当前位置:文档之家› 可编程序控制器系统的抗干扰及措施

可编程序控制器系统的抗干扰及措施

可编程序控制器系统的抗干扰及措施
可编程序控制器系统的抗干扰及措施

可编程序控制器系统的抗干扰及措施

可编程控制器(以下称PLC)是一种用于工业生产自动化控制的设备。尽管其制造厂采取了一些措施,使得它的可靠性较高,但还有许多外部因素也会使它产生干扰,造成程序误变或运算错误,从而产生误输入井引起误输出,这将会造成设备的失控和误动作。要提高PLC控制系统可靠性,一方面要求PLC生产厂家用提高设备的抗干扰能力;另一方面,要求工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。随着PLC应用的日渐广泛,其抗干扰问题也显得日益重要。本文就此问题提出一些抗干扰的措施。

一、控制系统中干扰及其来源

1、干扰源及一般分类

影响PLC控制系统的干扰源与一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。

干扰类型通常按干扰产生的原因、噪声干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭

加所形成。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。

2、PLC系统中干扰的主要来源及途径

(1)来自空间的辐射干干扰

空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。若PLC系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;而是对PLC通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护。(2)来自系统外引线的干扰

主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。

a来自电源的干扰

PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,

入开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。PLC电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,绝对隔离是不可能的。

b来自信号线引入的干扰

与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC 控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。

c来自接地系统混乱时的干扰

接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。

PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电

流流过屏蔽层,当发生异常状态如雷击时,地线电流将更大。

此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。

(3)来自PLC系统内部的干扰

主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路

的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC制造厂对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门是无法改变,可不必过多考虑,但要选择具有较多应用实绩或经过考验的系统。

三、主要抗干扰措施

1、采用性能优良的电源,抑制电网引入的干扰

在PLC控制系统中,电源占有极重要的地位。电网干扰串入PLC控制系统主要通过PLC系统的供电电源(如CPU电源、I/O电源等)、变送器供电电源和与PLC系统具有直接电气连接的仪表供电电源等耦合进入的。现在,对于PLC系统供电的电源,一般都采用隔离性能较好电源,而对于

变送器供电的电源和PLC系统有直接电气连接的仪表的供电电源,并没受到足够的重视,虽然采取了一定的隔离措施,但普遍还不够,主要是使用的隔离变压器分布参数大,抑制干扰能力差,经电源耦合而串入共模干扰、差模干扰。所以,对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少PLC系统的干扰。

此外,位保证电网馈点不中断,可采用在线式不间断供电电源(UPS)供电,提高供电的安全可靠性。并且UPS还具有较强的干扰隔离性能,是一种PLC控制系统的理想电源。

2、电缆选择的敖设

为了减少动力电缆辐射电磁干扰,尤其是变频装置馈电电缆。笔者在某工程中,采用了铜带铠装屏蔽电力电缆,从而降低了动力线生产的电磁干扰,该工程投产后取得了满意的效果。

不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层敖设,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敖设,以减少电磁干扰。

3、硬件滤波及软件抗如果措施

由于电磁干扰的复杂性,要根本消除迎接干扰影响是不可能的,因此在PLC控制系统的软件设计和组态时,还应在软件方面进行抗干扰处理,进一步提高系统的可靠性。常用的一些措施:数字滤波和工频整形采样,可有效消除周期性干扰;定时校正参考点电位,并采用动态零点,可有效防止电位漂移;采用信息冗余技术,设计相应的软件标志位;采用间接

跳转,设置软件陷阱等提高软件结构可靠性。

信号在接入计算机前,在信号线与地间并接电容,以减少共模干扰;在信号两极间加装滤波器可减少差模干扰。

对干较低信噪比的模拟量信号.常因现场瞬时干扰而产生较大波动,若仅用瞬时采样植进行控制计算会产生较大误差,为此可采用数字滤波方法。现场模拟量信号经A/D

转换后变成离散的数字信号,然后将形成的数据按时间序列存入PLC内存。再利用数字滤波程序对其进行处理,滤去噪声部分获得单纯信号,可对输入信号用m次采样值的平均值来代替当前值,但井不是通常的每采样。次求一次平均值,而是每采样一次就与最近的m -l次历史采样值相加,此方法反应速度快,具有很好的实时性,输入信号经过处理后用干信号显示或回路调节,有效地抑制了噪声干扰。

由干工业环境恶劣,干扰信号较多,I/O信号传送距离较长,常常会使传送的信号有误。为提高系统运行的可靠性,使PLC在信号出错倩况下能及时发现错误,并能排除错误的影响继续工作,在程序编制中可采用软件容错技术。

4、正确选择接地点,完善接地系统

接地的目的通常有两个,其一为了安全,其二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。

系统接地方式有:浮地方式、直接接地方式和电容接地三种方式。对PLC 控制系统而言,它属高速低电平控制装置,应采用直接接地方式。由于信

号电缆分布电容和输入装置滤波等的影响,装置之间的信号交换频率一般都低于1MHz,所以PLC控制系统接地线采用一点接地和串联一点接地方式。集中布置的PLC系统适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。如果装置间距较大,应采用串联一点接地方式。用一根大截面铜母线(或绝缘电缆)连接各装置的柜体中心接地点,然后将接地母线直接连接接地极。接地线采用截面大于22mm2的铜导线,总母线使用截面大于60mm2的铜排。接地极的接地电阻小于2Ω,接地极最好埋在距建筑物10~15m远处(或与控制器间不大于50m),而且PLC系统接地点必须与强电设备接地点相距10m以上。

信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏电缆连接时,各屏蔽层应相互连接好,并经绝缘处理。选择适当的接地处单点接点。

五、结束语

以上的措施,经若干PLC控制系统现场实际运行表明,能够基本消除现场干扰信号的影响,保证系统的可靠运行。PLC控制系统中的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制抗干扰,对有些干扰情况还需做具体分析,采取对症下药的方法,才能够使PLC控制系统正常工作

单片机自身的抗干扰措施

单片机自身的抗干扰措施 为提高单片机本身的可靠性。近年来单片机的制造商在单片机设计上 采取了一系列措施以期提高可靠性。这些技术主要体现在以下几方面。 1.降低外时钟频率 外时钟是高频的噪声源,除能引起对本应用系统的干扰之外,还可能产 生对外界的干扰,使电磁兼容检测不能达标。在对系统可靠性要求很高的应用 系统中,选用频率低的单片机是降低系统噪声的原则之一。以8051 单片机为例,最短指令周期1μs时,外时钟是12MHz。而同样速度的Motorola 单片机系统时钟只需4MHz,更适合用于工控系统。近年来,一些生产8051 兼容单片机的厂商也采用了一些新技术,在不牺牲运算速度的前提下将对外时钟的需求 降至原来的1/3。而Motorola 单片机在新推出的68HC08 系列以及其16/32 位单片机中普遍采用了内部琐相环技术,将外部时钟频率降至32KHz,而内部总线速度却提高到8MHz 乃至更高。 2.低噪声系列单片机 传统的集成电路设计中,在电源、地的引出上通常将其安排在对称的两边。如左下角是地,右下角是电源。这使得电源噪声穿过整个硅片。改进的技 术将电源、地安排在两个相邻的引脚上,这样一方面降低了穿过整个硅片的电流,一方面使外部去耦电容在PCB 设计上更容易安排,以降低系统噪声。另一个在集成电路设计上降低噪声的例子是驱动电路的设计。一些单片机提供若干 个大电流的输出引脚,从几十毫安到数百毫安。这些大功率的驱动电路集成到 单片机内部无疑增加了噪声源。而跳变沿的软化技术可消除这方面的影响,办 法是将一个大功率管做成若干个小管子的并联,再为每个管子输出端串上不同 等效阻值的电阻。以降低di/dt。

外军通信抗干扰发展趋势

外军通信抗干扰发展趋势 1、跳频通信装备抗跟踪干扰能力日益提高,抗跟踪干扰已由定频通信抗自动瞄准式干扰发展到跳频抗跟踪干扰 外军提高跳频通信抗跟踪干扰能力的技术动态主要有两个方面,一是适当提高跳速,二是采用变速跳频。外军大部分20世纪80年代的跳频通信装备为中低跳速跳频,较新的跳频通信装备采用了中高跳速跳频,如美国的HF-2000,CHESS,HA VE-QUICKIIA,JTIDS及MILSTAR,瑞典的TRC-350,法国的ALCALTEL111等。值得注意的一点是外军有些跳频通信装备大幅度提高跳速并不是以提高抗跟踪干扰能力为出发点的,其主要目的是利用相应的技术体制,由高跳速提高数据传输速率,如:CHESS系统和JTIDS等。另外,提高跳速后,还将给交织和纠错带来方便。当然,提高跳速也会引起其他问题,需要综合考虑。变速跳频是抵抗跟踪干扰的有效措施之一,外军现役跳频电台中也有所采用,但还多是半自动变速或有限种跳速随机变速,有些是通过信令实现跳速牵引,还没有实现真正意义上的变速跳频,这里将其称为准变速跳频,如法国的ERM-9000,TRC-9600,南非的TRC-1600,TRC-600以及瑞典的SFH-41等。 2、跳频通信装备抗阻塞干扰技术逐步成熟 最初提出跳频抗干扰体制,实际上是基于频率分集原理,并以提高跳速为代价实现抗阻塞干扰为出发点的。后来由于数据传输速率越来越高,常规跳频体制的跳速难以适应,形成了实际上的慢跳频(无论绝对跳速多高)。因此,抗阻塞干扰能力一直是跳频通信的重要问题。长期以来很多国家都致力于跳频通信抗阻塞干扰技术的研究,有些成果已得到成功的应用。外军实用化研究成果主要有短波采用自适应选频与跳频相结合的体制,将经过LQA(链路质量分析)选出的最佳或准最佳频率作为跳频频率表生成的基准,如美国的SCl40、英国PATHER-2000、以色列的HF-2000,TRl78、法国的TRC-350H、南非的HF-6000,TRl78A/B,TR390以及瑞典的TRC-350等;超短波采用具有FCS(free channel searce)功能的跳频体制,在一般窄带干扰情况下,使用常规跳频,在遇到宽带阻塞干扰时,自动转到FCS功能,在当前最佳频点上定频工作,一旦宽带干扰消失,又可回到跳频方式上工作,如法国的PR4G、比利时的BAMS等;UHF波段采用了频率自适应与跳频相结合的体制,即在跳频通信过程中自动检测和删除受干扰频率,使系统在无干扰或干扰较弱的频点上跳频,如瑞典的RL-401系列跳频接力机等,但该跳频机在干扰严重时,无更有效的措施,只是自动回到常规跳频状态。 3、扩展频段成为通信抗干扰新的发展趋势 拓宽现有频段、发展多频段,不仅有利于协同通信和全谱作战,还有利于提高跳频通信抗阻塞干扰能力。在拓宽频段方面,外军少数短波电台的频段范围已拓宽到116~50MHz,如美国的M508,RF-500,AN/PRC-132短波电台等;少数超短波电台的频段范围拓宽到30~108 MHz,如比利时的BAMS、荷兰的PRC/VRC-8600、德国的SEMl73/183/193、以色列的CNR-9000、英国的PANTHER-V、法国的PR4G系列电台等,增加了20MHz的带宽。在开发新频段方面,成效显著,最具代表性的是美国的MILSTAR卫星通信系统,采用宽带亚毫米/毫米波,实现宽带高速跳频,跳频带宽达2 GHz。在研制多频段通信抗干扰装备方面更是如火如荼,电台以HF/VHF/UHF三个频段的综合运用为典型特征。如美国的AM-7177A/ARC-182(V),MBITR,MXF-610,MBMMR,SPEAKEASY,英国的SWORDFISH,BOWMAN,南非的MATADOR,TRC-1600,TR600,加拿大的AN/GRC-512(V)等,多频段接力机主要有美国的AMLD4,AMLA3,AN/GRC-226,法国的TFH-150,TFH-701,瑞典的RL401/422,俄罗斯的捷标坦特系列接力机等。 4、提高短波跳频数据速率取得突破进展 自从短波通信出现以来,由于通信体制、器件、信道带宽及天波传输特性等原因,短波

抗干扰措施

抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 2、切断干扰传播路径的常用措施 (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。 (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。 (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。 (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。 (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件

数控车床如何抗干扰 数控车床作为cnc机床自然也会像其他的电子仪器仪表一样受到众多的干扰,所以面对有可能发生的干扰我们必须有应对的措施,抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件处理等。 ①屏蔽技术:屏蔽是目前采用最多也是最有效的一种方式。屏蔽技术切断辐射电磁噪声的传输途径通,常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的场相互隔离,切断电磁辐射信号,以保护被屏蔽体免受干扰,屏蔽分为电场屏蔽、磁场屏蔽及电磁屏蔽。在实际工程应用时,对于电场干扰时,系统中的强电设备金属外壳(伺服驱动器、变频器、驱动器、开关电源、电机等)可靠接地实现主动屏蔽;敏感设备如智能纠错装置等外壳应可靠接地,实现被动屏蔽;强电设备与敏感设备之间距离尽可能远;高电压大电流动力线与信号线应分开走线,选用带屏蔽层的电缆,对于磁场干扰,选用高导磁率的材料,如玻莫合金等,并适当增加屏蔽体的壁厚;用双绞线和屏蔽线,让信号线与接地线或载流回线扭绞在一起,以便使信号与接地或载流回线之间的距离最近;增大线间的距离,使得干扰源与受感应的线路之间的互感尽可能地小;敏感设备应远离干扰源强电设备变压器等。 ②隔离技术:隔离就是用隔离元器件将干扰源隔离,以防干扰窜入设备,保证电火花机床的正常运行。常见的隔离方法有光电隔离、变压器隔离和继电器隔离等方法。 (1)光电隔离:光电隔离能有效地抑制系统噪声,消除接地回路的干扰。在智能纠错系统的输入和输出端,用光耦作接口,对信号及噪声进行隔离;在电机驱动控制电路中,用光耦来把控制电路和马达高压电路隔离开。 (2)变压器隔离是一种用得相当广泛的电源线抗干扰元件,它最基本的作用是实现电路与电路之间的电气隔离,从而解决地线环路电流带来的设备与设备之间的干扰,同时隔离变压器对于抗共模干扰也有一定作用。隔离变压器对瞬变脉冲串和雷击浪涌干扰能起到很好的抑制作用,对于交流信号的传输,一般使用变压器隔离干扰信号的办法。 (3)继电器隔离,继电器的线圈和触点之间没有电气上的联系。因此,可以利用继电器的线圈接受电气信号,而用触点发送和输出信号,从而避免强电和弱电信号之间的直接联系,实现

浅谈单片机应用系统的软件抗干扰措施

浅谈单片机应用系统的软件抗干扰措施 摘要分析单片机应用系統的软件干扰因素以及实现抗干扰必要条件,并针对单片机应用系统易出现的软件失控、软件数据出错、数字量输入错误等问题提出可行的软件抗干扰措施。 关键词单片机;软件;抗干扰 引言 单片机应用系统产生故障的最主要的原因在于干扰问题。干扰对于单片机应用系统产生的影响一方面会造成测量与控制精度失衡,另一方面也会造成应用系统完全失效。所以对于单片机应用系统软件的干扰问题必须进行解决。 1 单片机应用系统的软件抗干扰措施的必要条件[1] 1.1 干扰因素及影响分析 随着科学技术的不断发展,单片机系统应用的领域越来越广泛,因而对单片机系统的稳定性要求也变得越来越高。但是受到单片机应用系统结构复杂性以及工作环境的多变性的影响,决定单片机系统性能的因素相对来说也比较复杂,尤其是软件的抗干扰措施就是其中比较重要的组成部分。从专业角度分析,单片机系统稳定性影响因素主要分为四种,即浪涌干扰、放电干扰、电磁干扰和高频振荡干扰。在这些干扰因素的影响下单片机系统会发生采集的数据出现失真、程序的运行受到干扰、硬件控制发生失效等现象,而更加直观的表现就是视频图像发生串色、网纹,音频信号失真或者是声音发生串扰现象等。 1.2 软件抗干扰的必要条件分析 在对单片机软件抗干扰稳定性进行设计时,从安全角度考虑,将软件的程序数据放在了ROM中。而一般情况下,单片机抗干扰软件应当具有以下几个方面的条件:①当单片机系统受到外界干扰后,在抗干扰软件的作用下系统的硬件组成不应受到损坏,另外为了方便对系统运行状态的监控,应当在关键核心的位置设置相应的检测状态;②当程序区因外界因素受到干扰后不会产生一定的损坏。一般情况下,在RAM中与系统有关的表格、常数等即使在受到干扰后也不会发生损坏,但是RAM程序中的系统可能因外界等的干扰发生一定的故障。而一旦RAM区的有关程序受到外界干扰,为了从根本上消除干扰带来的不利影响,应当向RAM区重新输入有关的程序。 2 单片机应用系统的软件抗干扰措施[2] 2.1 失控软件的抗干扰措施

移动通信的基本技术之抗干扰措施

移动通信的基本技术之抗干扰措施 在第三代移动通信系统中除了大量的环境噪声和干扰以外,还有大量的电台产生的干扰,如邻道干扰、公道干扰和互调干扰,更重要的是第三代移动通信系统的主流标准(WCDMA、CDMA2000等)都采用了码分多址方式,CDMA码分多址系统是一个干扰受限制系统,在信息的传输中,存在着多址干扰,多径干扰和远近效应。那么为了保证网络的畅通运行,我们也采用了第三代移动通信系统采用的相关抗干扰技术进行处理。这些技术包括:空分多址(SDMA)智能天线技术,用于抗多径干扰的RAKE接收技术,抗多址干扰的联合检测技术,并对这些技术在特定系统中的性能进行了仿真。 首先介绍一下智能天线技术,智能天线利用多个天线阵元的组合进行信号处理,自动调整发射和接收方向图,以针对不同的信号环境达到最优性能。智能天线是一种空分多址技术,主要包括两个方面:空域滤波和波达方向(DOA)估计。空域滤波(也称波束赋形)的主要思想是利用信号、干扰和噪声在空间的分布,运用线性滤波技术尽可能地抑制干扰和噪声,以获得尽可能好的信号估计。 智能天线通过自适应算法控制加权,自动调整天线的方向图,使它在干扰方向形成零陷,将干扰信号抵消,而在有用信号方向形成主波束,达到抑制干扰的目的。加权系数的自动调整就是波束的形成过程。智能天线波束成型大大降低了多用户干扰,同时也减少了小区间干扰。 比起只能智能天线技术抗多径干扰的RAKE接受技术又有哪些技术有点呢?智能天线抑制干扰的能力在多数情况下受天线阵元个数的限制,且当感兴趣信号存在多个非相关多径时,阵列只保留其中的一路信号,而把零陷对准其它信号,这样,阵列能够减小由非相关多径带来的干扰,但未能发挥路径分集的优势,因而是次最优的。为此,联合时域和空域处理的接收技术成为研究的热点。 当信道存在多径时延扩展,且时延大于一个码片周期时,这些多径信号既是多径干扰,又是一些有价值的分集源,由此产生了2D-RAKE接收机。目前2D-RAKE接收机讨论最多的是应用在WCDMA上行链路。 空时RAKE接收机首先对存在角度扩展的多个路径分量进行波束成型,以降低DOA可分辨的其它用户信号产生的多址干扰或期望信号的非相关多径分量,然后将经过空间滤波后的信号送入RAKE合并器,以充分利用延迟可分辨的期望信号的多个路径的能量。空间波束形成旨在衰减干扰信号,而时间多径合并旨在利用有用信号。 与时域和空域一维干扰抑制不同的是,空时二维干扰抑制不再使用强迫置零条件,而是考虑噪声的存在,使用优化准则。空时处理有名的优化准则有两个,一个是空时最小均方误差准则,另外一个是空时最大似然准则 我们介绍的第三种抗干扰技术是联合检测技术 传统的接收技术是针对某一用户进行信号检测而把其他用户作为噪声加以处理,在用户数增多时,导致了信噪比恶化,系统性能和容量都不如人意。联合检测技术是在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号及其多径的先验信息(信号之间的相关性时已知的:如确知的用户信道码,各用户的信道估计),把用户信号的分离当作一个统一的相互关联的联合检测过程来完成,从而具有优良的抗干扰性能,降低了系统对功率控制精度的要求,因此可以更加有效地利用上行链路频谱资源,显著地提高系统容量,并削弱了“远近效应”的影响。 每一样技术都有其优缺点,那么我们是否能将其结合,使技术更优化,让其在抗干扰方面体现的效果更为明显呢? 那就是智能天线与联合检测的结合(SA+JD), 其主要用于TD-SCDMA系统中,TD-SCDMA系统结合使用了智能天线和联合检测技术:1)智能天线消除小区间干扰,联合检测消除小区内干扰,两者配合使用;2)智能天线缓解了联合检测过程中信道估计的不准确对系统性能恶化的影响;3)当用户增多时,联合检测的计算量非常大,智能天线的使用减少了潜在的多用户; 4)智能天线的阵元数有限,对于M个阵元的智能天线只能抑制M-1个干扰源,而且所形成的副瓣对其它用户而言仍然是干扰,只能结合联合检测来减少这些干扰;5)在用户高速移动下,TDD模式上下行采用同样空间参数使得波束成型有偏差;用户在同一方向时,智能天线不能起到作用;还

软件抗干扰的几种办法

软件抗干扰的几种办法 在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1、软件抗干扰方法的研究 在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法。 (1) 指令冗余 CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞”到了三字节指令,出错机率更大。 在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。通常是在双字节指令和三字节指令后插入两个字节以上的NOP。这样即使乱飞程序飞到操作数上,由于空操作指令NOP的存在,避免了后面的指令被当作操作数执行,程序自动纳入正轨。 此外,对系统流向起重要作用的指令如RET、RETI、LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。 (2) 拦截技术

所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。通常用软件陷阱来拦截乱飞的程序。因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。 软件陷阱的设计 当乱飞程序进入非程序区,冗余指令便无法起作用。通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。软件陷阱是指用来将捕获的乱飞程序引向复位入口地址0000H的指令。通常在EPROM中非程序区填入以下指令作为软件陷阱: NOPNOPLJMP 0000H其机器码为0000020000。 陷阱的安排 通常在程序中未使用的EPROM空间填0000020000。最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。在用户程序区各模块之间的空余单元也可填入陷阱指令。当使用的中断因干扰而开放时,在对应的中断服务程序中设置软件陷阱,能及时捕获错误的中断。如某应用系统虽未用到外部中断 1,外部中断1的中断服务程序可为如下形式: NOPNOPRETI返回指令可用“RETI”,也可用“LJMP0000H”。如果故障诊断程序与系统自恢复程序的设计可靠、完善,用“LJMP0000H”作返回指令可直接进入故障诊断程序,尽早地处理故障并恢复程序的运行。 考虑到程序存贮器的容量,软件陷阱一般1K空间有2-3个就可以进行有效拦截。 (3)软件“看门狗”技术

从六方面提高单片机系统的抗干扰能力

从六方面提高单片机系统的抗干扰能力 干扰问题,一直是电力设备仪器的一个难点。对于单片机也不例外。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。单片机的干扰问题,一般可以从六个方面来解决。 模拟信号采样干扰 单片机应用系统中通常要对一个或多个模拟信号进行采样,并将其通过A/D转换成数字信号进行处理。为了提高测量精度和稳定性,不仅要保证传感器本身的转换精度、传感器供电电源的稳定、测量放大器的稳定、A/D转换基准电压的稳定,而且要防止外部电磁感应噪声的影响,如果处理不当,微弱的有用信号可能完全被无用的噪音信号淹没。在实际工作中,可以采用具有差动输入的测量放大器,采用屏蔽双胶线传输测量信号,或将电压信号改变为电流信号,以及采用阻容滤波等技术。 数字信号传输通道的干扰 数字输出信号可作为系统被控设备的驱动信号(如继电器等),数字输入信号可作为设备的响应回答和指令信号(如行程开关、启动按钮等)。数字信号接口部分是外界干扰进入单片机系统的主要通道之一。在工程设计中,对数字信号的输入/输出过程采取的抗干扰措施有:传输线的屏蔽技术,如采用屏蔽线、双胶线等;采用信号隔离措施;合理接地,由于数字信号在电平转换过程中形成公共阻抗干扰,选择合适的接地点可以有效抑制地线噪声。 硬件监控电路的干扰 在单片机系统中,为了保证系统可靠、稳定地运行,增强抗干扰能力,需要配置硬件监控电路,硬件监控电路从功能上包括以下几个方面: (1)上电复位:保证系统加电时能正确地启动; (2)掉电复位:当电源失效或电压降到某一电压值以下时,产生复位信号对系统进行复位; (3)电源监测:供电电压出现异常时,给出报警指示信号或中断请求信号; (4)硬件看门狗:当处理器遇到干扰或程序运行混乱产生“死锁”时,对系统进行复位。 解决来自电源端的干扰 单片机系统中的各个单元都需要使用直流电源,而直流电源一般是市电电网的交流电经过变压、整流、滤波、稳压后产生的,因此电网上的各种干扰便会引入系统。除此之外,由于交流电源共用,各电子设备之间通过电源也会产生相互干扰,因此抑制电源干扰尤其重要。电源干扰主要有以下几类: 1.电源线中的高频干扰(传导骚扰) 供电电力线相当于一个接受天线,能把雷电、电弧、广播电台等辐射的高频干扰信号通过电源变压器初级耦合到次级,形成对单片机系统的干扰;解决这种干扰,一般通过接口防护;在接口增加滤波器、或者使用隔离电源模块解决。 2.感性负载产生的瞬变噪音(EFT) 切断大容量感性负载时,能产生很大的电流和电压变化率,从而形成瞬变噪音干扰,成为电磁干扰的主要形式;解决这种干扰,一般通过屏蔽线与双胶线,或在电源接口、信号接口进行滤波处理。这二种方法都需要在系统接地良好的情况下进行,滤波器、接口滤波电路都必须良好的接地,这样才能有效的将干扰泄放。 软件抗干扰原理及方法 尽管我们采取了硬件抗干扰措施,但由于干扰信号产生的原因错综复杂,且具有很大的

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

电磁抗干扰来源及电路与软件抗干扰(EMC)措施

电磁抗干扰来源及电路与软件抗干扰(EMC)措施 概述 可靠性是用电设备的基木要求之一,也是所有控制单元最基木的要求。它包括两方面的含义:故障时不拒动和正常时不误动。之所以会存在这两个方面的隐患是因为电磁干扰的存在。因此为了保障控制单元可靠的工作,除了采用合适的保护原理外,本章主要考虑抗干扰设计。 电磁干扰的传播方式主要有两种:(1)辐射:电磁干扰的能量通过空间的磁场、电场或者电磁波的形式使干扰源与受干扰体之间产生藕合。(2)传导:电磁干扰的能量可以通过电源线和信号电缆以电压或电流的方式进行传播。电磁干扰的频率包括(1)低频干扰(DC10~20Hz);(2)高频干扰(几百兆赫,辐射干扰和达几千兆赫):(3)瞬变干扰(持续周期从几毫秒到几纳秒)。 造成电力系统中形成电磁干扰的原因有诸多方面,我们知道,同一电力系统中的各种电力设备通过电和磁紧密的联系起来,相互影响,由于运行方式的改变、故障、开关设备的操作等引起的电磁振荡会对智能控制单元产生影响:另外,软起动工作在环境恶劣的煤矿井下,空气非常潮湿,到处充满着煤尘,电磁干扰尤为严重。控制单元在工作时不仅要受到从电网上传来的“噪声”干扰,其木身也是一个很强的干扰源,比如负载上电流的频繁变化和通过导线空间进入单片机系统内部,造成程序跑飞,使系统工作不正常,甚至损坏系统。所以对控制单元各个部分的抗干扰性能提出了较高的要求,尤其是单片机系统的抗干扰问题。因此,在整个单片机应用系统的研发过程中,始终将抗干扰性能作为系统设计时首先考虑的问题之一。 电磁干扰的来源 所谓干扰,简单来说就是指电磁干扰(Electro-Magnetic Interference 简称EMI),它在一定条件下干扰电子设备、通信电路的正常工作。 电源干扰 电源干扰是单片机应用系统的主要干扰源,据统计,实时系统的干扰约70%来自

单片机系统抗干扰

单片机系统的抗干扰 抗干扰问题是单片机控制系统工程实现中须解决的关键问题之一。对干扰产生的机理及其抑制技术的研究,受到国内外普遍重视。大约在50年代,就开始了对电磁干扰的系统研究,逐步形成了以研究干扰的产生、传播、抑制和使装臵在其所处电磁环境中既不被干扰又不干扰周围设备,从而都能长期稳定运行等为主要内容的技术学科—电磁兼容技术、EMC技术。 按国家军用标准GJB 72—85《电磁场干扰和电磁兼容性名词术语》其定义为:“设备(分系统、系统)在共同的电磁环境中能一齐执行各自功能的共存状态。即:该设备不会由于受到处于同一电磁环境中其它设备的电磁发射导致或遭受不允许的降级;它也不会使同一电磁环境中其它设备(分系统、系统),因受其电磁发射而导致或遭受不允许的降级。” 一、干扰的作用机制及后果 干扰对单片机系统的作用可分为三个部分,第一个部位是输入系统,它使模拟信号失真,数字信号出错,系统如根据该信号做出的反应必然是错误的。第二个部位是输出系统,使各输出信号混乱,不能正常反映系统的真实输出量,从而导致一系列严重后果。第三个部位是单片机的内核,干扰使三总线上的数字信号错乱,使CPU工作出错。 对单片机系统而言,抗干扰有硬件和软件措施,硬件如设臵得当,可将绝大多数的干扰拒之门外,但仍然有部分的干扰窜入系统,引起不良后果,因此,软件抗干扰也是必不可少的。但软件抗干扰是以CPU的开销为代价的,如果没有硬件措施消除大部分的干扰,CPU将忙于应付,会影响到系统的实时性和工作效率。成功的抗干扰系统是由硬件和软件相结合而构成的。硬件抗干扰具有效率高的优点,但要增加系统的成本和体积,软件抗干扰具有投资低的优点,但要降低系统的工作效率。 由于应用系统的工作现场,往往有许多强电设备,它们的启动和工作过程将对单片机产生强烈的干扰;也由于被控制对象和被测信号往往分布在不同的地方,即整个控制系统的各部分之间有较远的距离,信号线和控制线均可能是长线,这样电磁干扰就很容易以不同的途径和方式混入应用系统之中。如果上述来源于生产现场的干扰称为系统内部的干扰源的话,那么还有来源于现场以外的所谓外部干扰源,如外电源(如雷电)对电网的冲击,外来的电磁辐射等。 不管哪种干扰源,对单片机的干扰总是以辐射、电源和直接传导等三种方式进入的,其途径主要是空间、电源和过程通道。按干扰的作用形式分类,干扰一般有串模干扰和共模干扰两种。抗干扰的方法则针对干扰传导的源特征和传导方式,采取抑制源噪声,切断干扰路径,和强化系统抵抗干扰等三种方式。 控制干扰源的发射,除了从源的机理着手降低其产生电磁噪声的电平之外,广泛的应用着屏蔽(包括隔离)、滤波与接地技术。屏蔽主要用于切断通过空间的静电耦合、感应耦合或交变电磁场耦合形成的电磁噪声传播途径。此三种耦合分别对应于采取的静电屏

军事短波通信抗干扰措施

【摘要】短波电台是部队通信装备中应用最多的设备,针对日益复杂的电磁应用环境和通信对抗挑战,本文从技术和使用角度阐述了电台通信抗干扰的几点措施。 【关键词】短波电台通信抗干扰 短波通信通常是指利用波长为100―10m (频率为3―30mhz)的电磁波进行的无线电通信。目前也有把中波的高频段(1.5―3mhz)归到短波波段中去,所以现有的许多短波通信设备,其波段范围往往扩展到1.5―30mhz。在许多国家,也把短波通信认为是高频(hf)无线电通信。 多年来,短波通信被广泛地用于政府、军事、气象、商业等部门,用以传送语言、文字、图像、数据等信息。尤其在军事部门,它始终是军事指挥通信的重要手段之一,是军事指挥决策部门与下级所属单位有效沟通和信息传递的重要工具,也是构建我军c4i指挥体系的重要环节,在现代日益复杂的战场环境下,如何提高电台抗干扰能力,保护己方通信畅通尤为迫切。 一、短波通信干扰类型 能够对设备形成干扰的前提是在时间域对齐,频率域对准,空间域相同,能量域足够,这是干扰的总体原则,具体到各个干扰样式和原理,则有不同的表现形式,通信干扰主要有以下几种类型: 以上几种干扰措施是以前常用的干扰方式,随着通信设备的发展,有些干扰方式现在已基本不再使用,比如单频干扰或窄带连续波干扰,随着军事电台大量采用抗干扰措施,现在已少见单频电台干扰,但宽带噪声干扰、多音干扰和脉冲干扰、扫频干扰仍然应用较多。 此外,为了对抗跳频扩频通信、直接伪码序列扩频通信和混合扩频通信抗干扰能力强的新体制通信系统,出现了一些新的通信对抗技术样式,如宽带拦阻式干扰、跟踪引导式干扰、快速转发式干扰、部分频带噪声干扰等。这些新的干扰样式必须引起我们足够的重视,寻扎相应的对抗策略。 二、短波通信抗干扰技术 通信抗干扰技术的体系、方法、措施可分为4类: (1)以扩频技术为主的频域抗干扰技术,如直接序列扩频( ds-ss),其关键参量是时间函数的相位;跳频( fh)的关键参量是时间函数的载频;ds/ fh混合扩频技术;自适应选频技术,当通信信道干扰严重时,通信双方同时改换到最优化频道;自适应频域滤波技术。其中,跳频技术是目前军事通信抗干扰技术中应用最广泛、最有效措施之一,其原理是信息码同伪随机码模相加后,去离散地控制射频载波振荡器输出频率,使发射信号的频率随伪码的变化而跳变。跳频技术抗干扰能力得益于信号载波频率在很宽的频带内跳变,使干扰方难以跟瞄,但其瞬时带宽同定频一样。现阶段,中高速跳频技术仍是对付跟踪(引导)式和宽带阻拦式干扰的有效措施。有效提高跳频抗干扰效率的方法是:提高跳频速率、加大跳频带宽、变速跳频、适当增加跳频组网数目。跳频带宽宽,可跳频道数多,抗干扰能力就愈强。对于宽带阻拦式干扰来说,干扰效率与干扰的带宽成正比。例如对于10mhz中频带宽,信道间隔25 khz,共400信道,当干扰机对该跳频台实施10 mhz拦阻式干扰时,干扰功率平分在400个信道上,干扰强度仅为定频干扰的1/ 400。若带宽再增加,抗干扰力会更强。当前,跳频通信电台朝着跳频速率更快,跳频带宽更宽、智能化跳频的方向发展。 (2)以自适应时变和处理技术为主的时域抗干扰技术,含猝发通信、低速率通信技术、跳时(th)技术、自适应信号功率管理技术。跳时就是一种时分信道,用伪随机码随机选择信道工作时间,可视为一种伪码调制系统,它具有很好的远近效应一致性,模拟和数字体制都可使用。跳时的优点是用时间的合理分配来避开干扰,干扰机必须连续发射才可能收到效果,增大了干扰代价,也就具有一定的抗干扰能力。猝发通信是首先将正常速率的信息存贮

关于自动化装置受干扰及抗干扰措施的分析(精)

关于自动化装置受干扰及抗干扰措施的分析 摘要:电磁兼容是现代自动化装置抗电磁干扰能力方面非常关注的目标。许多同行专业人士已作了大量的工作,制定了相关的标准和试验方法。在抗电磁干扰方面,也有许多论文发表,大家从理论到实践提出了许多提高产品抗电磁干扰能力的措施。 关键词:自动化装置干扰抗干扰措施分析 电磁兼容是现代自动化装置抗电磁干扰能力方面非常关注的目标。许多同行专业人士已作了大量的工作,制定了相关的标准和试验方法。在抗电磁干扰方面,也有许多论文发表,大家从理论到实践提出了许多提高产品抗电磁干扰能力的措施。 本文先以一台同期装置作为被试产品,对其干扰及抗干扰措施进行分析,随后提出一系列在设计实践中的经验抗干扰措施。干扰源是一个简单的电磁式的中间继电器。 干扰源分析:在上面简单的电路中可能会存在以下三种干扰源。 1、如图(一)中操作电源带有一个电感性负载(即许继中间继电器),当切断电感性负载时,在电感线圈上产生很高的感生电动势,一般在5~10倍电源电压,高达几千伏,我在试验中测得大于1千伏。该高电压使得断开接点击穿,产生火花或电弧,而火花或电弧是一个发射高频噪声的干扰源,该干扰直接串入电源中,形成串模干扰,该干扰是本线路中试验发现最明显的。 火花或电弧熄灭时间很短,又将产生感应电压,所以在不断地“通断”的瞬变过程中电源上串入了很大的高频干扰信号和浪涌电流。而自动装置内部的电子元件尤其IC片都是弱

电工作元器件,该干扰信号和浪涌流对继电器造成逻辑紊乱,以致误动,实际上对继电器内部元器件也具有很大的伤害性。尤其是静态的继电器产品表现更为严重,对于同期继电器,内部回路复杂,电源(稳压管)负载较重,在此重负荷下受干扰就会显得影响很大。 对于这种干扰实际上最有效的办法是在电感负载上并接一个吸收回路即可,但是电感负载是多种不同设备,且有很多是在运行中的产品,这样就自然的把问题踢给了新产品(被试产品)。 在试验中本人启用了图(二)接线的抑制回路,作用是用以抑制高频干扰,试验效果明显。 2、直流电压纹波引起的工频干扰,该种干扰在一般的产品设计中都有措施抑制,在试验中很少发现这种干扰。对于这种干扰,在试验中采用了以下图三的电路,该电路具有消除低频干扰和高频干扰双重作用,但对于电容耐压要求较高。 3、线间串扰,该干扰是因信号线(电源、交流等)靠近和平行放置在一起而引起,虽在电压不高时显示不出来,但在受冲击电压时难免会引起干扰,这就是该干扰最难预测和最难控制的因素之一。这一点要求在布线方面注意干扰。 以上仅是一个简单的电路,旨在只说明干扰存在的普遍性,根据电力系统的运行环境和自动化装置发展的实际情况,现在很多产品在“静电放电干扰、快速瞬变干扰和辐射电磁场干扰”方面实际上都没有很好办法,有些产品对电磁干扰还非常敏感,拒动、误动、死机、改变定值等现象都有发生。因此,自动化装置抗电磁干扰能力的提高,仍然需各位专业人士艰苦努力。以下是根据我在多年的产品设计中,针对“静电放电干扰、快速瞬变干扰和辐射电磁场干扰电磁干扰”采取的一些措施和方法,供大家参考,不当之处请批评指正。 一、抗静电放电干扰

通信干扰

通信干扰与抗干扰技术综述 班级: 0108** 学号: 0108**** 姓名: ******

目录 一、通信干扰 (2) 1.1 通信干扰的特点 (2) 1.2 通信干扰的分类 (3) 1.3 信干扰的一般过程和影响因素 (5) 二、通信抗干扰 (6) 2.1概述 (6) 2.2通信抗干扰原理 (7) 2.3抗干扰技术 (8) 三、直接序列扩频 (8) 3.1 DS扩频技术基本原理 (8) 3.2 DS抗干扰性能分析 (10) 四、小结 (12)

一、通信干扰概述 1.1 通信干扰的特点 对无线电通信过程的干扰是在无线电通信技术诞生之前就已经客观存在了,如天线干扰和工业干扰等,但是人为有意的无线电干扰却是在无线电通信技术成功应用于战争研究之后才发展起来的。其特点可归纳如下。 1.对抗性 通信干扰是为了破坏或扰乱敌方的无线电通信。其信号发射目的不在于传送某种信息,而在于用干扰中携带的信息去压制和破坏敌方的通信。 2.进攻性 无线电通信是有源的、积极地、主动地,他千方百计的“杀入”到敌方通信系统内部,所以干扰是有进攻性的。 3.先进性 通信干扰每时每刻都以敌方为对象,因此它必须跟踪敌方通信技术的最新发展,并且设法超过敌方,只有这样才能开发出克敌制胜的通信干扰设备。 4.灵活性和预见性 作为对抗性武器,通信干扰系统逆序具备敌变我变的能力,现代战场瞬息万变,为了立于不败之地,通信干扰系统的开发和研究必须注重功能的灵活性和发展的预见性。 5.技战综合性 通信干扰系统有如其他武器一样,其作用不仅取决于技术性能的优良,在很大程度上还取决于其战术使用方法。 6.综合对抗性 无线电通信系统随着现代化战争的发展,已从过去单独的、分散的、局部的发展成为联合的、一体的、全局的通信指挥系统。 7.工作频带宽 无线电通信干扰设备随着现代军事无线电技术的发展,需要覆盖的频率范围

移动通信系统干扰原因及解决措施

移动通信系统干扰原因及解决措施 【摘要】本文对移动通信系统干扰来源及原因进行了描述,并对现有干扰解决措施进行了分析和展望。 【关键词】移动通信;系统;抗干扰技术 移动通信系统的干扰是影响无线网络丢包率,连接速率等系统指标的重要因素之一。它不仅影响我们网络的正常运行,还会影响用户的通话质量。对移动通信系统内部以及系统之间由于无用辐射、阻塞等原因造成的干扰进行研究,评估干扰影响的程度,从而寻找有效规避干扰的措施,以高效可靠地利用宝贵的频率资源,提供无线通信服务,一直是无线通信系统研究与应用中的一项重要内容。 一、移动通信技术干扰来源及原因 移动通信网络中的射频干扰研究变得越来越重要。干扰的产生多种多样的,原有的专用无线电系统占用了现有的频率资源,不同运营商的网络配置错误,发射机本身的设置,单元重叠,环境,电磁兼容性(EMI)和故意干扰等问题。这是移动通信网络中无线电频率干扰的原因。移动通信系统的干扰主要有:同信道干扰,相邻信道干扰,带外干扰,互调干扰和阻塞干扰。 1、移动通信内部频率的干扰:目前陆地移动蜂窝系统使用频率重用来提高频率利用率。虽然这增加了系统的容量,但它也增加了系统干扰的程度。这些干扰主要包括: (1)同频干扰:如果使用相同频率的两个载波频率太靠近,则它们将相互干扰。 (2)邻频干扰:RF载波频率受到另一个使用附近频率的RF载波频率的干扰。 (3)互调干扰:当两个或更多不同频率信号作用于非线性电路时,它们将相互调制以产生新的频率信号输出。如果频率落在接收器工作信道带宽内,则对接收器构成干扰。 2、外来电波的强烈干扰:由于移动通信是通过无线电波传输的,当空中的某些电波在一定程度上干扰了正在使用的无线电波时,这将导致信噪比下降到标准值以下,影响通话质量。这些干扰波的来源非常复杂并且很多,例如工业干扰,电源火花干扰,来自天空的干扰以及其他专业附近无线电波的干扰。

模拟传感器的主要干扰源及抗干扰措施

模拟传感器的主要干扰源及抗干扰措施 本文由https://www.doczj.com/doc/ae13138188.html,提供 主要干扰源: 1)静电感应 静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。 (2)电磁感应 当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。例如变压器及线圈的漏磁、通电平行导线等。 (3)漏电流感应 由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。尤其当漏电流流入测量电路的输入级时,其影响就特别严重。 (4)射频干扰 主要是大型动力设备的启动、操作停止的干扰和高次谐波干扰。如可控硅整流系统的干扰等。 (5)其他干扰 现场安全生产监控系统除了易受以上干扰外,由于系统工作环境较差,还容易受到机械干扰、热干扰及化学干扰等。 模拟传感器抗干扰的措施: 1、供电系统的抗干扰设计对传感器、仪器仪表正常工作危害最严重的是电网尖峰脉冲干扰,产生尖峰干扰的用电设备有:电焊机、大电机、可控机、继电接触器、带镇流器的充气照明灯,甚至电烙铁等。尖峰干扰可用硬件、软件结合的办法来抑制。 (1)用硬件线路抑制尖峰干扰的影响 常用办法主要有三种: ①在仪器交流电源输入端串入按频谱均衡的原理设计的干扰控制器,将尖峰电压集中的能量分配到不同的频段上,从而减弱其破坏性; ②在仪器交流电源输入端加超级隔离变压器,利用铁磁共振原理抑制尖峰脉冲; ③在仪器交流电源的输入端并联压敏电阻,利用尖峰脉冲到来时电阻值减小以降低仪器从电源分得的电压,从而削弱干扰的影响。 (2)利用软件方法抑制尖峰干扰

电磁干扰以及抗干扰措施的研究

电磁干扰以及抗干扰措施的研究 摘要抗干扰是一个非常复杂、实践性很强的问题。文章介绍了出现电磁干扰的常见原因、传播途径和干扰对象,针对经常出现的电磁干扰问题,提出了相应的抗干扰措施,并对这些方法的原理及应用环境进行了分析和研究。 关键词抗干扰;电磁干扰;原因;措施 1 电磁干扰产生的原因 电磁干扰问题不仅影响到电子仪器工作的质量,有时更是破坏整个系统正常运行的祸害。一种干扰现象可能是由若干个因素引起的。在系统调试过程中,很大部分工作是在处理电磁干扰问题。可以说,电磁干扰问题处理的好坏直接关系到整个系统能否稳定、可靠的运行,是系统需要解决的关键问题。步进电机在工作过程中,不断接受控制器产生的脉冲信号,信号的频率和个数控制着步进电机的转速和进给步数。由于信号是方波,同时电机各相绕组需按指定顺序轮流导通,对单片机控制回路会产生较大的电磁干扰,引起步进电机工作状态不稳定甚至损坏电器元件,直接影响到系统的可靠性[1]。 系统中主要的干扰源有: (1)供电干扰。工作时,交流电网负载突变,产生瞬变电压波动,其幅值较大,可以经过直流稳压电源进入电子控制回路。 (2)控制器与步进电机驱动回路之间存在电磁干扰。驱动回路产生的干扰信号通过线路串入控制器,使控制器产生错误指令,从而导致步进电机“多步”或“丢步”。 (3)步进电机的电枢绕组通断频繁,当通电时,会产生较大的du/dt、di/dt 值,导致磁场耦合,形成严重的电磁干扰。当电枢绕组断电时,线圈中的磁场突然消失会产生很高的瞬变电压窜入控制回路,对系统中其他电子装置产生相当大的电能冲击,甚至损坏元件。 (4)布线不合理。同一回路或不同回路布线不合理,容易产生感生电动势,引起电磁干扰现象。 2 传播途径和干扰对象 干扰信号可以通过公共导线、电容、相邻导线的互感以及空间辐射等途径从干扰源耦合到敏感元件上[2]。系统电磁干扰的传播途径和干扰对象如图1所示。 图1 系统电磁干扰示意图

相关主题
文本预览
相关文档 最新文档