当前位置:文档之家› 频谱仪测量射频放大器的噪声系数

频谱仪测量射频放大器的噪声系数

频谱仪测量射频放大器的噪声系数
频谱仪测量射频放大器的噪声系数

相位噪声基础及测试原理和方法

相位噪声基础及测试原理和方法 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义

射频低噪声放大器电路设计详解

射频低噪声放大器电路设计详解 射频LNA 设计要求:低噪声放大器(LNA)作为射频信号传输链路 的第一级,它的噪声系数特性决定了整个射频电路前端的噪声性能,因此作为 高性能射频接收电路的第一级LNA 的设计必须满足:(1)较高的线性度以抑 制干扰和防止灵敏度下降;(2)足够高的增益,使其可以抑制后续级模块的噪 声;(3)与输入输出阻抗的匹配,通常为50Ω;(4)尽可能低的功耗, 这是无线通信设备的发展趋势所要求的。 InducTIve-degenerate cascode 结构是射频LNA 设计中使用比较多的结构之一,因为这种结构能够增加LNA 的增益,降低噪声系数,同时增加输入级 和输出级之间的隔离度,提高稳定性。InducTIve-degenerate cascode 结构在输入级MOS 管的栅极和源极分别引入两个电感Lg 和Ls,通过选择适当的电感 值,使得输入回路在电路的工作频率附近产生谐振,从而抵消掉输入阻抗的虚部。由分析可知应用InducTIve-degenerate cascode 结构输入阻抗得到一个50Ω的实部,但是这个实部并不是真正的电阻,因而不会产生噪声,所 以很适合作为射频LNA 的输入极。 高稳定度的LNA cascode 结构在射频LNA 设计中得到广泛应用,但是当工作频率较高时 由于不能忽略MOS 管的寄生电容Cgd,因而使得整个电路的稳定特性变差。 对于单个晶体管可通过在其输入端串联一个小的电阻或在输出端并联一个大的 电阻来提高稳定度,但是由于新增加的电阻将使噪声值变坏,因此这一技术不 能用于低噪声放大器。 文献对cascode 结构提出了改进,在其中ZLoad=jwLout//(jwCout)-

翻译_无线电接收器的噪声系数

无线电接收器的噪声系数 H. T. ERJISt, FELLOW, I.R.E. 摘要——本文给出了电波接收器噪系数的严格定义,此定义不局限于高增益接收机,也适用于普通的四端口网络。分析了接收器整体的噪声系数与其组件的噪声系数之间的关系,简要叙述了接收器组件与其噪声系数的测量方法之间的不匹配。 简介 当越来越短的波得到实际应用,无线电接收器的噪声源也越来越被重视。在很多相关论文中,特别是Llewellyn(英国音乐家)和Jansky(美国无线电工程师)在1928年发表的论文中,通过实验得到:热激噪声(约翰逊噪声)决定了短波无线电接收器的绝对灵敏度。早在1942年,North 建议采用的无线电接收器的绝对灵敏度的标准与我们当时所用的标准相差多达2倍。因为它是基于接收器输入电路的阻抗匹配,我们的标准很有局限性,所以我们采用了他的标准。 本文提出了一个更严格的关于无线电接收器的绝对灵敏度标准的定义,即噪声系数。该定义不局限于高增益接收机,也适用于普通的四端口网络。它使通过一个简单的分析就给出接收器整体的噪声系数与其组件的噪声系数之间的关系成为可能。对于双重检波接收器来说,这些组件可能是高频放大器、变频器和中频放大器。本文也给出了噪声系数的测量方法。

四端口网络噪声系数的定 义如图1所示,一个信号发生器 连接到输入端,输出电路也被标 记出来。网络的输入阻抗和输出 阻抗可能包含电抗成分,它们可 能与发生器和输出电路匹配或不匹配。四端口网络可能是一个放大器、转换器、衰减器或简单的变压器。信号发生器对于接下来的定义是必要的,但信号发生器里面的衰减器和连接右面的输出电路则只是为了表明对噪声系数和增益的测量。 噪声系数将依据可用信号功率、有效噪声功率、增益和有效带宽来定义,下面将给出这些术语的定义并进行讨论。 可用信号功率 阻为R0欧,电动势为E伏特的发生器提供给R1欧的电阻E2R1/(R0+R1)2瓦特的功率,当输出电路与发生器匹配,即R1= R0时,这个功率达到最大等于E2/4R0。E2/4R0被人们称为发生器的可用功率,它的定义与所连接的电路的阻抗无关。当R1不等于R0时,因为存在失配损耗,所以输出功率小于可用功率。事实上,在放大器的输入电路中,由于不匹配而降低的输出噪声可能比降低的输出信号更多,所以不匹配很可能是个有益的条件。正是这种放大器的输入电路中不匹配条件的存在,使本文中的术语“可用功率”显得更加恰当。在图1中,用S o表示信号发生器输出端的可用信号功率。这里S o等于V2/RA瓦特,当V表示衰减器输入端电压,R表示衰减器的特征阻抗,A表示

用频谱分析仪作EMI测试和诊断

用频谱分析仪作EMI测试和诊断 频谱分析仪是电磁干扰(EMI)的测试、诊断和故障检修中用途最广的一种工具。本篇文章将重点突出频谱分析仪在EMI应用的广阔范围内作为诊断测试仪器的多用性。 对于一个EMC工程师来说,频谱分析仪最重要的用途之一是测试商用和军用电磁发射,其他用途包括对以下内容的评估: 材料的屏蔽效能, 仪器机箱的屏蔽效能, 较大的试验室或测试室的屏蔽效能, 电源线滤波器的衰减特性。 此外频谱分析仪在从事场地勘测中也很有用。 概述 频谱分析仪对于一个电磁兼容(EMC)工程师来说就象一位数字电路设计工程师手中的逻辑分析仪一样重要。频谱分析仪的宽频率范围、带宽可选性和宽范围扫描CRT显示使得它在几乎每一个EMC测试应用中都可大显身手。 辐射发射测量 频谱分析仪是测试设备辐射发射必不可少的工具,它与适当的接口相连就可用于EMI自动测量。比如说,一台频谱分析仪与一台计算机相连,就可以在对应的频率范围内把发射数据制成图和/或表。虽然EMI测量接收机也可用于自动测试系统,但在故障的诊断和检修阶段频谱分析仪则显得更优越。大多数情况下被测设备在第一次测试时都不能满足人们的期望值,因此,诊断电磁干扰源并指出辐射发射区域就显得很迫切。在EMI辐射发射测试的故障检修方面,有时可能想要设置足够宽的频率范围以使得辐射发射要的频谱范围以外的频谱也包括在内。用频谱分析仪,EMC工程师就可以观察到比用一台典型的EMI测试接收机可观察到的更宽的频谱范围。另一种常用技术是观察特殊宽带天线频率范围。包括所有校正因子在内的频谱图也同时被显示在频谱分析仪的CRT上,显示的幅值单位与分析仪上的单位相一致,通常是dBm。这样,测试人员可在CRT上监测发射电平,一旦超过限值,就会被立刻发现。这在故障检修中极其有用。这种特性使得人们在屏蔽被测产品的同时观察频谱仪的屏蔽并可立刻获得反馈信息。在快速进行滤波、屏蔽和接地操作时同样可做以上尝试。频谱分析仪的最大保持波形存储以及双重跟踪特性也可用于观察操作前后的EMI电平的变化。 许多频谱分析仪是便携式的,可以方便地移入测试室内以对被测产品进行连续观察。测试人员可以用电场或磁场探头探测被测设备泄漏区域。通常这些区域包括如,箱体接缝,CRT前面板、接口线缆、键盘线缆、键盘、电源线和箱体开口部位等,探头也可深入被测设备的箱体内进行探测。为了确切指出最大辐射区域,要求探头灵敏度不要太高,通常,一段小线头与一同轴线缆一

射频功率放大器

实验四:射频功率放大器 【实验目的】 通过功率放大器实验,让学生了解功率放大器的基本结构,工作原理及其设计步骤,掌握功率放大器增益、输出功率、频率范围、线性度、效率和输入/输出端口驻波比等主要性能指标的测试方法,以此加深对以上各项性能指标的理解。 【实验环境】 1.实验分组:每组2~4人 2.实验设备:直流电源一台,频谱仪一台,矢量网络分析仪一台,功率计一只,10dB衰减器一个,万用表一只,功率放大器实验电路 板一套 【实验原理】 一、功率放大器简介 功率放大器总体可分成A、B、C、D、E、F六类。而这六个小类又可以归入不同的大类,这种大类的分类原则,大致有两种:一种是按照晶体管的导通情况分,另一种按晶体管的等效电路分。按照信号一周期内晶体管的导通情况,即按导通角大小,功率放大器可分A、B、C三类。在信号的一周期内管子均导通,导θ(在信号周期一周内,导通角度的一半定义为导通角θ),称为A 通角? =180 θ。导通时间小于一半周期的类。一周期内只有一半导通的成为B类,即? =90 θ。如果按照晶体管的等效电路分,则A、B、C属于一大称为C类,此时? <90 类,它们的特点是:输入均为正弦波,晶体管都等效为一个受控电流源。而D、E、F属于另一类功放,它们的导通角都近似等于? 90,均属于高功率的非线性放大器。 二、功率放大器的技术要求 功率放大器用于通信发射机的最前端,常与天线或双工器相接。它的技术要求为: 1. 效率越高越好 2. 线性度越高越好 3. 足够高的增益

4. 足够高的输出功率 5. 足够大的动态范围 6. 良好的匹配(与前接天线或开关器) 三、功率放大器的主要性能指标 1.工作频率 2.输出功率 3.效率 4.杂散输出与噪声 5.线性度 6.隔离度 四、功率放大器的设计步骤 1.依据应用要求(功率、频率、带宽、增益、功耗等),选择合适的晶体管 2.确定功率放大器的电路和类型 3.确定放大器的直流工作点和设计偏置电路 4.确定最大功率输出阻抗 5.将最大输出阻抗匹配到负载阻抗(输出匹配网络) 6.确定放大器输入阻抗 7.将放大器输入阻抗匹配到实际的源阻抗(输入匹配网络) 8.仿真功率放大器的性能和优化 9.电路制作与性能测试 10.性能测量与标定 五、本实验所用功率放大器的简要设计过程 1. PA 2. 晶体管的选择 本实验所选用的晶体管为安捷伦公司的ATF54143_PHEMT,这种晶体管适合用来设计功率放大器。单管在~处能达到的最大资用增益大于18dB,而1dB压缩点高于21dB。

相位噪声基础及测试原理和方法

摘要: 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义 以载波的幅度为参考,在偏移一定的频率下的单边带相对噪声功率。这个数值是指在1Hz的带宽下的相对噪声电平,其单位为dBc/Hz。该定义最早是基于频谱仪法测试相位噪声,不区分调幅噪声和调相噪声。 单边带相位噪声L(f)定义为随机相位波动单边带功率谱密度Sφ(f)的一半,其单位为dBc/Hz。其中Sφ(f)为随机相位波动φ(t)的单边带功率谱密度,其物理量纲是rad2/Hz。

RF噪声系数的计算方法

噪声系数的计算及测量方法 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为

频谱仪测试时几个重要参数的设置

- 49 - 频谱仪测试时几个重要参数的设置 冯菊香 (玉林师范学院,广西 玉林 537000) 【摘 要】频谱仪的最佳工作状态是由诸多因素、参数决定的,而各种参数之间又相互关联,因此在设置频谱仪时需要统筹考虑。文章从频谱仪的基本原理出发,对输入衰减、前置放大、混频、分辨率带宽、视频带宽、扫频宽度和扫描时间等参数作了重点介绍,并就它们之间的最佳工作状态关系设置进行了阐述。 【关键词】频谱仪;分辨率带宽;视频带宽;扫频宽度 【中图分类号】TM935.21 【文献标识码】A 【文章编号】1008-1151(2009)10-0049-02 频谱分析仪是信号分析处理中常用的仪器设备,它不仅 用于测量各种信号的频谱,而且还可测量功率、失真、增益 和噪声特性等。其覆盖的频率范围可达40GHz甚至更高,因而 被广泛用于所有的无线或有线通信应用中,包括开发、生产、 安装与维护等。 从工作原理上看,频谱分析仪可以分为模拟式与数字式 两大类。数字式频谱分析仪主要用于超低频或低频段,其中 最有代表性的为傅立叶分析仪。模拟式频谱分析仪根据使用 滤波器的不同,又分为带通滤波器频谱分析仪与外差式扫频 频谱分析仪。 (一)频谱仪的基本原理 频谱分析仪的基本电路是超外差接收机,亦即利用超过 输入信号频率的本地振荡频率通过混频器获得差频输出。频 谱仪显示屏的水平坐标为频率轴,垂直坐标为功率轴,主要 用于观测和记录某个指定频率段内的载波频谱。其基本原理 如图1: 图1 频谱分析仪基本原理框图 信号的流程是:射频信号RF 接入频谱仪,经过前端的衰 减器和放大器,达到频谱仪的量程电平指标后,再经过混频 器,通过与本振信号的和频或差频而产生中频频率,然后, 通过中频带通滤波器和检波器峰值检波后的信号,再经过视 频滤波器滤波,经由A/D 转换后显示出来。由于本振电路的振 荡频率随着时间变化,因此频谱分析仪在不同的时间接收的 频率是不同的。当本振振荡器的频率随着时间进行扫描时, 屏幕上就显示出被测信号在不同频率上的电压包络,从而得 到被测信号的频谱。 (二)频谱仪的几个重要参数分析 用频谱分析仪对电信号进行测量时,要充分发挥频谱仪 的性能,尽可能地减少测量误差,显示其巨大的优越性,首 先必须根据所测的信号特点来设定频谱仪的衰减器、分辨率 带宽、视频带宽和扫描宽度(或时间)等,才可能使频谱仪 处于最佳工作状态。 1.合理使用输入衰减器和前置放大器 为了防止高电平输入信号对混频器产生的非线性失真,各种不同型号和不同类型的频谱仪,在仪器内部都设有输入衰减器,以此来选择最佳的混频电平。输入信号的电平不随衰减增加而下降,这是因为每当衰减降低加到检波器的信号电平10dB时,中放(IF)增益同时增加10dB来补偿这个损失,其结果使仪表显示的信号幅度保持不变。但是,噪声信号受到放大器的影响很大,其电平被放大,增加了10dB。既然内部噪声主要由中放第一级产生,因而输入衰减器不影响内部噪声电平。但是,输入衰减器影响到混频器的信号电平,并降低信噪比。也就是说,衰减器的衰减量每增加10dB,频谱仪显示的噪声电平就增加10dB。这样,要提高频谱分析仪的灵敏度就需要将衰减设置得尽可能小,降低噪声电平的值,使得信号不被噪声淹没。 使用前置放大器可以提高RF输入信号的信噪比,在测量小信号时,用前置放大器配合频谱仪的测量是非常有帮助的,特别是对卫星信号下行链路的弱信号进行检测时,需要加前置放大器改善系统的接收效果,否则,信号将很难看到或者根本看不到。但是,使用前置放大器时需要考虑两个重要的因素: 噪声值和增益。接收到的信号强度已经包含了放大器的增益,因此在计算信号的实际强度时,需要将天线增益、放大器增益以及监测系统的其它增益或损耗均排除掉,才能 够得到信号的实际强度。前置放大器有内部和外部之分,内 部前置放大器需要选件,工作频率范围一般为3GHz;外部前置放大器可根据待监测的频率范围,选择相应的放大器,放大器的增益要足够大,以便于监测。 2.最佳混频电平 混频器是频谱仪的前端电路,如果工作不正常,频谱仪自身就会产生多种频率成份,导致测量不准确。为了满足大的动态范围和最好的信噪比,希望混频器的驱动电平尽可能大;为了减少非线性失真,又希望加到混频器的电平尽可能低。究竟混频器的电平取多大呢?多数使用说明书建议最佳的混频电平在-30~0dBm 之间,这时混频器内部产生的失真电平低于显示的平均噪声电平,也就是说混频器产生的失真电平观察不到,可以忽略。 3.分辨率带宽 (RBW:Resolution Band Width) 在频谱分析仪中,分辨率带宽 RBW 是一个非常重要的参【收稿日期】2009-07-02 【作者简介】冯菊香(1972-),女,安徽滁州人,玉林师范学院讲师,桂林电子科技大学在读工程硕士,从事电子与通信测试技术研究。

相噪与抖动的一种计算方法

时钟抖动(CLK)和相位噪声之间的转换 摘要:这是一篇关于时钟(CLK)信号质量的应用笔记,介绍如何测量抖动和相位噪声,包括周期抖动、逐周期抖动和累加抖动。本文还描述了周期抖动和相位噪声谱之间的关系,并介绍如何将相位噪声谱转换成周期抖动。 几乎所有集成电路和电气系统都需要时钟(CLK)。在当今世界中,人们以更快的速度处理和传送数字信息,而模拟信号和数字信号之间的转换速率也越来越快,分辨率越来越高。这些都要求工程师更多地关注时钟信号的质量。 时钟信号的质量通常用抖动和相位噪声来描述。抖动包括周期抖动,逐周期抖动和累计抖动,最常用的是周期抖动。时钟的相位噪声用来说明时钟信号的频谱特性。 本文首先简单介绍用来测量时钟抖动和相位噪声的装置。然后介绍周期抖动和相位噪声之间的关系,最后介绍将相位噪声谱转换成周期抖动的简单公式。 周期抖动和相位噪声:定义和测量 周期抖动 周期抖动(J PER)是实测周期和理想周期之间的时间差。由于具有随机分布的特点,可以用峰-峰值或均方根值(RMS)描述。我们首先定义门限为V TH的时钟上升沿位于时域的T PER(n),其中n是一个时域系数,如图1所示。我们将J PER表示为手册: 其中T0是理想时钟周期。由于时钟频率固定,随机抖动J PER的均值应该为零,J PER的RMS 可以表示为: 式中的是所要求的运算符。从图1时钟波形可以看出J PER和T PER之间的关系。

图1. 周期抖动测量 相位噪声测量 为了理解相位噪声谱L(f)的定义,我们首先定义时钟信号的功率谱密度S C(f)。将时钟信号接频谱分析仪,即可测得S C(f)。相位噪声谱L(f)定义为频率f处的S C(f)值与时钟频率f C处的S C(f)值之差,以dB表示。图2说明了L(f)的定义。 图2. 相位噪声谱的定义 相位噪声谱L(f)的数学定义为: 注意L(f)代表的是f C和f处谱值的比,L(f)将在下文介绍。 周期抖动(J PER)测量 有许多设备可以测量周期抖动。通常人们会用高精度数字示波器测量抖动。当时钟抖动大于示波器触发抖动的5倍时,时钟抖动可用时钟上升沿触发,然后测量另一个上升沿。图3 给出了示波器从被测时钟产生触发信号的方法。该方法可消除数字示波器内部时钟源抖动。

基于频谱仪的相位噪声测试及不确定度分析

基于频谱仪的相位噪声测试及不确定度分析 潘光斌1,2 1 (电子科技大学自动化学院 成都 610054) 2(中国工程物理研究院计测中心 绵阳 621900) 摘要 对基于频谱分析仪的相位噪声测试原理和方法进行了介绍,并对引起测试系统不确定度的因素及其评定方法进行了讨论。 关键词 频谱分析仪 相位噪声 不确定度 The M ea surem en t of Pha se No ise Ba sed on Spectru m Ana lyzer and the Ana lysis of Uncerta i n ty Pan Guangb in 1 (S chool of A u to m a tion E ng ineering und er U n iversity of E lectron ic S cience and T echnology ,Cheng d u 610054,Ch ina ) 2 (M etrology and T esting Cen ter und er Ch ina A cad e m y of E ng ineering P hy sics ,M iany ang 621900,Ch ina ) Abstract T h is article introduces the p rinci p le and m ethod how to m easure phase no ise w ith spectrum analyzer ,and discusses the uncertainty facto r and its evaluating m ethod .Key words Spectrum analyzer Phase no ise U ncertainty 1 引 言 仪器中各种噪声对其振荡信号的相位和频率调制的结果,在时间域内观测,表现为相对平均频率偏差的随机起伏,其二次取样方差的平方根值又可称为频率稳定度在时域内的表征。噪声调制结果在频谱域内观测,表现为信号的频谱不纯,在偏离载频处信号的功率谱密度不为零,出现了两个对称的边带。为定量地描述这种调制程度,引入了一个边带内偏离载频f m 处的功率密度与载频功率之比表示。这就是相位噪声L (f m ),其实用计算公式为: L (f m )= 5peak 2 2 = 25r m s 2 2 =12 S 5(f m )式中:5peak 为相位起伏的峰值,5rm s 为相位起伏的有效值。 相位噪声是时间频率领域的一项重要参数,它从频域描述了频率的稳定度,对于多普勒雷达系统、无线电通信、空间信号传输等应用有着重要的影响。例如:相位噪声过大会降低卫星定位的精度,影响数据传输的质量。因此,对相位噪声进行精确测量是一个很值得深入研究的问题。 2 基于频谱分析仪的相位噪声测试原理 常用的相位噪声测量方法有:频率外差法,直接测量法,鉴频器测量法和鉴相器测量法。除频率外差法为时域测量外,其余皆为频域测量。在此从频域进行测试,考虑到直接测量法将受频谱分析仪动态工作范围、分辨率及仪器内本振的相位噪声的制约,而鉴频器测量法又因其背景噪声电平将在频率接近载频时迅速增大而限制了对小频偏相位噪声的测量,所以鉴相器测量法是一种相对较好的选择。 鉴相器测量相位噪声的原理是:利用一个鉴相器,把 相位起伏转换成电压起伏信号,然后用频谱仪测量此起伏电压信号的功率谱密度即可。要使鉴相器输出的电压信号与两个鉴相信号的相位差成比例,两输入信号应满足:(1)频率相等;(2)相位正交,即相差为90°。满足此条件后,被测仪器和参考信号源的输出信号分别为: u x (t )=A sin [Zt +I (t )]u y (t )=Bco s (Zt ) 忽略参考信号源的相位起伏,则经鉴相器(混频器)后,信号变为: 第23卷第5期增刊 仪 器 仪 表 学 报 2002年10月

低噪放大器的原理应用及其常用规格

低噪放大器定义: 噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数 F=1(0分贝),其物理意义是输入信噪比等于输出信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于 2 分贝。放大器的噪声系数还与晶体管的工作状态以及信源内阻有关。为了兼顾低噪声和高增益的要求,常采用共发射极一共基极基联的低噪声放大电路。 低噪放大器的原理: 地球站的品质因数(G/T)主要取决于天线和低噪声放大器(LNA)的性能。接收系统的噪声温度Ts是指折算到LNA输入端的系统等效噪声温度,它主要由天线噪声温度TA、馈线损耗LALA 和低噪声接收机噪声三个部分组成。 低噪放大器的应用: 低噪放大器(LNA)主要面向移动通信基础设施基站应用,例如收发器无线通信卡、塔顶放大器(TMA)、组合器、中继器以及远端/数字无线宽带头端设备等应用设计,并为低噪声指数(NF, Noise Figure)立下了新标竿。目前无线通信基础设施产业正面临必须在拥挤的频谱内提供信号质量和覆盖度的挑战,接收器灵敏度是基站接收路径设计中最关键的要求之一,合适的LNA选择,特别是第一级LNA可以大幅度改善基站接收器的灵敏度表现,低噪声指数也是关键的设计目标,Avago提供了1900MHz下0.48dB同级产品的噪声指数。另一个关键设计为线性度,它影响了接收器分辨紧密接近信号和假信号分别的能力,三阶截点OIP3可以用来定义线性度,在1900MHz和5V/51mA的典型工作条件下,Avago特有的GaAs增强模式pHEMT工艺技术可以带来0.48dB的噪声指数和35dBm的OIP3,在2500MHz和5V/56mA的典型工作条件下,噪声指数为0.59dB,OIP3则为35dBm。通过低噪声指数和高OIP3,这些Avago的新低噪声放大器可以提供基站接收器路径比现有放大器产品更大的设计空间。 LNA经历了早期液氦致冷的参量放大器、常温参量放大器的发展过程,随着现代科学技术的高速发展,近几年已被微波场效应晶体管放大器所取代,此种放大器具有尺寸小、重量轻和成本低的优异特性。特别是在射频特性方面具有低噪声、宽频带和高增益的特点。在C、Ku、Kv 等频段中已被广泛的使用,目前常用的低噪声放大器的噪声温度可低于45K。 在雷达射频接收系统中,对系统性能指标的要求越来越高,其中低噪声放大器是影响着整个接收系统的噪声指标的重要因素。与普通的放大器相比,低噪声放大器作用比较突出,一方面可以减少系统的杂波干扰,提高系统的灵敏度;另一方面可以放大系统的射频信号,保证系统正常工作。因此,低噪声放大器的性能制约着整个接收系统的性能,对整个接收系统性能的提高起了决定性的作用。因此,研制宽频带、高性能、更低噪声的放大器,已经成为微波技术中发展的核心之一。 由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数F=1(0分贝),其物理意义是输出信噪比等于输入信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于2分贝。

接收机灵敏度计算公式

接收灵敏度的定义公式 摘要:本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。本文提供了接收机灵敏度方程的逐步推导过程,还包括具体数字的实例,以便验证其数学定义。 在扩频数字通信接收机中,链路的度量参数Eb/No (每比特能量与噪声功率谱密度的比值)与达到某预期接收机灵敏度所需的射频信号功率值的关系是从标准噪声系数F的定义中推导出来的。CDMA、WCDMA蜂窝系统接收机及其它扩频系统的射频工程师可以利用推导出的接收机灵敏度方程进行设计,对于任意给定的输入信号电平,设计人员通过权衡扩频链路的预算即可确定接收机参数。 从噪声系数F推导Eb/No关系 根据定义,F是设备(单级设备,多级设备,或者是整个接收机)输入端的信噪比与这个设备输出端的信噪比的比值(图1)。因为噪声在不同的时间点以不可预见的方式变化,所以用均方信号与均方噪声之比表示信噪比(SNR)。 图1. 下面是在图1中用到的参数的定义,在灵敏度方程中也会用到它们: Sin = 可获得的输入信号功率(W) Nin = 可获得的输入热噪声功率(W) = KTBRF其中: K = 波尔兹曼常数= × 10-23 W/Hz/K, T = 290K,室温 BRF = 射频载波带宽(Hz) = 扩频系统的码片速率 Sout = 可获得的输出信号功率(W) Nout = 可获得的输出噪声功率(W) G = 设备增益(数值) F = 设备噪声系数(数值) 的定义如下: F = (Sin / Nin) / (Sout / Nout) = (Sin / Nin) ×(Nout / Sout) 用输入噪声Nin表示Nout: Nout = (F × Nin × Sout) / Sin其中Sout = G × Sin 得到: Nout = F × Nin × G

低噪声放大器

低噪声放大器(Low Noise Amplifier,LNA)广泛应用于射电天文、卫星接收、雷达通信等收信机灵敏度要求较高的领域,主要作用是放大所接收的微弱信号、降低噪声、使系统解调出所需的信息数据。而噪声系数(Noise Figure,NF)作为其一项重要的技术指标直接反映整个系统的灵敏度,所以LNA设计对整个系统的性能至关重要。 1 GPS接收机低噪声放大器的设计 设计的LNA主要指标为:工作频率为1 520~1 600 MHz;噪声系数NF16.0 dB;输入驻波比<2;输出驻波比<1.5。 1.1 器件选择 选择合适的器件,考虑到噪声系数较低、增益较高,所以选择PHEMT GaAsFET低噪声晶体管。在设计低噪声放大器前,首先要建立晶体管的小信号模型,一般公司都会提供具有现成模型的放大器件。这里选择Agilent公司的生产的ATF-54143。1.52~1.60 GHz频带内,设计反τ型匹配网络,该匹配网络由集总元件电感、电容构成。选择电感时,要选择高Q 电感。为了在模拟仿真中能够与实际情况相符合,选用Murata公司的电感和电容模型。这里选用贴片电感型号为LQWl8,贴片电容型号为GRMl8,电感LQWl8在1.6 GHz典型Q值为80。 1.2 直流偏置 在设计低噪声放大器中,设计直流偏置的目标是选择合适的静态工作点,静态点的好坏直接影响电路的噪声、增益和线性度。由电阻组成的简单偏置网络可以为ATF-54143提供合适的静态工作点,但温度性较差。可用有源偏置网络弥补温度性差的缺点,但有源偏置网络会使电路尺寸增加,加大了电路板排版的难度以及增加了功率消耗。在设计实际电路中,要根据具体情况选择有源偏置网络,或是电阻偏置网络。就文中的LNA而言,考虑到结构和成本,这里选择电阻无源偏置网络。采用Agilenl的ATF54143,根据该公司给出的datasheet 指标,设计Vds=3.8 V、Ids=ll mA偏置工作点。因为在电流为llmA时ATF-54143性能较好。电阻R3为100 Ω;R2为680 Ω;R1为60 Ω,如图1所示。

噪声系数的原理和测试方法

噪声系数测试方法 针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。 图1:MAXIM公司TD-SCDMA手机射频接收电路。 利用频谱仪直接测试 利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于 100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。 测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出: 上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF的显式表达式如下: 或者: 关于方程2与方程3的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为: 接收机I/Q端口点频信号分别为:

射频功率放大器实时检测的实现

射频功率放大器实时检测的实现 广播电视发射机是一个综合的电子系统,它不仅包括无线发射视音频通道,而且还包括通道的检测和自动控制电路,因此在设计时,它除了必须保证无线通道的技术指标处于正常范围外,还必须设计先进的取样检测和保护报警等电路,以确保发射机工作正常,从而实现发射机在线自动监测和控制。近年来,随着大功率全固态电视发射机多路功率合成技术的发展,越来越多的厂家采用模块化结构设计,因此单个功率放大器模块是整个发射机的基本测单元,本文就着重讨论单个模块的检测和控制电路,从而实现发射机在线状态自动监测。 一、工作原理 在功放模块中,主要检测和控制参数为电源电压,各放大管的工作电流,输出功率,反射功率,过温度和过激励保护等,图1为实现上述检测控制功能的方框图,它由取样放大电路,V/F变换,隔离电路,F/V变换,A/D转换,AT89C51,显示电路和输出保护电路等组成。 1、隔离电路 在功放模块中,由于大功率器件的应用,往往单个模块的输出功率都比较大,因而对小信号存在较大的高频干扰,如处理不好,就会影响后级模数转换电路工作,从而导致检测数据不准确,显示数据跳动的现象,甚至出现误动作。这里采用光电耦合器进行隔离,由于光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强、无触点且输入与输出在电气上完全隔离等特点,从而将模拟电路和数字电路完全隔离,保障系统在高电压、大功率辐射环境下安全可靠地工作。 2、LM331频率电压转换器

V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。 当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时电源Vcc也通过电阻R2对电容C2充电。当电容C2两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容C2通过复零晶体管迅速放电;电子开关使电容C3对电阻R3放电。当电容C3放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。其输入电压和输出频率的关系为:fo=(Vin×R4)/(2.09×R3×R2×C2) 由式知电阻R2、R3、R4、和C2直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。 同样,由LM331也可构成频率-电压转换电路。

相位噪声的测试方法

胡为东系列文章之七 相位噪声的时域测量方法 美国力科公司胡为东摘要:相位噪声主要是衡量因信号的相位变化而带来的噪声,在频域中表现为噪声的频谱,在时域中又表现为信号边沿位置的抖动,因此在实际应用中,相位噪声和信号的抖动其实本质是相同的。本文就将对相位噪声以及TIE抖动(Time Interval Error,时间间隔误差,也叫相位抖动)的概念及相互关系做一简要介绍并详细介绍了使用力科示波器如何测量TIE 抖动并将其转换为相位噪声的。 关键词:力科相位噪声TIE 抖动 一、相位噪声的基本概念 一个时钟信号或者一个时钟信号的一次谐波可以用一个如下的正弦波形来表示: (),其中为时钟频率,为初始相位,如果为常数,那么的傅里叶变换频谱图应该为一条谱线,如图1中的左图所示,但是如果发生变化,则原本规则的周期正弦信号在变化的过程中将会出现拐点,且频谱也将变得不仅仅是一条谱线,而是可能由分布在时钟频率周围的很多条谱线构成的更为复杂的频谱图,如图1中的右图所示,其中频谱波形在fc附近多出的谱线即为相位噪声谱(或者叫做相位抖动谱)。因为初始相位的变化而引起的噪声称为相位噪声,因此对于一个正弦时钟信号或者时钟信号的一次谐波来说,在理论上应该是为零的,此时上述公式中的则完全为相位噪声成分。 fc A fc A 图1 正弦信号的频谱(无相位变化以及有相位变化的可能情形)为了更为精确的描述相位噪声,通常定义其为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。如一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值,即在fm频率处1Hz范围内的面积与整个噪声频下的所有面积之比,如下图2所示。

技术专家手把手教你计算放大器噪声系数

导读] 本文简要介绍了两种放大器架构的噪声系数计算,包括inverting,non-inverting 架构的噪声系数计算,并提供计算小工具。关键词:噪声系数放大器 1. 引言 在各种放大器使用的场合,我们时常需要计算到放大器,却没有一个直观的方式来看放大器这一级对链路噪声的影响。本文讨论了各种放大器架构下,放大器的噪声系数的计算方式。 2. 放大器噪声指标 电子元件应用中,常见如下5 种噪声来源: 1. 散弹噪声(shot noise,白噪声,在频谱中表现为平坦的) 2. 热噪声(thermal noise,白噪声,在频谱中表现为平坦的) 3. 闪烁噪声(flicker noise,1/f 噪声) 4. 突发噪声(burst noise,脉冲噪声) 5. 雪崩噪声(Avalanche noise,反向击穿时才出现的噪声) 基本上每个放大器都有输入电压噪声和输入电流噪声两个指标。在频域,通常其单位用nV/rtHz,和pA/rtHz 来表征。如下图: Figure 1 输入电压噪声和电流噪声曲线图例 按噪声种类来分,其大致贡献在不同的频段如下:

Figure 2 噪声种类分布图 如果把所有电容,电感都看做无噪声的器件,一个普通的放大器的输出噪声按主要的贡献可以按如下图所示: Figure 3 放大器噪声分量分解

根据这个估计,可以得到如下电阻值的电压噪声: 在输出的噪声中,上图的各个分量其贡献如下: 输出的噪声是这些分量的均方和:

Figure 4 放大器电压噪声等效输出模型 同理,对上式中的第4 项,负端的电流噪声,也可以建立这样的模型:

相关主题
文本预览
相关文档 最新文档