当前位置:文档之家› 生物化学问答题集锦

生物化学问答题集锦

生物化学问答题集锦
生物化学问答题集锦

上传者:河南农业大学@神州华胄

蛋白质的生理功能有哪些?

1、是构成组织细胞的重要成分。

2、参与组织细胞的更新与修补。

3、参与物质代谢和及生理功能的调控。

4、氧化功能

5、其他功能:如转运、凝血、免疫、记忆。识别等。

蛋白质的理化性质?

1、蛋白质的两性解离及等电点

2、电泳

3、蛋白质的胶体性质

4、蛋白质的沉淀

5、呈色反应

6、蛋白质的紫外吸收

举例说明蛋白质的结构与功能

一级结构决定性质的典型事例:镰刀形红细胞贫血症

正常红细胞血红蛋白的β亚基N末端第六位氨基酸残基为谷氨酸。正常红细胞为双凹圆盘形。不正常红细胞血红蛋白的β亚基N末端第六位氨基酸残基由谷氨酸变为缬氨酸。

蛋白质变性因素

蛋白质的变性:天然蛋白质在某些物理或化学因素的作用时,有序的空间结构被破坏,致使生物活性丧失,并伴随一些理化性质的异常变化,但一级结构未破坏。

物理因素:加热、高压、紫外线、X射线、超声波、搅拌等。

化学因素:强酸、强碱、尿素、乙醇、表面活性剂、生物碱试剂、重金属离子等等

变性后特征:活性丧失、易发生沉淀、易被蛋白酶水解、扩散常数降低

组成蛋白质的基本单位是什么?结构有何特点?

氨基酸是组成蛋白质的基本单位。

结构特点:①组成蛋白质的氨基酸仅有20种,且均为α-氨基酸

②除甘氨酸外,其Cα均为不对称碳原子

③组成蛋白质的氨基酸都是L- -氨基酸

简述蛋白质的理化性质。

①两性解离-酸碱性质②高分子性质③胶体性质④紫外吸收性质⑤呈色反应

蛋白质中的氨基酸根据侧链基团结构及其在水溶液中的性质可分为哪几类?各举2-3例。

①非极性疏水性氨基酸7种:蛋氨酸,脯氨酸,缬氨酸

②极性中性氨基酸8种:丝氨酸,酪氨酸,色氨酸

③酸性氨基酸2种:天冬氨酸,谷氨酸

④碱性氨基酸3种:赖氨酸,精氨酸,组氨酸

简述核苷酸类物质的生理功能?

主要有:1、作为合成核酸的原料

2、作为能量的储存和供应形式。

3、参与代谢或生理活动的调节

4、参与构成酶的辅酶或辅基

5、作为代谢中间物的载体

简述DNA双螺旋(二级)结构要点:

两股链是反向平行的互补双链,呈右手双螺旋结构,两条反向平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧通过磷酸二酯键相连,形成核酸骨架;碱基平面与轴垂直,糖环平面则与环平行。右手螺旋,双螺旋直径为2nm,碱基堆砌距离为0.34nm,两核酸之间夹角为36度,每对螺旋由10对碱基组成。碱基按A与T、G与C互补配对,彼此以氢键相连。维持DNA稳定力量主要是碱基堆砌力。DNA双螺旋的互补双链预示DNA的复制是半保留复制。

tRNA三叶草结构的特点是什么?

①氨基酸臂:由7对碱基组成双螺旋区,其3′端为CCA,可结合氨基酸。

②二氢尿嘧啶环:由8-12个核苷酸组成,有两个二氢尿嘧啶。由3-4对碱基组成双螺旋区。

③反密码环:由7个核苷酸组成,环中部有3个核苷酸组成反密码子,能与mRNA的密码子互补结合。由5对碱基组成的双螺旋区。

④额外环/附加叉:由3-18核苷酸组成,不同tRNA具有不同大小的额外环,是tRNA分类的重要指标。

⑤胸苷假尿苷胞苷环/TΨC环:由7个核苷酸组成,通过5对碱基组成双螺旋区。简述酶与一般催化剂的共性、特点

共性:都具有催化作用

特性:高效性(10*8~10*20倍),特异性(一种酶只对一种或一系列反应器作用),调节性(高温,低温可是酶失去活性)

简述米式常数的意义

1、物理意义:Km值等于酶反应速度为最大速度一半时的底物浓度

2、Km值越大,酶与底物的亲和力越小;反

之……。酶与底物的亲和力大,表示不需要很高的底物浓度,便能达到最大的反应速度。

3、Km是酶的特征性常数,只与酶的性质、酶所催

化的底物和酶促反应条件有关,与酶的浓度无关。

影响酶促反应速度的因素:

底物浓度、酶的浓度、温度、PH、抑制剂和激活剂

1、简述酶促反应的特点。

①高效性:酶的催化作用可以比普通化学催化剂高许多倍

②高度专一性:只能催化特定的一类或一种反应

③高度不稳定性:酶是蛋白质,活性对环境因素敏感

④组织特异性:酶活性存在组织特异的区域化分部特征

⑤可调节性:酶活性受到多种因素的调节

何谓酶原激活?酶原激活的实质和生理意义是什么?

概念:酶原在一定条件下,可转化成有活性的酶,此过程称酶原的激活。

实质:酶的活性中心形成或暴露的过程。

生理意义:

①酶原形式是物种进化过程中出现的自我保护现象

②酶原相当于酶的储存形式,可在需要时快速启动发挥作用

简述酶快速调节的方式。

①酶原及酶原激活机制②别构调节③共价修饰调节

竞争性抑制与非竞争性抑制的比较

竞争性抑制是指有些抑制剂可与底物竞争酶的活性中心,从而降低底物与酶的结合率,抑制酶的活性,可通过增加底物的浓度来降低或消除抑制剂对酶的抑制作用。由抑制曲线可知它并不影响酶促反应的最大速率;非竞争性抑制作用是指有些抑制剂可与酶活性中心以外的必需基团结合,但不影响酶与底物的结合,形成的酶一底物一抑制剂复合物,不能进一步释放产物致使酶活性丧失,其主要是影响酶分子的构象来降低酶的活性,由非竞争曲线可知,它并不影响底物与酶的亲和力,而是使最大速率变小

简述人体血糖的来源和去路。

来源:①食物糖的消化吸收②(肝)糖原分解③非糖物质糖异生

去路:①氧化供能②合成糖原③转变为脂肪或氨基酸④转变为其他糖⑤形成糖尿

何谓糖异生的“三个能量障碍”?克服这三个能障需要哪些酶?

①由丙酮酸生成磷酸烯醇式丙酮酸,需要丙酮酸羧化酶与磷酸烯醇式丙酮酸羧激酶

②由1,6-二磷酸果糖生成6-磷酸果糖,需要果糖二磷酸酶

③由6-磷酸果糖生成6-磷酸葡萄糖,需要葡萄糖-6-磷酸酶

为什么肝脏能直接调节血糖而肌肉不能?

肝脏中有而肌肉中缺乏葡萄糖-6-磷酸酶,因此肌糖原不能直接分解为葡萄糖。磷酸戊糖通路分哪几个阶段?有什么特点及生理意义?

①氧化反应,生成磷酸戊糖、NADPH及CO2 。此阶段反应不可逆,是体内产生NADPH+H+的主要代谢途径,NADPH+H+参与多种代谢反应。

②非氧化反应,包括一系列基团转移。此阶段反应均可逆,是体内生成5-磷酸核糖的唯一代谢途径,5-磷酸核糖参与核酸的生物合成。

三羧酸循环的反应步骤

乙酰辅酶A与草酰乙酸作用生成柠檬酸进入三羧酸循环,柠檬酸在柠檬酸脱氢酶作用之下生成异柠檬酸,异柠檬酸在异柠檬酸脱氢酶作用下变成α酮戊二酸,α酮戊二酸在变α酮戊二酸脱氢酶系作用下成琥珀酰辅酶A,琥珀酰辅酶A 在琥珀酰辅酶A合成酶作用下生成琥珀酸,琥珀酸在琥珀酸脱氢酶作用下生成延胡索酸,延胡索酸在延胡索酸酶作用下加水生成苹果酸,苹果酸在苹果酸脱氢酶作用下生成草酰乙酸,草酰乙酸又不断生成柠檬酸重复三羧酸循环。

简述三羧酸循环的特点

1)在此循环中,最初草酰乙酸因参加反应而消耗,但经过循环又重新生成。所以每循环一次,净结果为1个乙酰基通过两次脱羧而被消耗。循环中有机酸脱羧产生的二氧化碳,是机体中二氧化碳的主要来源。(2)在三羧酸循环中,共有4次脱氢反应,脱下的氢原子以NADH+H+和FADH2的形式进入呼吸链,最后传递给氧生成水,在此过程中释放的能量可以合成ATP。(3)乙酰辅酶A不仅来自糖的分解,也可由脂肪酸和氨基酸的分解代谢中产生,都进入三羧酸循环彻底氧化。并且,凡是能转变成三羧酸循环中任何一种中间代谢物的物质都能通过三羧酸循环而被氧化。所以三羧酸循环实际是糖、脂、蛋白质等有机物在生物体内末端氧化的共同途径。(4)三羧酸循环既是分解代谢途径,但又为一些物质的生

物合成提供了前体分子。如草酰乙酸是合成天冬氨酸的前体,α-酮戊二酸是合成谷氨酸的前体。一些氨基酸还可通过此途径转化成糖。

简述三羧酸循环的生理意义

1、是三大营养物质的最终代谢通路及产能最多的阶段

2、为氧化磷酸化提供还原当量

3、为其他合成代谢提供小分子前体

4是糖、脂肪、氨基酸代谢联系的枢纽

说明在糖、脂代谢中乙酰CoA的来源和去路。

糖代谢:葡萄糖→丙酮酸→乙酰CoA→进入TAC氧化供能

脂代谢:脂肪酸β-氧化→乙酰CoA→合成脂肪酸、酮体、胆固醇

简述乙酰CoA在糖脂代谢中的联系。

①糖分解代谢产生的乙酰CoA可以作为脂类合成的原料

②脂肪酸的β-氧化生成的乙酰CoA及酮体在没作用下转化的乙酰CoA可进入

三羧酸循环彻底氧化为CO

2和H

O

简述脂肪酸的β-氧化过程,并计算一分子二十碳饱和脂肪酸彻底氧化分解净生成的ATP

分子数。

过程:①脱氢②加水③再脱氢④硫解

计算:

①脂肪酸活化为乙酰CoA消耗2分子ATP

②1分子20C饱和脂肪酸β-氧化需经9次循环,产生10分子乙酰CoA,9分子FADH2和9分子NADH+H+

③10分子乙酰CoA进入TAC生成10×12=120分子ATP

④9分子FADH2进入琥珀酸氧化呼吸链生成9×2=18分子ATP

⑤9分子NADH+H+进入NADH氧化呼吸链生成9×3=27分子ATP

⑥净生成120+18+27-2=165分子ATP

什么叫酮体?简述合成酮体的原料、部位、合成过程的限速酶以及酮体生成的生理意义。

酮体是乙酰乙酸、β-羟基丁酸、丙酮的总称。

合成原料:乙酰CoA

合成部位:肝细胞线粒体

限速酶:羟甲戊二酸单酰CoA合酶(HMG-CoA合酶)

生理意义:

①正常情况下,酮体是肝脏输出能源的一种形式

②在饥饿或糖供给不足情况下,为心、脑等重要器官提供必要的能源

③酮体利用的增加可减少糖的利用,有利于维持血糖水平恒定,节省蛋白质的消耗

胆固醇在体内可转化成那些重要物质?

①胆汁酸②类固醇激素③维生素D3

简述血浆脂蛋白按密度法分为几类?简述各类物质组分的特点和主要生理功能。

①C M主要物质:甘油三酯约90% 功能:运输外源性甘油三酯和胆固醇酯

②VLDL主要物质:甘油三酯约60% 功能:运输内源性甘油三酯

③LDL主要物质:胆固醇酯50% 功能:转运内源性胆固醇至肝外

④HDL主要物质:磷脂、游离胆固醇、apoA、C、E功能:将肝外组织胆固醇转运到肝脏代谢

简述血浆脂蛋白中载脂蛋白的重要功能。

①结合和转运脂质,稳定脂蛋白的结构

②参与脂蛋白受体的识别

③调节脂蛋白代谢限速酶的活性

鸟氨酸循环是体内氨的主要去路, 解氨毒的重要途径。

一碳单位有什么重要的生理意义?

①合成嘌呤和嘧啶的原料

②氨基酸与核苷酸代谢的枢纽

③参与S-腺苷蛋氨酸(SAM)生物合成

④生物体各种化合物甲基化的甲基来源

简述体内血氨的来源也去路。

来源:①氨基酸及胺的分解②肠道吸收③肾重吸收

去路:①肝合成尿素排出体外②合成谷氨酰胺等非必需氨基酸③合成非蛋白含氮化合物④肾形成铵盐排出体外

简要说明嘌呤核苷酸合成的器官、部位、原料和合成过程的三个主要阶段。

器官:肝脏(主),小肠、胸腺(次)

部位:胞液

原料:5-磷酸核糖、氨基酸、CO2和一碳单位

合成过程:

①R-5-P(5-磷酸核糖)和ATP作用生成PRPP(5-磷酸核糖-1-焦磷酸)

②合成IMP(次黄嘌呤核苷酸)

③IMP转变为AMP和GMP

简要说明嘧啶核苷酸合成的器官、部位、原料和合成过程的基本步骤。

器官:肝脏

部位:胞液

原料:Asp(天冬氨酸)、Gln(谷氨酰胺)、CO2

合成过程:

①UMP(尿嘧啶核苷酸)的生成

②CTP(三磷酸胞苷)的合成

③dTMP(脱氧胸苷酸)的生成

简要说明DNA复制的过程。

①复制时,亲代DNA 双链解开成两条单链,各自作为模板指导子代合成新的互补链。

②子代细胞的DNA双链,其中一股单链是从亲代完整地接受过来的,另一股单链完全重新合成。

③由于碱基互补,两个子代细胞的DNA双链和亲代DNA碱基序列一致。

简述转录的过程。

DNA模板被转录方向是从3′端向5′端,RNA链的合成方向是从5′端向3′端。RNA的转录过程合成一般分两步,第一步合成原始转录产物(过程包括转录的启动、延伸和终止);第二步转录产物的后加工,使无生物活性的原始转录产物转变成有生物功能的成熟RNA。但原核生物mRNA的原始转录产物一般不需后加工就能直接作为翻译蛋白质的模板。

已知某一基因的DNA单链:5′-ATGGGCTACTCG-3′

(1)写出DNA复制时另一条单链的核苷酸顺序

5′-TACCCGATGAGC-3′

(2)写出以该链为模板转录成RNA序列

5′-UACCCGAUGAGC-3′

(3)写出合成的多肽序列

酪氨酸-脯氨酸-蛋氨酸-丝氨酸

参考密码子:UAC酪氨酸CCG脯氨酸 CGA精氨酸CAU组氨酸AUG蛋氨酸AGC丝氨酸GCC丙氨酸

简述蛋白质生物合成的过程。

蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。

从蛋白质的合成来分析镰刀状细胞性贫血病产生的原因。

血红蛋白β-亚基N端的第六个氨基酸残基是缬氨酸,而不是下正常的谷氨酸残基,从而使得血红蛋白质分子空间结构改变影响其正常功能。

简述核蛋白体(即核糖体)在蛋白质生物合成过程中的作用。

氨基酸是在核糖体中形成肽链,转运到内质网上进行初加工,然后转运到高尔基体,高尔基体进行深加工,最后转运到细胞膜外,所以核糖体是合成蛋白质的场所,这些蛋白质属于分泌蛋白,是运送到细胞外起作用的,是附着在内质网上的核糖体合成的;还有一种核糖体是游离在细胞质基质中的,它合成的是胞内蛋白,在细胞内起作用。

简述乳糖操纵子的结构和调控机制。

结构:结构基因、Ⅰ基因、操纵序列、CAP结合位点、启动子

调控机制:(1)阻遏蛋白的负调控

①没有乳糖:操纵子处于阻遏状态,抑制物(Ⅰ)基因表达阻遏因子,并与操纵基因(O)相互作用,阻止RNAP与启动序列结合,阻止转录启动。

②有乳糖:少量乳糖分子被催化生成异半乳糖,与Lac阻遏因子结合并诱导该因子变构,促使阻遏因子与操纵基因(O)解离,发生转录。

(2)CAP正性调控:cAMP结合CAP形成cAMP-CAP复合物,复合物与CAP特异位点结合,促DNA双螺旋稳定性降低,刺激转录活性

以乳糖操纵子为例说明酶诱导合成的调节过程

乳糖(lac)操纵子由调节基因,启动基因、操纵基因和三个结构基因lacZ、lacY、lacA组成。

调节基因lacI组成型表达,编码阻遏蛋白,既有与操纵基因lacO结合的位点,也有与诱导物结合的位点。当诱导物与阻遏蛋白结合时,可改变阻遏蛋白的构象,使其无法与lacO结合。阻遏蛋白具有阻止转录和识别小分子诱导物的双重性,因此它的活性状态直接决定启动基因是开启或关闭。?当缺乏乳糖时,阻遏蛋白以活性状态结合在lacO上,这就影响了RNA聚合酶与lacP的结合,并阻碍RNA聚合酶通过lacO,这样结构基因就无法转录;当乳糖存在时,因作为诱导物的乳糖与阻遏蛋白结合,改变了它的构象,成为失活构象而脱离lacO,于是RNA聚合酶就可以与启动基因结合并开始转录。

在培养基中仅提供乳糖作为唯一碳源,在下列情况下,E.Coli.的命运如何?试分析原因。

(1)操纵子基因突变

死亡。不能与RNA聚合酶结合,关闭转录,不能运用乳糖,所以将死亡。(2)结构基因突变

大量增殖。O不能与阻遏因子结合,将持续表达,因此大量增殖。

(3)CAP位点基因突变

存活,增殖减弱。不能形成cAMP-CAP复合物,不能促进转录,但正常转录不受影响。

简述基因表达调控的顺式作用元件。

①顺式元件是存在于基因旁侧调节(激活或阻遏)基因转录的DNA序列。

②若能促进基因转录的则称为正调控元件,反之则称负调控元件。

③主要包括启动子、增强子、沉默子、终止子、隔离子。

④启动子是与RNA聚合酶识别、结合并启动转录的DNA序列。决定了基因转录方向和效率。

⑤增强子是能加强上游或下游基因转录的DNA序列,又称远端增强子元件。可增强转录效率。

⑥沉默子是能抑制上游或下游基因转录的DNA序列,属负调控元件。作用与增强子相反。

⑦终止子是位于编码区下游能促使RNAP识别并终止RNA合成的DNA序列。

⑧隔离子真核基因组内能限定独立转录活性结构域的DNA元件。有抗增强子、抗沉默子,分别限定增强子、沉默子与适宜的靶启动子联络。

简述基因工程的基本程序。

①目的基因的分离②目的基因和载体连结③重组DNA分子导入受体细胞④DNA重组体的筛选

生物化学问答题

1、用复合体的形式分别写出FAD2H氧化呼吸链和NADH氧化呼吸链的顺序,并分别指出它们有几个氧化磷酸化偶联部位。 答:FAD2H氧化呼吸链:琥珀酸—复合体II—辅酶Q—复合体III—CYT—复合体IV—O2 NADH氧化呼吸链:NADH—复合体I—辅酶Q—复合体III—CYT—复合体IV—O2 2、三羧酸循环有什么重要的生理意义? 答:(1)三羧酸循环是糖、脂肪、氨基酸三大营养素的最终代谢通路 (2)三羧酸循环又是糖、脂肪、氨基酸带些互相联系的枢纽 (3)三羧酸循环在提供生物合成的前体中也起重要作用 3、什么是酶的可逆抑制?可分为哪几种?请分别用双倒数法做出它们的动力学图。 答:抑制剂与酶以非共价键结合而引起酶活性的降低或丧失。分为竞争性抑制、非竞争性抑制、反竞争性抑制 4、按照抑制剂的抑制作用,可将其分为不可逆抑制作用和可逆抑制作用两大类。那么指出两者之间的不同之处,并分别做出两种抑制剂对酶促反应的影响图。 答:不可逆抑制:抑制剂与酶的必须基因以共价键结合而引起酶活性丧失,不能用透析,超滤等物理方法除去抑制剂而恢复酶活力 可逆抑制:抑制剂与酶以非共价键结合而引起酶活性的降低或丧失,可用透析等物理方法除去抑制剂,恢复酶活性 5、简述体内乙酰CoA的来源与去路,以及其在机体内发生的位置。 答:乙酰COA可以通过脂肪酸的β-氧化、丙酮酸氧化脱羧和氨基酸的降解生成,进入三羧酸循环,逆向合成脂肪酸,在肝脏中转化成酮体,合成胆固醇而消耗 6、简述磷酸戊糖途径的生理意义。 答:(1)为核酸的生物合成提供核酸 (2)提供NADPH作为供氢体参与多种代谢反应 7、酶与一般催化剂的共同点,以及它作为生化催化剂的特点是什么? 答:共同点:酶和一般催化剂一样,仅能催化或加速热力学上可能进行的反应,酶决不能改变反应的平衡常数,酶本身在反应前后不发生变化 特点:○1酶的主要成分是蛋白质○2酶的催化效应非常高○3酶具有高度的专一性○4酶的催化活性是受到调节和控制的○5酶可催化某些特异的化学反应 8、试述三羧酸循环(TAC)的特点及生理意义。 答:特点:○1循环反应在线粒体中进行,为不可逆反应○2每完成一次循环,氧化分解掉一分子乙酰基,可生成12分子A TP ○3循环的中间产物既不能通过此循环反应生成也不能被此循环反应所消耗○4三羧酸循环中有两次脱羧反应,生成两分子CO2 ○5循环中有四次脱氢反应,生成三分子NADPH和一分子FADH2 ○6循环中有一次底物水平磷酸化,生成一分子GTP ○7三羧酸循环的关键酶是柠檬酸合酶,异柠檬酸脱氢酶和@-酮戊二酸脱氢酸系 9、用超速离心法将血浆脂蛋白分为哪几类?简述各类脂蛋白的主要功用。 答:○1乳糜微粒:将食物中的甘油三脂转运至肝和脂肪组织○2极低密度脂蛋白:将肝合成的甘油三脂转运至肝外○3低密度脂蛋白:将胆固醇由肝转运至肝外组织○4高密度脂蛋白:将胆固醇由肝外组织转运至肝(胆固醇的逆向转运) 10、B型双螺旋DNA的结构特点是什么? 答:○1DNA分子由两条脱氧多核苷酸链构成○2磷酸基和脱氧核糖在外侧,彼此之间通过磷酸二脂链相连接,形成DNA的骨架,碱基连接在糖环的内侧,糖环平面与碱基平面相互垂直○3双螺旋的直径为2nm,顺轴方向,每隔0.34nm有一个核苷酸,每圈高度为3.4nm ○4两条链由碱基间的氢链相连,而且碱基间形成氢键有一定规律,腺嘌呤与胸腺嘧啶成对,

专升本生物化学问答题答案(A4)..

温医成教专升本《生物化学》思考题参考答案 下列打“*”号的为作业题,请按要求做好后在考试时上交 问答题部分:(答案供参考) 1、蛋白质的基本组成单位是什么?其结构特征是什么? 答:组成人体蛋白质的氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外)。 *2、什么是蛋白质的二级结构?它主要形式有哪两种?各有何结构特征? 答:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。 α-螺旋、β-折叠。 α-螺旋:多肽链的主链围绕中心轴做有规律的螺旋上升,为右手螺旋,肽链中的全部肽键 都可形成氢键,以稳固α-螺旋结构。 β-折叠:多肽链充分伸展,每个肽单元以Cα为旋转点,依次折叠成锯齿状结构,肽链间形成氢键以稳固β-折叠结构。 *3、什么是蛋白质变性?变性的本质是什么?临床上的应用?(变性与沉淀的关系如何?)(考过的年份:2006 答:某些理化因素作用下,使蛋白质的空间构象遭到破坏,导致其理化性质改变和生物活性的丢失,称为蛋白质变性。 变性的本质:破坏非共价键和二硫键,不改变蛋白质的一级结构。 变性的应用:临床医学上,变性因素常被应用来消毒及灭菌。此外, 防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。 (变性与沉淀的关系:变性的蛋白质易于沉淀,有时蛋白质发生沉淀,但并不变性。) 4、简述细胞内主要的RNA及其主要功能。(同26题) 答:信使RNA(mRNA):蛋白质合成的直接模板; 转运RNA(tRNA):氨基酸的运载工具及蛋白质物质合成的适配器; 核蛋白体RNA(rRNA):组成蛋白质合成场所的主要组分。 *5、简述真核生物mRNA的结构特点。 答:1. 大多数真核mRNA的5′末端均在转录后加上一个7-甲基鸟苷,同时第一个核苷酸的C ′2也是甲基化,形成帽子结构:m7GpppNm-。 2. 大多数真核mRNA的3′末端有一个多聚腺苷酸(polyA)结构,称为多聚A尾。 6、简述tRNA的结构特点。 答:tRNA的一级结构特点:含10~20% 稀有碱基,如DHU;3′末端为—CCA-OH;5′末端大多数为G;具有TψC 。 tRNA的二级结构特点:三叶草形,有氨基酸臂、DHU环、反密码环、额外环、TΨC环组

生物化学试题及答案

第五章脂类代谢 【测试题】 一、名词解释 1.脂肪动员 2.脂酸的β-氧化 3.酮体 4.必需脂肪酸 5.血脂 6.血浆脂蛋白 7.高脂蛋白血症 8.载脂蛋白 受体代谢途径 10.酰基载体蛋白(ACP) 11.脂肪肝 12.脂解激素 13.抗脂解激素 14.磷脂 15.基本脂 16.可变脂 17.脂蛋白脂肪酶 18.卵磷脂胆固醇脂酰转移酶(LCAT) 19.丙酮酸柠檬酸循环 20.胆汁酸 二、填空题 21.血脂的运输形式是,电泳法可将其为、、、四种。 22.空腹血浆中含量最多的脂蛋白是,其主要作用是。 23.合成胆固醇的原料是,递氢体是,限速酶是,胆固醇在体内可转化为、、。 24.乙酰CoA的去路有、、、。 25.脂肪动员的限速酶是。此酶受多种激素控制,促进脂肪动员的激素称,抑制脂肪动员的激素称。 26.脂肪酰CoA的β-氧化经过、、和四个连续反应步骤,每次β-氧化生成一分子和比原来少两个碳原子的脂酰CoA,脱下的氢由和携带,进入呼吸链被氧化生成水。 27.酮体包括、、。酮体主要在以为原料合成,并在被氧化利用。 28.肝脏不能利用酮体,是因为缺乏和酶。 29.脂肪酸合成的主要原料是,递氢体是,它们都主要来源于。 30.脂肪酸合成酶系主要存在于,内的乙酰CoA需经循环转运至而用 于合成脂肪酸。 31.脂肪酸合成的限速酶是,其辅助因子是。 32.在磷脂合成过程中,胆碱可由食物提供,亦可由及在体内合成,胆碱及乙醇胺由活化的及提供。 33.脂蛋白CM 、VLDL、 LDL和HDL的主要功能分别是、,和。 34.载脂蛋白的主要功能是、、。 35.人体含量最多的鞘磷脂是,由、及所构成。

苏州大学生化问答题题库 生物化学 必考

1.简述酶的“诱导契合假说”。 酶在发挥其催化作用之前,必须先与底物密切结合。这种结合不是锁与钥匙式的机械关系,而是在酶与底物相互接近时,其结构相互诱导、相互变形和相互适应,这一过程称为没底物结合的诱导契合假说。酶的构象改变有利于与底物结合;底物也在酶的诱导下发生变形,处于不稳定状态,易受酶的催化攻击。这种不稳定状态称为过渡态。过渡态的底物与酶的活性中心在结构上最相吻合,从而降低反应的活化能。 2.受试大鼠注射DNP(二硝基苯酚)可能引起什么现象?其机 理何在? 解偶联剂大部分是脂溶性物质,最早被发现的是2,4-二硝基苯酚(DNP)。给受试动物注射DNP后,产生的主要现象是体温升高、氧耗增加、P/O比值下降、ATP的合成减少。其机理在于,DNP虽对呼吸链电子传递无抑制作用,但可使线粒体内膜对H+的通透性升高,影响了ADP+Pi→ATP的进行,使产能过程与储能过程脱离,线粒体对氧的需求增加,呼吸链的氧化作用加强,但不能偶联ATP 的生成,能量以热能形式释放。 3.复制中为什么会出现领头链和随从链? DNA复制是半不连续的,顺着解链方向生成的子链,复制是连续进行的,这股链称为领头链。另一股链因为复制的方向与解链方向相反,不能顺着解链方向连续延长,这股不连续复制的链称为随从链。原因有①.链延长特点只能从'5→'3②.同一复制叉只有一个解链方向。DNA单链走向是相反的。因此在沿'3→'5方向上解开的母链上,子链就沿'5→'3方向延长,另一股母链'5→'3解开,子链不可能沿'5→'3。复制的方向与解链方向相反而出现随从链。 4.简述乳糖操纵子的结构及其调节机制。 .乳糖操纵子含Z、Y、及A三个结构基因,编码降解乳糖的酶,此外还有一个操纵序列O、一个启动序列P和一个调节基因I,在P 序列上游还有一个CAP结合位点。由P序列、O序列和CAP结合位点共同构成lac操纵子的调控区,三个编码基因由同一个调控区调节。 乳糖操纵子的调节机制可分为三个方面: (1)阻遏蛋白的负性调节没有乳糖时, 阻遏蛋白与O序列结合,阻碍RNA聚合酶与P序列结合,抑制转录起动;有乳糖时,少量半乳糖作为诱导剂结合阻遏蛋白,改变了它的构象,使它与O序列解离,RNA聚合酶与P序列结合,转录起动。 (2) CAP的正性调节没有葡萄糖时,cAMP浓度高,结合cAMP的CAP与lac操纵子启动序列附近的CAP结合位点结合,激活RNA转录活性;有葡萄糖时,cAMP浓度低,cAMP与CAP结合受阻,CAP不能与CAP结合位点结合,RNA转录活性降低。 (3)协调调节当阻遏蛋白封闭转录时,CAP对该系统不能发挥作用;如无CAP存在,即使没有阻遏蛋白与操纵序列结合,操纵子仍无转录活性。 5.何谓限制性核酸内切酶?写出大多数限制性核酸内切酶识别 DNA序列的结构特点。 解释限制性内切核酸酶;酶识别DNA位点的核苷酸序列呈回文结构。 1.酮体是如何产生和利用的? 酮体是脂肪酸在肝脏经有限氧化分解后转化形成的中间产物,包括乙酰乙酸、β-羟丁酸和丙酮。肝细胞以β-氧化所产生的乙酰辅酶A为原料,先将其缩合成羟甲戊二酸单酰CoA(HMG-CoA),接着HMG-CoA被HMG-CoA裂解酶裂解产生乙酰乙酸。乙酰乙酸被还原产生β-羟丁酸,乙酰乙酸脱羧生成丙酮。HMG-CoA 合成酶是酮体生成的关键酶。肝脏没有利用酮体的酶类,酮体不能在肝内被氧化。 酮体在肝内生成后,通过血液运往肝外组织,作为能源物质被氧化利用。丙酮量很少,又具有挥发性,主要通过肺呼出和肾排出。乙酰乙酸和β-羟丁酸都先被转化成乙酰辅酶A,最终通过三羧酸循环彻底氧化。 2.为什么测定血清中转氨酶活性可以

生物化学 名词解释问答题整理

名词解释 【肽键】 一个氨基酸的α-羧基与另一氨基酸的α-氨基发生缩合反应脱水成肽时形成的酰胺键。 【等电点(pI)】 蛋白质或两性电解质(如氨基酸)所带净电荷为零时溶液的pH, 此时蛋白质或两性电解质解离成阴/阳离子的趋势和程度相等,呈电中性,在电场中的迁移率为零。符号为pI。 【融解温度(Tm)】又称解链温度, DNA变性是在一个相当窄的温度范围内完成的,在这一范围内,紫外光吸收值到达最大值的50%时的温度称为DNA的融解温度。(最大值是完全变性,最大值的50%则是双螺旋结构失去一半)融解温度依DNA种类而定,核苷酸链越长,GC含量越高则越增高。 【增色效应】 由于DNA变性引起的光吸收增加称为增色效应,也就是变性后,DNA溶液的紫外吸收作用增强的效应。 【必需基团】 酶分子整体构象中对于酶发挥活性所必需的基团。(教材) 酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。 【活性中心】 或称“活性部位”,是指必需基团(上述)在空间结构上彼此靠近,组成具有特定空间结构的,能与底物发生特异性结合并将底物转化为产物的区域。 【米氏常数(Km)】 在酶促反应中,某一给定底物的动力学常数(由反应中每一步反应的速度常数所合成的)。根据米氏方程,其值是当酶促反应速度达到最大反应速度一半时的底物浓度。符号Km 。 【糖异生】 生物体将多种非糖物质(如氨基酸、丙酮酸、甘油)转变成糖(如葡萄糖,糖原)的过程,对维持血糖水平有重要意义。在哺乳动物中,肝与肾是糖异生的主要器官。 【糖酵解】 是指在氧气不足的条件下,葡萄糖或糖原分解为乳酸并产生少量能量的过程(生成少量ATP) 【酮体】

生化考试试题汇总

------------------------------------------------------------精品文档-------------------------------------------------------- 生物化学习题 一、最佳选择题:下列各题有A、B、C、D、E五个备选答案,请选择一个最佳答案。 1、蛋白质一级结构的主要化学键是( ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 D*2、蛋白质变性后可出现下列哪种变化( ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物是( ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的是( ) A、IMP B、AMP C、GMP D、XMP E、ATP 5、脂肪酸氧化过程中,将脂酰~SCOA载入线粒体的是( ) 、柠檬酸B、肉碱C A、ACP A E、乙酰辅酶、乙酰肉碱D) 、体内氨基酸脱氨基最主要的方式是( b6 A、氧化脱氨基作用、联合脱氨基作用 B 、转氨基作用 C D、非氧化脱氨基作用 、脱水脱氨基作用E ) 、关于三羧酸循环,下列的叙述哪条不正确d7( FADH2 和NADH、产生A B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 c8、胆固醇生物合成的限速酶是( ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶是酵解过程中的限速酶( ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶 E、3一磷酸甘油脱氢酶

动物生物化学问答题集锦分析

蛋白质 1、蛋白质在生命活动中的作用有哪些?催化功能、运输和贮存功能、调节作用、运动功能、防御功能、营养功能、作为结构成分、作为膜的组成成分、参与遗传活动 2、何谓简单蛋白和结合蛋白?经过水解之后,只产生各种氨基酸称为简单蛋白质也称单纯蛋白质。 结合蛋白:由蛋白质和非蛋白质两部分组成,水解时除了产生氨基酸外,还产生非蛋白质组分。 3、存在于蛋白质内的20种氨基酸有什么共同特点?Gly和Pro的结构有何特殊性? 除脯氨酸以外,其余氨基酸的化学结构都可以用同一结构通式表示。氨基酸的氨基都在& -碳原子上,另外, a -碳原子上还有一个氢原子和一个侧链。不同的氨基酸之间的区别在于R基团,除甘氨酸外,其余19种氨基 a -碳原子都是不对称的(手性)碳原子。 Gly是脂肪族的电中性,而且是唯一不显旋光异构性的氨基酸。Pro则是在20种自然氨基酸中唯一含有亚 氨基的氨基酸。 4、组成蛋白质元素有那些?哪一种为蛋白质分子的特征性成分?测定其含量有何用途? 组成元素:C H、O N、S、P、Fe、Cu、Zn、Mn Co Mo I 特征性元素:氮16% 因为各种蛋白质 的含量比较恒定,可通过测定氮的含量,计算生物样品中蛋白质的含量(换算系数为 6.25 ),称为凯氏法定氮, 是蛋白定量的经典方法之一。 5、依据氨基酸R侧链极性和电荷的不同,可将氨基发为哪几大类?Phe属于哪一类? 四类,①非极性氨基酸:丙氨酸Ala、缬氨酸Val、亮氨酸Leu、异亮氨酸Ile 、苯丙氨酸Phe、色氨酸Trp、蛋氨酸Met、脯氨酸Pro。②不带电荷极性氨基酸:甘氨酸Gly、丝氨酸Ser、苏氨Thr、酪氨酸Tyr、半胱氨酸Cys、天冬酰胺Asn、谷酰酰胺Gln。③带正电荷极性氨基酸:组氨酸His、赖氨酸Lys、精氨酸Arg。④带负电荷极性氨基酸:天冬氨酸Asp、谷氨酸Glu 6何谓氨基酸的两性解离和等点电?氨基酸既可解离成阳离子也可解离成阴离子的性质。两性解离的结构 基础为所有氨基酸都含有碱性(a -氨基)和酸性(a -羧基)基团。等电点:某一氨基酸解离成阳离子和阴离 子的趋势及程度相等,成为兼性离子,净电荷为零时的介质pH称为该氨基酸的等电点或等离子点。 7、何谓多肽链的主链、肽健、N-端、C-端、肽单位、氨基酸残基?肽键:一种氨基酸的a -氨基与另一种氨基酸的a -羧基脱水缩合形成的酰胺键。N-端:在书写多肽结构时,总是把含有a -NH2的氨基酸残基写在多肽 链的左边,称为N-末端。把含有a -COOH的氨基酸残基写在多肽的右边,称为C-末端。氨基酸残基:肽链中氨 基酸分子因脱水缩合而基团不全。肽单元:肽键中C-N的键长较短(0.132nm),具有部分双键性质,不能旋转, 从而使参与肽键构成的6个原子位于同一平面内,称为肽单元。 8什么是蛋白质的构象?构象与构型有何不同?蛋白质的构象是指分子中所有原子和基团在空间的排布, 又称空间结构或三维结构,是由于单键的旋转造成的。因此,与构型不同,构象的改变无需破坏共价键。 9、肽键有何特点?为什么肽单位会形成平面结构(酰胺平面)?①由C H O N四个原子构成②共价键 ③蛋白质分子的主键。肽平面里N原子是sp3不等性杂化,有三个成键电子本来与氢原子成三角锥结构的但结 合成肽平面是由于空间效应N上未成键的一对电子与C和O共轭所以不能随意旋转成一平面即酰胺平面。 10、何谓二面角?为什么说二面角决定多肽链的主链构象?由于?和书这两个转角决定了相两个肽平面在空间上的相对位置,因此习惯上将这两个转角称为二面角。多肽链中所有的肽单位大多数具有相同的结构, 每个a -碳原子和与其相连的4个原子都呈现正四面体构型。因此,多肽链的方链骨架构象是由一系列a -碳原 子的成对二面角决定的。二面角改变,则多肽链主链呢架构象发生相应变化。 11、试述蛋白质的一、二、三、四级结构的定义,维持各级结构的主要作用力有哪些?一指多肽链分子中氨基酸的排列顺序。主要化学键:肽键(二硫键)二、指多肽链主链骨架的局部空间结构。三、整条多肽 链中全部氨基酸残基(所有原子)的相对空间排布位置。主要化学键:疏水作用、离子键、氢键等。四、指由几条肽链构成。主要化学键:疏水作用力。 12、a-螺旋的结构特征是什么?如何以通式表示a -系螺旋?①右手螺旋②侧链伸向螺旋外侧③螺距0.54nm,每3.6个氨基酸残基上升一圈,每个氨基酸残基绕轴旋转100°④每个肽键的亚氨基氢(N-H)与前面第四个肽键的羰基氧(C=O之间形成链内氢键,氢键与螺旋长轴基本平行。 13、什么是B -折叠构象?有何特点?蛋白质分子中两条平行或反平行的主链中伸展的,周期性折叠的构 象。A、锯齿状、充分伸展B侧链位于锯齿结构的上下方C、多条(段)肽链平行排列,走向可相同也可相反D 不同的肽链间(同一肽链的不同肽段间)的N-H与C=O形成氢键。这些肽链的长轴互相平行,而氢键与长轴近似垂直。 14、什么是超二级结构和结构域?在蛋白质中经常存在由若干相邻的二级结构单元按一定规律组合在一起,形成有规则的二级结构集合体,称超二级结构。球蛋白分子的一条我肽链中常常存在一些紧密的、相对独产的区域,称结构域。 15、举例说明蛋白质一级结构与功能的关系。一级结构相似的多肽或蛋白质,其空间结构及功能也相似, 不同的氨基酸与蛋白质功能的关系不同。a、有些氨基酸与蛋白质的功能不密切:如:胰岛素B链第28-30位 AA (Pro-Lys-Ala )去掉后,活性仅下降10% b、有些氨基酸与蛋白质的功能密切:如:胰岛素A链第1位AA (Gly)去掉后,活性下降90% 分子病:蛋白质分子发生变异所导致的疾病。例:镰刀形红细胞贫血

生物化学问答题

苏州大学生化期末复习 1.受试大鼠注射DNP(二硝基苯酚)可能引起什么现象?其机理何在? 解偶联剂大部分是脂溶性物质,最早被发现的是2,4-二硝基苯酚(DNP)。给受试动物注射DNP后,产生的主要现象是体温升高、氧耗增加、P/O比值下降、ATP的合成减少。其机理在于,DNP虽对呼吸链电子传递无抑制作用,但可使线粒体内膜对H+的通透性升高,影响了ADP+Pi→ATP的进行,使产能过程与储能过程脱离,线粒体对氧的需求增加,呼吸链的氧化作用加强,但不能偶联ATP的生成,能量以热能形式释放。 2.复制中为什么会出现领头链和随从链? DNA复制是半不连续的,顺着解链方向生成的子链,复制是连续进行的,这股链称为领头链。另一股链因为复制的方向与解链方向相反,不能顺着解链方向连续延长,这股不连续复制的链称为随从链。原因有①.链延长特点只能从'5→'3②.同一复制叉只有一个解链方向。DNA单链走向是相反的。因此在沿'3→'5方向上解开的母链上,子链就沿'5→'3方向延长,另一股母链'5→'3解开,子链不可能沿'5→'3。复制的方向与解链方向相反而出现随从链。 3.简述乳糖操纵子的结构及其调节机制。 乳糖操纵子含Z、Y、及A三个结构基因,编码降解乳糖的酶,此外还有一个操纵序列O、一个启动序列P和一个调节基因I,在P序列上游还有一个CAP结合位点。由P序列、O序列和CAP结合位点共同构成lac操纵子的调控区,三个编码基因由同一个调控区调节。 乳糖操纵子的调节机制可分为三个方面: (1)阻遏蛋白的负性调节没有乳糖时, 阻遏蛋白与O序列结合,阻碍RNA聚合酶与P序列结合,抑制转录起动;有乳糖时,少量半乳糖作为诱导剂结合阻遏蛋白,改变了它的构象,使它与O序列解离,RNA聚合酶与P序列结合,转录起动。 (2) CAP的正性调节没有葡萄糖时,cAMP浓度高,结合cAMP的CAP与lac操纵子启动序列附近的CAP结合位点结合,激活RNA转录活性;有葡萄糖时,cAMP浓度低,cAMP与CAP结合受阻,CAP 不能与CAP结合位点结合,RNA转录活性降低。 (3)协调调节当阻遏蛋白封闭转录时,CAP对该系统不能发挥作用;如无CAP存在,即使没有阻遏蛋白与操纵序列结合,操纵子仍无转录活性。 4.何谓限制性核酸内切酶?写出大多数限制性核酸内切酶识别DNA序列的结构特点。 限制性核酸内切酶:识别DNA的特异性序列,并在识别点或其周围切割双链DNA的一类内切酶。酶识别DNA位点的核苷酸序列呈回文结构。 5. 讨论复制保真性的机制 ①. 遵守严格的碱基配对规律; ②. 聚合酶在复制延长时对碱基的选择功能;DNA-polⅢ依据碱基表现的亲和力,实现正确的碱基选择。 ③. 复制出错时DNA-pol I的及时校读功能。

生物化学试题及答案(6)

生物化学试题及答案(6) 默认分类2010-05-15 20:53:28 阅读1965 评论1 字号:大中小 生物化学试题及答案(6) 医学试题精选2010-01-01 21:46:04 阅读1957 评论0 字号:大中小 第六章生物氧化 【测试题】 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 5.解偶联剂 6.高能化合物 7.细胞色素 8.混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。 11.胞液中的NADH+H+通过____和____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼 吸链,可分别产生____分子ATP或____分子ATP。 12.ATP生成的主要方式有____和____。 13.体内可消除过氧化氢的酶有____、____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 15.铁硫簇主要有____和____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 17.FMN或FAD作为递氢体,其发挥功能的结构是____。 18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。 19.呼吸链中含有铜原子的细胞色素是____。 20.构成呼吸链的四种复合体中,具有质子泵作用的是____、____、____。 21.ATP合酶由____和____两部分组成,具有质子通道功能的是____,____具有催化生成ATP 的作用。 22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色 素c氧化酶的物质有____、____、____。 23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的 SOD为____,两者均可消除体内产生的 ____。 24.微粒体中的氧化酶类主要有____和____。 三、选择题

生化问答题

1什么叫蛋白质的二级结构?有哪几种常见类型?P71 蛋白质的二级结构指多肽链的主架骨链中若干肽单位,各自沿一定的轴盘旋或折叠,并以氢键为主要的次级键而形成的有规则的构象。有α螺旋、β折叠、β转角、无规则线团。 2.简述DNA右手双螺旋结构要点。P112 (1)DNA分子有两条脱氧多核苷酸链构成,两条链都是右手螺旋,这两条链反向平行。(2)磷酸基和脱氧核糖在外侧,彼此之间通过磷酸二酯链相连接,形成DNA的骨架。(3)双螺旋的直径为2nm。(4)两条链由碱基间的氢键相连,而且碱基间形成氢键有一定的规律:腺嘌呤与胸腺嘧啶成对,鸟嘌呤与胞嘧啶成对;A和T间形成两个氢键,C和G间形成三个氢键。(5)沿螺旋轴方向观察,配对的碱基并不充满双螺旋的全部空间。 3真核生物细胞核中的DNA是如何组装成染色体的?P113 答:具有三级结构的DNA和组成蛋白紧密结合组成染色质。构成真核细胞的染色体物质称为“染色质”,它们是不定形的,几乎是随机地分散于整个细胞核中,当细胞准备有丝分裂时,染色质凝集,并组装成因物种不同而数目和形状特异的染色体,此时,当细胞被染色后,用光学显微镜可以观察到细胞核中有一种密度很高的着色实体。 4什么是同工酶,有何生理意义?P165 同工酶(isoenzyme)是指能催化相同的化学反应,但分子结构不同的一类酶,不仅存在于同一机体的不同组织中,也存在于同一细胞的不同亚细胞结构中,它们在生理、免疫、理化性质上都存在很多差异。 5.磷酸戊糖途径有什么生理意义?P241可简化 磷酸戊糖途径的主要意义在于为机体提供磷酸戊糖和NADPH。 1.为核酸的生物合成提供核糖。核糖是核酸和游离核苷酸的组成成分。体内的核糖并不依赖从食物输入,可以从葡萄糖通过磷酸戊糖途径生成。 2.提供NADPH,NADPH是体内许多合成代谢的供氢体,还可参与体内羟化反应,此外NADPH还用于维持谷胱甘肽的还原状态。 6.简述人体血糖的来源与去路。P252 血糖来源:1食物经消化吸收入血的葡萄糖和其他单糖,这是血糖最主要的来源。2肝糖原分解释放的葡萄糖,这是空腹时血糖的主要来源。3由非糖物质转变而来。在禁食12小时的情况下,血糖主要由某些非糖物质转变而来。即糖异生作用。血糖去路:1氧化供能:葡萄糖通过氧化分解产生ATP供给能量,此为血糖的主要去路。2合成糖原。3转化成非糖物质:如脂肪、非必须氨基酸等。4转变成其他糖或糖衍生物,如核糖、脱氧核糖、氨基多糖等。5当血糖浓度超过肾糖阈时,由尿排出。 7什么是脂肪动员,其关键酶是什么?P258 脂库中贮存的脂肪,经常有一部分经脂肪酶的水解作用而释放出脂肪酸与甘油,这一作用称为脂肪动员。或说储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂肪酸和甘油,并释放入血以供其他组织细胞氧化利用。使脂肪水解的酶主要为脂肪酶。 8.简述RNA在蛋白质合成中的作用。P366 RNA与蛋白质生物合成的关系十分密切,参与蛋白质生物合成过程的RNA有mRNA、tRNA、rRNA,它们各自起着不同的作用。mRNA是蛋白质合成的模板,通过其模板作用传递DNA的遗传信息,并指导蛋白质的合成。tRNA 把氨基酸搬运到核

生物化学问答题

1、蛋白质变性后,其性质有哪些变化? 答:蛋白质变性的本质是特定空间结构被破坏。变性后其性质的变化为:生物活性丧失,其次是理化性质改变,如溶解度降低,结晶能力丧失,易被蛋白酶消化水解。 2、参与维持蛋白质空间结构的历有哪些? 答:氢键二硫键疏水作用范德华力盐键配位键 3、什么是蛋白质的变性作用?引起蛋白质变性的因素有哪些? 答:蛋白质分子在变性因素的作用下,失去生物活性的现象为蛋白质变性作用。 物理因素:热、紫外线照射、X—射线照射、超声波、高压、震荡、搅拌等 化学因素:强酸、强碱、重金属、三氯乙酸、有机溶剂等。 4、什么是蛋白质的构像?构像与构型有何区别? 答:在分子中由于共价键的旋转所表现出的原子或基团的不同空间排布。构象的改变不涉及共价键的断裂和重新组成,也没有光学活性的变化,构象形式有无数种。在立体异构体中的原子或取代基团的空间排列关系。构型有两种,即L—构型和D—构型。 构型改变要有共价键的断裂和重新组成,从而导致光学活性的变化。 5、乙酰辅酶A可进入哪些代谢途径?请列出。 答:①进入三羧酸循环氧化分解为二氧化碳和水,产生大量能量②以乙酰辅酶A为原料合成脂肪酸,进一步合成脂肪和磷脂等③以乙酰辅酶A为原料合成酮体作为肝输出能源方式 ④以乙酰辅酶A为原料合成胆固醇。 6、为什么摄入糖过多容易长胖? 答:①糖类在体内经水解产生单糖,像葡萄糖可通过有氧氧化生成乙酰辅酶A,作为脂肪酸合成原料合成脂肪酸,因此脂肪是糖储存形式之一。②糖代谢过程中产生的磷酸二羟丙酮可转变为磷酸甘油,也可作为脂肪合成甘油的来源。 7、在糖代谢过程中生成的丙酮酸可进入哪些代谢途径? 答:(1)在供氧不足时,丙酮酸在乳酸脱氢酶的催化下,有还原型的辅酶Ⅰ供氢,还原成乳酸。(2)在供氧充足时,丙酮酸进入线粒体在丙酮酸脱氢酶系的作用下,氧化脱羧生成乙酰辅酶A, 乙酰辅酶A进入三羧酸循环被氧化为二氧化碳和水及ATP。(3)丙酮酸进入线粒体在丙酮酸羧化酶的作用下生成草酰乙酸,后者经磷酸烯醇式丙酮酸羧激酶催化下生成磷酸烯醇式丙酮酸,在异生成糖。(4)丙酮酸进入线粒体在丙酮酸羧化酶的作用下生成草酰乙酸,后者与乙酰辅酶A缩合成柠檬酸,柠檬酸出线粒体在细胞浆中经柠檬酸裂解酶催化生成乙酰辅酶A,后者可作脂肪、胆固醇的合成原料。(5)丙酮酸可经还原性氨基化生成丙氨酸等非必需氨基酸。决定丙酮酸的代谢方向是各条代谢途径中关键酶的活性。这些酶受到别构效应剂与激素的调节。 8、试从营养物质代谢的角度解释为什么减肥主要要减少糖类物质的摄入?

最新《生物化学》练习题及答案

《生物化学》练习题及答案 纵观近几年来生化自考的题型一般有四种:(一)最佳选择题,即平常所说的A型多选题,其基本结构是由一组题干和A、B、C、D、E 五个备选答案组成,其中只有一个是最佳答案,其余均为干扰答案。 (二)填充题,即填写某个问题的关键性词语。(三)名词解释,答题要做到准确全面,举个例来说,名解“糖异生”,单纯回答“非糖物质转变为糖的过程”这一句话显然是不够的,必需交待异生的场所、非糖物质有哪些等,诸如此类问题,往往容易疏忽。(四)问答题,要充分理解题意要求,分析综合,拟定答题方案。现就上述四种题型,编写了生物化学习题选,供大家参考。 一、最佳选择题:下列各题有A、B、C、D、E五个备选答案,请选择一个最佳答案。 1、蛋白质一级结构的主要化学键是( ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 2、蛋白质变性后可出现下列哪种变化( ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物是( )

A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的是( ) A、IMP B、AMP C、GMP D、XMP E、ATP 5、脂肪酸氧化过程中,将脂酰~SCOA载入线粒体的是( ) A、ACP B、肉碱 C、柠檬酸 D、乙酰肉碱 E、乙酰辅酶A 6、体内氨基酸脱氨基最主要的方式是( ) A、氧化脱氨基作用 B、联合脱氨基作用 C、转氨基作用 D、非氧化脱氨基作用 E、脱水脱氨基作用 7、关于三羧酸循环,下列的叙述哪条不正确( ) A、产生NADH和FADH2 B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 8、胆固醇生物合成的限速酶是( ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶是酵解过程中的限速酶( )

生物化学上册问答题

四、问答题 1.将固体氨基酸溶于pH7的水中所得的氨基酸溶液,有的pH大于7,有的小于7,这种现象说明什么? 答:氨基酸既帶有氨基也有羧基,是兩性電解質。當固體的氨基酸溶於純水中時,酸性基團解離出質子使溶液變為酸性,堿性基團接受質子使溶液變為堿性。在20中通用氨基酸中,一氨基一羧基的氨基酸溶於水后溶液基本為中性,一氨基二羧基的氨基酸溶於水后溶液ph 小於7為酸性,二氨基一羧基的氨基酸,如Lys、Arg溶於水后溶液ph大於7為堿性。 2.某氨基酸的水溶液pH值为6.0,问此氨基酸的等电点是大于6,等于6,还是小于6? 答:該氨基酸水溶液ph值為6.0,說明該氨基酸羧基的解离程度大於氨基,要使氨基酸上的羧基的解离程度与氨基的解离程度相同,只有加酸抑制其水解,故該氨基酸的pi小于6。 3.苯丙氨酸在水中的溶解度很低,而丝氨酸却易溶于水.为什么? 答:苯丙氨酸的芳香环的侧链是非极性的,它被水的溶剂化作用伴随着?减,这是它不利于溶于水的原因。相反,丝氨酸的侧链含有一个极性的羟基,有利于它与水分子形成氢键而促进它溶于水。 4.计算(1)谷氨酸(2)精氨酸和(丙氨酸)的等电点。 答:(1)根据谷氨酸的解离曲线,其pI应该是它的a—羧基和它的侧链羧基两者pKa值和算术平均值,即pI=(2.1+4.07)/2=3.08;(2)精氨酸pI应该是它的侧链胍基pKa,即 pI=(8.99+12.48)/2=10.7;(3)丙氨酸pI应该是它的a—氨基和它的a—羧基两者的pKa 和的算术平均值即pI=(2.35+9.87)/2=6.11。 5.蛋白质有哪些重要功能? 答:(1)生物催化作用酶是蛋白质,具有催化能力,新陈代谢的所有化學反應几乎都是在酶的催化下進行的。 (2)结构蛋白有些蛋白质的功能是参与细胞和组织的建成 (3)运输功能如血红蛋白具有运输氧的功能 (4)收缩运动收缩蛋白与肌肉收缩和细胞运动密切相关 (5)激素功能 (6)免疫保护功能抗体是蛋白质 (7)贮藏蛋白如植物种子的谷蛋白可供种子萌发时利用 (8)接受和传递信息生物体中的受体蛋白能专一地接受和传递外界的信息 (9)控制生长与分化有些蛋白参与细胞生长与分化的调控。 (10)毒蛋白能引起机体中毒症状和死亡的异体蛋白。 1.什么是蛋白质的一、二、三、四级结构?主要的稳定因素各是什么?

关于生物化学问答题附答案

生物化学解答题 (一档在手万考不愁) 整理:机密下载 有淀粉酶制剂1g,用水溶解成1000ml酶液,测定其蛋白质含量和粉酶活力。结果表明,该酶液的蛋白质浓度为0.1mg/ml;其1ml的酶液每5min分解0.25g淀粉,计算该酶制剂所含的淀粉酶总活力单位数和比酶活(淀粉酶活力单位规定为:在最适条件下,每小时分解1克淀粉的酶量为一个活力单位)。答案要点:①1ml的酶液的活力单位是60/5×0.25/1=3(2分)酶总活力单位数是3×1000=3000U(1分)②总蛋白是0.1×1000=100 mg(1分),比活力是3000/100=30(1分)。 请列举细胞内乙酰CoA的代谢去向。(5分)答案要点:三羧酸循环;乙醛酸循环;从头合成脂肪酸;酮体代谢;合成胆固醇等。(各1分) 酿酒业是我国传统轻工业的重要产业之一,其生化机制是在酿酒酵母等微生物的作用下从葡萄糖代谢为乙醇的过程。请写出在细胞内葡萄糖转化为乙醇的代谢途径。答案要点:在某些酵母和某些微生物中,丙酮酸可以由丙酮酸脱羧酶催化脱羧变成乙醛,该酶需要硫胺素焦磷酸为辅酶。乙醛继而在乙醇脱氢酶的催化下被NADH 还原形成乙醇。葡萄糖+2Pi+2ADP+2H+ 生成2乙醇+2CO2+2ATP+2H2O(6分)脱氢反应的酶:3-磷酸甘油醛脱氢酶(NAD+),醇脱氢酶(NADH+H+)(2分)底物水平磷酸化反应的酶:磷酸甘油酸激酶,丙酮酸激酶(Mg2+或K+)(2分) 试述mRNA、tRNA和rRNA在蛋白质合成中的作用。答案要点:①mRNA是遗传信息的传递者,是蛋白质生物合成过程中直接指令氨基酸掺入的模板。(3分)②.tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。(4分) ③. rRNA与蛋白质结合组成的核糖体是蛋白质生物合成的场所(3分)。 物合成过程中直接指令氨基酸掺入的模板。(3分)②.tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。(4分) ③. rRNA与蛋白质结合组成的核糖体是蛋白质生物合成的场所(3分)。 为什么说三羧酸循环是糖、脂、蛋白质三大物质代谢的共同通路?哪些化合物可以被认为是联系糖、脂、蛋白质和核酸代谢的重要环节?为什么?答案要点:①三羧酸循环是糖、脂、蛋白质三大物质代谢的共同氧化分解途径(2分);三羧酸循环为糖、脂、蛋白质三大物质合成代谢提供原料(1分),要举例(2分)。②列举出糖、脂、蛋白质、核酸代谢相互转化的一些化合物(3分),糖、脂、蛋白质、核酸代谢相互转化相互转化途径(2分) 写出天冬氨酸在体内彻底氧化成CO2和H20的反应历程,注明其中催化脱氢反应的酶及其辅助因子,并计算1mol天冬氨酸彻底氧化分解所净生成的ATP的摩尔数。答案及要点:天冬氨酸+α酮戊二酸--→(谷草转氨酶)草酰乙酸+谷氨酸谷氨酸+NAD+H2O→(L谷氨酸脱氢酶)α酮戊二酸+NH3+NADH 草酰乙酸+GTP→(Mg、PEP羧激酶)PEP+GDP+CO2 PEP+ADP→(丙酮酸激酶)丙酮酸+ATP 丙酮酸+NAD+COASH→(丙酮酸脱氢酶系)乙酰COA+NADH+H+CO2 乙酰COA+3NAD+FAD+GDP+Pi+2H2O→(TCA循环)2CO2+COASH+3NADH+3H+FADH2+GTP ①耗1ATP 生2ATP 5NADH+1FADH2+1GTP=1ATP净生成1+2+2.5×5+1.5×1=15ATP②耗1ATP生成2ATP+3NADH+1FADH+1NADPH净生成1+2+2.5×4+1?5×1=12.5ATP 脱氢反应的酶:L-谷氨酸脱氢酶(NAD+),丙酮酸脱氢酶系(CoA,TPP,硫辛酸,FAD,Mg2+),异柠檬酸脱氢酶(NAD+,Mg2+),a-酮戊二酸脱氢酶系(CoA,TPP,硫辛酸,NAD+,Mg2+),琥珀酸脱氢酶(FAD,Fe3+),苹果酸脱氢酶(NAD+)。(3分)共消耗1ATP,生成2ATP、5NADH和1FADH,则净生成:-1+2+3×5+2×1=18ATP DNA双螺旋结构有什么基本特点?这些特点能解释哪些最重要的生命现象?答案要点:a. 两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,螺旋表面有一条大沟和一条小沟。(2分)b. 磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按A-T配对,之间形成2个氢键,G-C配对,之间形成3个氢键(碱基配对原则,Chargaff定律)。(2分)c. 螺旋直径2nm,相邻碱

生化大题汇总

生化大题汇总 ※参与DNA复制的主要酶和蛋白因子有哪些?各有什么功能? 拓扑异构酶:松解DNA的超螺旋。 解链酶:打开DNA的双链。 引物酶:在DNA复制起始处以DNA为模板,催化合成互补的RNA短片断。 DNA聚合酶:以DNA为模板、dNTP为原料,合成互补的DNA新链。 连接酶:连接DNA片断。 DNA结合蛋白:结合在打开的DNA单链上,稳定单链。 ※DNA复制有何主要特点? 半保留复制,半不连续合成、需RNA引物,以dNTP(A,T,C,G)为原料,新链合成方向总是5’->3’,依赖DNA的DNA聚合酶(DDDP) ※DNA复制的高保真性主要取决于哪些因素? DNA复制的高保真性取决于三个方面:1、DNA双链碱基的严格配对与DNA聚合酶对配对碱基的严格选择性;2、5’->3’外切核酸酶的即时校读作用;3、对DNA分子中的错误或损伤的修复机制。 ※真核生物DNA复制在何处进行?如何进行? 在细胞核内。 复制分为以下几个阶段:1、起始阶段(DNA解旋解链及引物合成):DNa拓扑异构酶、解链酶分别使DNA 解旋、解链,形成复制叉,在起始点由引物酶催化合成RNA引物;2、DNA合成阶段:以DNA的两条链分别作为模板,dNTP为原料按碱基互补原则(A-T,C-G)在RNa引物引导下,由DNA聚合酶催化合成DNA新链(分前导链和随从链);3、终止阶段:水解RNa引物(polI),填补空缺(polI),连接DNA片断(连接酶)。 ※何谓反转录?在哪些情况下发生反转录?写出主要酶促反应过程。 以RNA为模板在反转录酶的作用下合成DNA的过程叫做反转录。 反转录可发生于:1、在RNA病毒感染宿主细胞甚至致癌过程中;2、在基因工程中,以mRNA为模板合成cDNA。 病毒RNA(反转录酶dNTP)->RNA-DNA杂化链(RNA酶活性)->cDNA单链(DNA聚合酶活性)->cDNA 双链 ※概述DNA的生物合成。 DNA的生物合成包括DNA半保留复制,DNA损伤后的修复合成和反转录 DNA复制是以DNa的两条链分别作为模板,以dNTP为原料,在DNA聚合酶作用下按照碱基配对原则合成互补新链,这样形成的两个子代DNA分子与原来DNa分子完全相同,一条链来自亲代,另一条链是新合成的,故称为半保留复制。 在某些梨花、生物学因素作用下DNa链发生碱基突变、缺失、交联或链的断裂等损伤后,可进行修复。修复方式有光修复、切除修复、重组修复与SOS修复等。切除修复:1、核酸内切酶从损伤处的5’端切开,出现正常的3’端;2、核酸外切酶水解已打开的损伤DNA段;3DNA聚合酶以互补的DNA链为模板,dNTP为原料,5’->3’方向合成新的DNa片段;4、连接酶连接形成完整的DNA链。 以RNA为模板在反转录酶的作用下合成DNA的过程叫做反转录。反转录在病毒致癌过程中起重要作用;在基因工程中可用于以mRNA为模板合成cDNA的实验。 ※催化磷酸二酯键形成的酶有哪些?比较各自不同特点。 有DNA聚合酶、RNA聚合酶、引物酶、反转录酶、连接酶和拓扑异构酶。

生物化学复习题及答案

生物化学复习 一、单选题: 1. 能出现在蛋白质分子中的下列氨基酸,哪一种没有遗传密码E.羟脯氢酸 2. 组成蛋白质的基本单位是A.L-α-氨基酸 3. 蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定C.溶液PH值等于PI 4. 下列关于对谷胱甘肽的叙述中,哪一个说法是错误的C.是一种酸性肽 5. 核酸对紫外线的吸收是由哪一结构所产生的C.嘌呤、嘧啶环上的共轭双键 6. 核酸分子中储存、传递遗传信息的关键部分是B.碱基序列 7. 镰刀型红细胞患者血红蛋白β-链第六位上B.缬氨酸取代谷氨酸 8. 酶加快化学反应速度的根本在于它E.能大大降低反应的活化能 9. 临床上常用辅助治疗婴儿惊厥和妊娠呕吐的维生素是C.维生素B6 10. 缺乏下列哪种维生素可造成神经组织中的丙酮酸和乳酸堆积D. 维生素B1 11. 关于蛋白质分子三级结构的描述,其中错误的是B.具有三级结构的多肽链都具有生物学活性 12.下列哪种因素不能使蛋白质变性E.盐析 13. 蛋白质与氨基酸都具有A A.两性 B.双缩脲胍 C.胶体性 D.沉淀作用 E.所列都具有 14. 天然蛋白质中不存在的氨基酸是C A.甲硫氨酸 B.胱氨酸 C.羟脯氨酸 D.同型半胱氨酸 E.精氨酸 15. 镰刀型红细胞患者血红蛋白β-链第六位上B A.赖氨酸取代谷氨酸 B.缬氨酸取代谷氨酸 C.丙氨酸取代谷氨酸 D.蛋氨酸取代谷氨酸 E.苯丙氨酸取代谷氨酸 16. 关于竞争性抑制剂作用的叙述错误的是D A.竞争性抑制剂与酶的结构相似 B.抑制作用的强弱取决与抑制剂浓度与底物浓度的相对比例 C.抑制作用能用增加底物的办法消除 D.在底物浓度不变情况下,抑制剂只有达到一定浓度才能起到抑制作用 E.能与底物竞争同一酶的活性中心 17. 下列关于酶的活性中心的叙述正确的是A A.所有的酶都有活性中心 B.所有酶的活性中心都含有辅酶 C.酶的必须基团都位于活性中心之内 D.所有抑制剂都作用于酶的活性中心 E.所有酶的活性中心都含有金属离子 18. 下列关于酶的变构调节,错误的是C A.受变构调节的酶称为变构酶 B.变构酶多是关键酶(如限速酶),催化的反应常是不可逆反应 C.变构酶催化的反应,其反应动力学是符合米-曼氏方程的 D.变构调节是快速调节 E.变构调节不引起酶的构型变化

相关主题
文本预览
相关文档 最新文档