量电荷,系在一个轻质绝缘弹簧两端,放在光滑绝缘水平面上,由于电荷间的相互作用,弹簧比原来缩短了x0.现将与A、B 完全相同的不带电的金属球C先与A球接触一下,再与B球接触一下,然后拿走,重新平衡后弹簧的压缩量变为( ) A.1 4 x0 B. 1 8 x0 C.大于 1 8 x0 D.小于 1 8 x0 5、AB和CD为圆上两条相互垂直的直径,圆心为O.将电荷量分别为+q和-q的两点电荷放在圆周上,其位置关于AB对称且距离等于圆的半径,如图所示.要使圆心处的电场强度为零,可在圆周上再放一个适当的点电荷Q,则该点电荷Q( ) A.应放在A点,Q=2q B.应放在B点,Q=-2q C.应放在C点,Q=-q D.应放在D点,Q=q 6、(2014·华南师大附中高二检测)

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球 A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有 ∑=0q 而导体的电势V ≠0。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答:必须注意以下两点: (1)这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2)静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答:不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6为什么不能使一个物体无限制地带电? 答:所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答:当施感电荷Q接近于一导体时,导体上出现等量异号的感应电荷±q′。其分布一方面与导体的表面形状有关,另一方面与施感电荷Q有关,导体靠近Q的一端,将出现与

第三章静电场中的电介质

第 三 章 静电场中的电介质(6学时) 一、目的要求 1.掌握电介质极化机制,熟悉极化强度、极化率、介电常数等概念。 2.会求解极化强度和介质中的电场。 3.掌握有介质时的场方程。 4.理解电场能量、能量密度概念,会求电场的能量 。 二、教学内容与学时分配 1.电介质与偶极子( 1学时) 2.电介质的极化(1学时) 3.极化电荷(1学时) 4.有电介质时的高斯定理(1学时) 5.有介质的场方程(1学时) 6.电场的能量(1学时) 三、本章思路 本章主要研究电介质在静电场中的特性,其基本思路是:电介质与偶极子→电介质的极化→电介质的极化规律 →有介质的静电场方程 →静电场的能量。 四、重点难点 重点:有介质的静电场方程 难点:电介质的极化规律。 五、讲授要点 §3.1 电介质与偶极子 一、教学内容 1.电介质概述 2.电介质与偶极子 3.偶极子在外电场中受到的力矩 4.偶极子激发的静电场 二、教学方式、 讲授 三、讲课提纲 1.电介质概述 电介质是绝缘材料,如橡胶、云母、玻璃、陶瓷等。 特点:分子中正负电荷结合紧密,处于束缚状态,几乎没有自由电荷。 当导体引入静电场中时,导体对静电场有很大的影响,因静电感应而出现的感应电荷 产生的静电场在导体内部将原场处处抵消,其体内00='+=E E E ,且表现出许多特性,如导体是等势体、表面是等分为面、电荷只能分布在表面等;如果将电介质引入电场中情况又如何呢?实验表明,电介质对电场也有影响,但不及导体的影响大。它不能将介质内

部的原场处处抵消,而只能削弱。介质内的电场00≠'+=E E E 。 2.电介质与偶极子 (1)电介质的电结构 电介质原子的最外层电子不像金属导体外层电子那样自由,而是被束缚在原子分子上,处于事缚状态。一般中性分子的正负电荷不止一个,且不集中于一点,但它们对远处一点的影响可以等效为一个点电荷的影响,这个等效点电荷的位置叫做电荷“重心”。分子中电荷在远处一点激发的场近似等于全部正负电荷分别集中于各自的“重心”时激发的场,正负电荷“重心”重合在一起的称无极分子,如 H ,N ,CO 等。正负电荷“重心”不重合在一起的称有极分子,像SO ,H O,NH 等。这样一个分子等效为一个偶极子。 (2)偶极子 两个相距很近,带等量异号电量的电荷系统叫做偶极子 ①偶极子在外场中受到的力矩 均匀外场中,0=∑F 但受到一个力矩:θθθsin sin *2*sin *2*qLE L F L F T =+= 定义:L q P = 称为偶极子的偶极矩,上式可写为: E P T ?= 满足右手螺旋关系 Q 、L 可以不同。但只要其乘积qL 相同,力矩便相同。此力矩总是企图使偶极距转到 外电场的方向上去; 非均匀外场中,0≠∑F ∑≠0T 如摩擦事的笔头吸引纸屑,其实质就是纸屑在笔头电荷的非均匀电场中被极化,等效为偶极子,偶极子受到非均匀电场的作用力(指向场强增大的方向)而向笔头运动。 ②偶极子的场 中垂面上一点的场强:场点到的距离相等,产生的场强大小相等为: 但它们沿垂线方向分量互相抵消,在平行于连线方向分量 相等,故有: 延长线上一点的场强 向右,向左,故总场强大小为 偶极子在空间任一点的场强 4 412 20l r q E E + = =-+πε2322 )4(41 2l r ql COS E E πεθ+==+⊥20)2(41l r q E -= +πεE =-3 02220220//42]) 4 (241 )2(1 )2(1 [4r P l r qlr l r l r q E E E πεπεπε≈-=+--=-=-+ 图3-3 图3-4 +q -q 图3-1 图 3-2

静电场中的导体和电介质

第十章 大学物理辅导 静电场中的导体和电介质 ~53 ~ 第十章 静电场中的导体和电介质 一、教材的安排与教学目的 1、教材安排 本章的教材安排,讲授顺序可概括为以下五个方面: (1)导体的静电平衡; (2)电介质的极化规律; (3)电位移矢量和有介质时的高斯定理; (4)电容和电容器; (5)电容器的储能和电场的能量。 2、教学目的 本章的教学目的是: (1)使学生确切理解并掌握导体的静电平衡条件及静电平衡导体的基本性质; (2)使学生了解电介质极化的机构,了解极化规律;理解电位移矢量的定义和有介质时的高斯定理; (3)使学生正确理解电容概念,掌握计算电容器的方法。 (4)使学生掌握电容器储能公式,并通过电容器的储能了解电场的能量。 二、教学要求 1、掌握导体的静电平衡条件,明确导体与电场相互作用的大体图象; 2、了解电介质的极化规律,清楚对电极化强度矢量是如何定义的,明确极化强度由总电场决定,并且'=σθP cos ; 3、理解电位移矢量的定义,注意定义式 D E P =+ε0是普遍适用的,明确 D 是一个 辅助矢量; 4、掌握有介质时的高斯定理; 5、掌握电容和电容器的概念,掌握电容器电容的计算方法; 6、了解电容器的储能和电场能量 三、内容提要 1、导体的静电平衡条件 (1)导体的静电平衡条件是导体内部场强处处为零。所谓静电平衡,指的是带电体系中的电荷静止不动,因而电场分布不随时间而变化。导体的特点是体内存在着自由电荷,它们在电场作用下可以移动从而改变电荷的分布。电荷分布的改变又会影响到场的分布。这样互相影响,互相制约,最后达到静电平衡。 (2)从导体的静电平衡条件出发,可以得出三个推论 导体是个等势体,表面是个等势面; 导体表面外侧的场强方向处处垂直于表面,并且有导体内部无净电荷,即电荷体密度,电荷只分布在导体表面。 ;E =??? ??? =σερ00 2、电介质的极化规律

第十章 静电场中的电介质

第九章 静电场中的导体 9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为 (A) 3 2r U R . (B) R U 0. (C) 2 0r RU . (D) r U 0 . [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离 板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 2εσ . (C) 0εσh . (D) 0 2εσh . [ A ] 9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定 一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B) d q 04επ. (C) R q 04επ-. (D) )1 1(4 R d q -πε. [ D ] 9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此 点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变. [ B ] 9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:

(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀. (D) 内表面不均匀,外表面也不均匀. [ B ] 9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. [ D ] 9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势. 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 a dq U q 04επ= ?-a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ= a q 04επ- b q Q 04επ++ )111(40b a r q +-π=εb Q 04επ+ 9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布. (2) 面上感生电荷的总电荷.

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

大学物理课后答案第七章静电场中的导体和电介质(精)

习题7 27-2 三个平行金属板A,B和C的面积都是200cm,A和B相距4.0mm,A与 C相距2.0 mm.B,C都接地,如题7-2图所示.如果使A板带正电3.0×-710C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少? 解: 如题7-2图示,令A板左侧面电荷面密度为σ1,右侧面电荷面密度为σ 2 题7-2图 (1)∵ UAC=UAB,即 ∴ EACdAC=EABdAB ∴ σ1EACdAB===2 σ2EABdAC qA S且σ1+σ2= 得σ2=qA2q, σ1=A 3S3S 而 qC=-σ1S=-2qA=-2?10-7C 3 qB=-σ2S=-1?10-7C (2) UA=EACdAC= σ1dAC=2.3?103V ε0 7-3 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电+q;球壳内表面带电则为-q,外表面带电为+q,且均匀分布,其电势

题7-3图 U=?∞ R2 ∞E?dr=?qdrq= R24πεr24πε0R0 (2)外壳接地时,外表面电荷+q入地,外表面不带电,内表面电荷仍为-q.所以球壳电势由内球+q与内表面-q产生: U=q 4πε0R2-q4πε0R2=0 (3)设此时内球壳带电量为q';则外壳内表面带电量为-q',外壳外表面带电量为-q+q' (电荷守恒),此时内球壳电势为零,且 UA=q' 4πε0R1-q'4πε0R2+-q+q'=0 4πε0R2 得 q'= 外球壳上电势 R1q R2 -q+q'(R1-R2)q= 24πε0R24πε0R2UB=q'4πε0R2-q'4πε0R2+ 7-4 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d=3R 处有一点电荷+q,试求:金属球上的感应电荷的电量. 解: 如题8-24图所示,设金属球感应电荷为q',则球接地时电势U O=0 7-4图

静电场知识点归纳

一. 教学内容: 期中综合复习及模拟试题 静电场的复习、恒定电流部分内容(电源电流、电动势、欧姆定律、串并联电路) 二. 重点、难点解析: 静电场的概念理解及综合分析 恒定电流的电流,欧姆定律和串并联电路 三. 知识内容: 静电场知识要点 1. 电荷、电荷守恒定律 2. 元电荷:e=1.60×10-19C 3. 库仑定律: 4. 电场及电场强度定义式:E=F/q ,其单位是N/C 5. 点电荷的场强: 6. 电场线的特点: ①电场线上每点的切线方向就是该点电场强度的方向。 ②电场线的疏密反映电场强度的大小(疏弱密强)。 ③静电场中电场线始于正电荷或无穷远,止于负电荷或无穷远,它不封闭,也不在无电荷处中断。 ④任意两条电场线不会在无电荷处相交(包括相切) 7. 静电力做功的特点:在任何电场中,静电力移动电荷所做的功,只与始末两点的位置有关,而与电荷的运动路径无关。 8. 电场力做功与电势能变化的关系:电荷从电场中的A点移到B点的过程中,静电力所 做的功与电荷在两点的电势能变化的关系式 9. 电势能:电荷在电场中某点的电势能,等于静电力把它从该点移动到零电势能位置时电场力所有做的功。通常把大地或无穷远处的电势能规定为零。 10. 电势 11. 电势差。电势差有正负:= -。 12. 等势面:电场中电势相等的各点构成的面叫等势面。 等势面的特点: ①在同一等势面上各点电势相等,所以在同一等势面上移动电荷,电场力不做功。 ②电场线跟等势面一定垂直,并且由电势高的等势面指向电势低的等势面。 ③等势面越密,电场强度越大 ④等势面不相交,不相切 13. 匀强电场中电势差与电场强度的关系:

《静电场》教材分析

《静电场》教材分析 开发区第八高级中学王成志 课程标准的要求: 1.了解静电现象及其在生活和生产中的应用,用原子结构和电荷守恒的知识分析静电现象。 2.知道点电荷,体会科学研究中的理想模型方法。知道两个点电荷间相互作用的规律。通过静电力与万有引力的对比,体会自然规律的多样性与同一性。3.了解静电场,初步了解场是物质存在的形式之一。理解电场强度。会用电场线描述电场。 4.知道电势能、电势,理解电势差。了解电势差与电场强度的关系。 5.观察常见电容器的构造,了解电容器的电容。举例说明电容器在技术中的应用。 一、课时安排建议: 第一节:电荷及其守恒定律一课时 第二节:库仑定律一课时 第三节:电场强度二课时 第四节:电势能和电势三课时 第五节:电势差一课时 第六节:电势差和电场强度的关系一课时 第七节:静电现象的应用一课时 第八节:电容器的电容二课时 第九节:带电粒子在电场中的运动二课时 二、教材总体分析及特点 整体线索:教科书从电荷在电场中受力入手,引入电场强度的概念,明确它是表示电场强弱的物理量。然后,通过将电场力做功与路径无关和重力做功与路径无关类比,得出电荷在电场中具有由位置决定的能量——电势能。在此基础上,同引入电场强度的方法相同(比值定义法),引入电场的另一种描述,即电势的概念。这样,通过几个相关物理概念的讨论,完成对静电场性质的初步认识。在此基础上,通过核心内容的拓展和应用,如静电感应想象的应用、电容器的电容、带电粒子在电场中的运动等,提高学生综合运用物理知识的能力。 任何场的描述都要从两个角度来描述,一个是力的方面;另一方面是能的方面。本章的内容是电学的基础,也是学习后两章(恒定电流和磁场)的准备知识。本章的核心内容,简单概括就是(六个二)即是电场强度和电势这两个概念,具体研究点电荷电场和匀强电场这两种电场,有电荷守恒定律和库仑定律两个基本规律,介绍电场线和等势线两种图线,讨论静电感应和电容器两个具体问题,分析带电粒子在电场中加速和偏转两种运动。

ANSYS电场分析教程(经典入门教程)

ANSYS电场分析指南 关键字: ANSYS 电场分析 CAE教程 静电场分析(h方法) 14.1 什么是静电场分析 静电场分析用以确定由电荷分布或外加电势所产生的电场和电场标量位(电压)分布。该分析能加二种形式的载荷:电压和电荷密度。 静电场分析是假定为线性的,电场正比于所加电压。 静电场分析可以使用两种方法:h方法和p方法。本章讨论传统的h方法。下一章讨论p方法。 14.2h方法静电场分析中所用单元 h方法静电分析使用如下ANSYS单元: 14.3h方法静电场分析的步骤 静电场分析过程由三个主要步骤组成: 1.建模 2.加载和求解 3.观察结果 14.3.1 建模 定义工作名和标题:

命令:/FILNAME,/TITLE GUI:Utility Menu>File>Change Jobname Utility Menu>File>Change Title 如果是GUI方式,设置分析参考框: GUI:Main Menu>Preferences>Electromagnetics:Electric 设置为Electric,以确保电场分析所需的单元能显示出来。之后就可以使用ANSYS前处理器来建立模型,其过程与其它分析类似,详见《ANSYS建模和分网指南》。 对于静电分析,必须定义材料的介电常数(PERX),它可能与温度有关,可能是各向同性,也可能是各向异性。 对于微机电系统(MEMS),最好能更方便地设置单位制,因为一些部件只有几微米大小。详见下面MKS制到μMKSV制电参数换算系数和MKS制到μMSVfA制电参数换算系数表 自由空间介电常数等于8.0854E-6pF/μm

静电场中的导体和电介质

静电场中的导体和电介质 引文: 产生静电场的源电荷通常来自金属导体上的自由电荷和绝缘介质上的极化电荷,当然还有一种空间电荷,它不依赖于任何载体。 静电场的基本规律是普适的,与源电荷的来源和产生机制无关。 一.导体 1.导体中自由电子气概念:经典电子论;原子实按一定秩序构成晶格,价电子 做共有化运动,充满自由电子气 2.导体达到静电平衡状态后,在导体外部,由原外场和附加场叠加而成的总场 一般呈现复杂的分布,这相当程度上源于附加场的复杂性。(附加场不仅在导体内部起到抵消原外场的作用,在导体外部也必定产生场强) 3.导体静电平衡条件 a.静电平衡导体内部体电荷密度处处为零 b.带电的或电中性的导体,其电荷分布于表面,这种自由电荷面分布来保证导体内部合场强为零 注:对于导体静电平衡条件的论证通常总是反证法思辩之。即若其中一条特性不被满足,则必有或违背静电场的高斯定理,或违背的静电场的环路定理,或违背已知的导体静电平衡条件 4. 解决导体静电问题的理论基础:静电平衡条件静电场的高斯定理和环路定理 5. 导体静电平衡的唯一性定理:当导体系中各导体的电量(或电势)被给定,则满足导体静电平衡条件的电荷分布(或电量分布)是唯一的,从而空间电场分布也是唯一的 当然,同任何数学上或物理上的唯一性定理一样,导体静电平衡的唯一性定理仅指明其解是唯一的,并不回答这唯一的解是什么,求解结果有赖于导体静电平衡条件及其他相关的物理定理求得。当然,也可以凭借经验和对称性分析而给出一试探解,若其满足导体内部合场强为零,则这试探解就是唯一正确的解,要注意这种思维方式的运用。 6. 单一导体表面不可能出现异号电荷分布;单一导体表面曲率半径越小处,表面电荷密度越大,其外侧场强越大 7. 一类空腔导体和静电屏蔽的第一种含义:空腔内没有电荷或其他带电体 一类空腔导体静电平衡特性: a.内表面电荷密度处处为零,电荷全部分布在外表面 b.在空腔区域和导体内部(实心区域)合场强为零 c.先前确定的有关导体静电平衡的所有条件 注:一类空腔导体在空腔区域和导体内部(实心区域)合场强为零是依赖其外表面电荷分布来实现的,这与无空腔的实心导体无异。换言之,若在实心导体中挖除一个空腔,则无论其空腔大小,形状和位置如何,都不会改变导体原面电荷分布。 静电屏蔽的第一种含义:一类空腔导体通过自身外表面自由电荷的重新分布,而屏蔽了空间其他带电体对空腔内部场强的影响,使合场强为零得以保证,即

第九章 导体和电介质中的静电场

第九章 导体和电介质中的静电场 一、基本要求 1.掌握导体静电平衡条件和在静电平衡时导体的电特性,并能熟练地求出几何形状比较规则的导体内外的场强和电势。 2.理解电介质极化概念,掌握有介质时的高斯定理,确切理解电介质中的场强、电位移、和极化强度的物理意义及其关系,并能熟练地求出几何形状比较规则的各向同性的均匀介质内外的场强和电势; 3.确切理解电容器电容概念,掌握计算电容的方法和电容器串、并联时电荷、电压分配的规律。 4.掌握电容器的储能公式,了解电场能量和能量密度概念。 二、基本概念和规律 1.静电场中的导体 1)导体的静电平衡条件 所谓导体的静电平衡是指在静电场中,导体内没有电荷的定向运动。 但必须指出:导体的静电是一种动态平衡。即导体内不存在电荷的宏观定向运动,然而导体内带电粒子的微观热运动仍然存在。 导体的静电平衡条件:导体内场强处处为零。 2)静电平衡时导体的电特性 由导体的静电平衡条件和高斯定理、环路定理导出静电平衡时导体的电特性。 a.导体内场强处处为零。 b.导体表面处场强处处与它的表面垂直,且ε σ = E 。式中,σ为导体表面的面电荷密度,E 为总场强,是由空间中所有电荷激发的。 c.导体是个等势体,导体表面是个等势面。 d.净电荷只分布在导体的表面,导体内处处没有未被抵消的净电荷。 对于弧立的、形状比较简单的导体,一般说来,表面曲率大的地方,面电荷密度大,表面曲率小的地方,面电荷密度小。 e.对导体空腔 当导体空腔内无带电体时:导体壳的内表面处处没有净电荷,净电荷只能分布在其外表面上;空腔内的场强处处为零,整个空腔内的电势和导体壳的电势相等。 当导体空腔内有带电体时:导体壳的内表面所带电荷与空腔内电荷的代数和为零。 无论导体空腔内有无带电体,空腔内的电场分布不受外部电场的影响;一个接地的导体空腔,其内、外电场互不影响。

静电场教材分析

《静电场》教材分析及课标解读 兰州市教育科学研究所黄晖 一、课程标准的要求 1.了解静电现象及其在生活和生产中的应用,用原子结构和电荷守恒的知识分析静电现象。 2.知道点电荷,体会科学研究中的理想模型方法。知道两个点电荷间相互作用的规律。通过静电力与万有引力的对比,体会自然规律的多样性与同一性。 3.了解静电场,初步了解场是物质存在的形式之一。理解电场强度。会用电场线描述电场。 4.知道电势能、电势,理解电势差。了解电势差与电场强度的关系。 5.观察常见电容器的构造,了解电容器的电容。举例说明电容器在技术中的应用。 课时安排建议: 第一节:电荷及其守恒定律一课时 第二节:库仑定律一课时 第三节:电场强度二课时 第四节:电势能和电势三课时 第五节:电势差一课时 第六节:电势差和电场强度的关系一课时 第七节:静电现象的应用一课时 第八节:电容器的电容二课时 第九节:带电粒子在电场中的运动二课时 二、教材总体分析及特点 (一)本章知识呈现的整体线索 任何场的描述都要从两个角度来描述,一个是力的方面;另一方面是能的方面。本章的内容 是电学的基础,也是学习后两章(恒定电流和磁场)的准备知识。本章的核心内容,简单概括为“六个二”:电场强度和电势这两个概念,具体研究点电荷电场和匀强电场这两种电场,有电荷 守恒定律和库仑定律两个基本规律,介绍电场线和等势线两种图线,讨论静电感应和电容器两个 具体问题,分析带电粒子在电场中加速和偏转两种运动。 基本概念多而抽象,是这一章的突出特点。针对这个特点教材注意从具体情况出发引入概念,注意适当的论证;注意通过实验,激发学生的学习热情,使学生了解探究的过程和方法,弄清概念的物理意义。如电场强度的概念,学生应该明确的知道电场强度是表示电场强弱的物理量,因而首先应该知道什么是电场的强弱。相同试探电荷放在电场中的不同点,受到电场力大的点,电场强;受到电场力小的点,电场弱。理解抽象的概念,不能停留在字面上,一定要把事实、背景弄清楚。把分析过程弄清楚。本章的另一个特点是综合性比较强,许多知识要在力学知识的基础上学习。教材在内容选择、确定讲述方法时注意了这个特点,教学中要通过类比,把新旧知识联系起来,由旧知识过度到新知识,学生更容易接受和理解。 (二)教材编写特点 1.强调对概念的基本研究方法的学习 使物体带电的实质就是电子的转移。物体失去电子而带正电,物体得到电子而带负电。在电子转移的过程中,电荷的总量保持不变的。这就是电荷守恒定律。在对静电场的研究中,不仅可 以了解电荷之间相互作用的规律、静电场的性质,而且还会应用科学研究的基本方法,如假设法、类比法、对称性原则等。 2.加强与生活、技术、社会的联系 本教材非常注意物理知识与生活、技术、社会的联系。教材通过“科学漫步”栏目,让学生 认识到静电现象在技术中有广泛的应用,如静电喷漆、静电植绒、静电复印、雷火炼殿等。在

相关主题
文本预览
相关文档 最新文档