当前位置:文档之家› 华罗庚学校数学课本四年级(上)

华罗庚学校数学课本四年级(上)

华罗庚学校数学课本四年级(上)
华罗庚学校数学课本四年级(上)

华罗庚学校数学课本:四年级(上册)

第一讲速算与巧算(三)

例1 计算9+99+999+9999+99999

解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧.

9+99+999+9999+99999

=(10-1)+(100-1)+(1000-1)+(10000-1)

+(100000-1)

=10+100+1000+10000+100000-5

=111110-5

=111105.

例2 计算199999+19999+1999+199+19

解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如199+1=200)

199999+19999+1999+199+19

=(19999+1)+(19999+1)+(1999+1)+(199+1)

+(19+1)-5

=200000+20000+2000+200+20-5

=222220-5

=22225.

例3 计算(1+3+5+...+1989)-(2+4+6+ (1988)

解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:

从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:

从2到1988共有994个偶数,凑成497个1990.

1990×497+995—1990×497=995.

例4 计算389+387+383+385+384+386+388

解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.

389+387+383+385+384+386+388

=390×7—1—3—7—5—6—4—

=2730—28

=2702.

解法2:也可以选380为基准数,则有

389+387+383+385+384+386+388

=380×7+9+7+3+5+4+6+8

=2660+42

=2702.

例5 计算(4942+4943+4938+4939+4941+4943)÷6

解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.

(4942+4943+4938+4939+4941+4943)÷6

=(4940×6+2+3—2—1+1+3)÷6

=4940×6÷6+6÷6运用了除法中的巧算方法)

=4940+1

=4941.

例6 计算54+99×99+45

解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.

54+99×99+45

=(54+45)+99×99

=99+99×99

=99×(1+99)

=99×100

=9900.

例7 计算9999×2222+3333×3334

解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.

9999×2222+3333×3334

=3333×3×2222+3333×3334

=3333×6666+3333×3334

=3333×(6666+3334)

=3333×10000

=33330000.

例8 1999+999×999

解法1:1999+999×999

=1000+999+999×999

=1000+999×(1+999)

=1000+999×1000

=1000×(999+1)

=1000×1000

=1000000.

解法2:1999+999×999

=1999+999×(1000-1)

=1999+999000-999

=(1999-999)+999000

=1000+999000

=1000000.

有多少个零.

总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.

习题一

1.计算899998+89998+8998+898+88

2.计算799999+79999+7999+799+79

3.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)

4.计算1—2+3—4+5—6+…+1991—1992+1993

5.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到12点这12个小时内时钟共敲了多少下?

6.求出从1~25的全体自然数之和.

7.计算1000+999—998—997+996+995—994—993+…+108+107—106—105+104+103—102—101

8.计算92+94+89+93+95+88+94+96+87

9.计算(125×99+125)×16

10.计算3×999+3+99×8+8+2×9+2+9

11.计算999999×78053

12.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?

第二讲速算与巧算(四)

例1 比较下面两个积的大小:

A=987654321×123456789,

B=987654322×123456788.

分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.

解:A=987654321×123456789

=987654321×(123456788+1)

=987654321×123456788+987654321.

B=987654322×123456788

=(987654321+1)×123456788

=987654321×123456788+123456788.

因为987654321>123456788,所以A>B.

例2 不用笔算,请你指出下面哪道题得数最大,并说明理由.

241×249 242×248 243×247

244×246 245×245.

解:利用乘法分配律,将各式恒等变形之后,再判断.

241×249=(240+1)×(250—1)=240×250+1×9;

242×248=(240+2)×(250—2)=240×250+2×8;

243×247=(240+3)×(250—3)=240×250+3×7;

244×246=(240+4)×(250—4)=240×250+4×6;

245×245=(240+5)×(250—5)=240×250+5×5.

恒等变形以后的各式有相同的部分240 ×250,又有不同的部分1×9,2×8,3×7,4 ×6,5×5,由此很容易看出245×245的积最大.

一般说来,将一个整数拆成两部分(或两个整数),两部分的差值越小时,这两部分的乘积越大.

如:10=1+9=2+8=3+7=4+6=5+5

则5×5=25积最大.

例3 求1966、1976、1986、1996、2006五个数的总和.

解:五个数中,后一个数都比前一个数大10,可看出1986是这五个数的平均值,故其总和为:

1986×5=9930.

例4 2、4、6、8、10、12…是连续偶数,如果五个连续偶数的和是320,求它们中最小的一个.

解:五个连续偶数的中间一个数应为320÷5=64,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.

总结以上两题,可以概括为巧用中数的计算方法.三个连续自然数,中间一个数为首末两数的平均值;五个连续自然数,中间的数也有类似的性质——它是五个自然数的平均值.如果用字母表示更为明显,这五个数可以记作:x-2、x—1、x、x+1、x+2.如此类推,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值.

如:对于2n+1个连续自然数可以表示为:x—n,x—n+1,x-n+2,...,x—1,x,x+1, (x)

+n—1,x+n,其中x是这2n+1个自然数的平均值.

巧用中数的计算方法,还可进一步推广,请看下面例题.

例5 将1~1001各数按下面格式排列:

一个正方形框出九个数,要使这九个数之和等于:

①1986,②2529,③1989,能否办到?如果办不到,请说明理由.

解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数.又因横行相邻两数相差1,是3个连续自然数,竖列3个数中,上下两数相差7.框中的九个数之和应是9的倍数.

①1986不是9的倍数,故不行;

②2529÷9=281,是9的倍数,但是281÷7=40×7+1,这说明281在题中数表的最左一列,显然它不能做中数,也不行;

③1989÷9=221,是9的倍数,且221÷7=31×7+4,这就是说221在数表中第四列,它可做中数.这样可求出所框九数之和为1989是办得到的,且最大的数是229,最小的数是213.

这个例题是所谓的“月历卡”上的数字问题的推广.同学们,小小的月历卡上还有那么多有趣的问题呢!

习题二

1.右图的30个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和(如方格中a=14+17=31).右图填满后,这30个数的总和是多少?

2.有两个算式:①98765×98769,

②98766 ×98768,

请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?

3.比较568×764和567×765哪个积大?

4.在下面四个算式中,最大的得数是多少?

①1992×1999+1999

②1993×1998+1998

③1994×1997+1997

④1995×1996+1996

5.五个连续奇数的和是85,求其中最大和最小的数.

6.45是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数.

7.把从1到100的自然数如下表那样排列.在这个数表里,把长的方面3个数,宽的方面2个数,一共6个数用长方形框围起来,这6个数的和为81,在数表的别的地方,如上面一样地框起来的6个数的和为429,问此时长方形框子里最大的数是多少?

第三讲定义新运算

我们学过的常用运算有:+、-、×、÷等.

如:2+3=5 2×3=6

都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.

我们先通过具体的运算来了解和熟悉“定义新运算”.

例1 设a、b都表示数,规定a△b=3×a—2×b,

①求3△2,2△3;

②这个运算“△”有交换律吗?

③求(17△6)△2,17△(6△2);

④这个运算“△”有结合律吗?

⑤如果已知4△b=2,求b.

分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:①3△2=3×3-2×2=9-4= 5

2△3=3×2-2×3=6-6=0.

②由①的例子可知“△”没有交换律.

③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步

39△2=3 ×39-2×2=113,

所以(17△6)△2=113.

对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次

17△14=3×17-2×14=23,

所以17△(6△2)=23.

④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5. 例2 定义运算※为a※b=a×b-(a+b),①求5※7,7※5;

②求12※(3※4),(12※3)※4;

③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.

解:①5※7=5×7-(5+7)=35-12=23,7※5=7×5-(7+5)=35-12=23.

②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,

所以12※(3※4)=43.

对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次

21※4=21×4-(21+4)=59,所以(12※3)※4=59.③由于a※b=a×b-(a+b);

b※a=b×a-(b+a)

=a×b-(a+b)(普通加法、乘法交换律)

所以有a※b=b※a,因此“※”有交换律.

由②的例子可知,运算“※”没有结合律.

④5※x=5x-(5+x)=4x-5;

3※(5※x)=3※(4x-5)

=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13

那么8x-13=3 解出x=2

例5 x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.

分析我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k×1×2=2k,由于k的值不知道,所以首先要计算出k的值.k值求出后,l△2的值也就计算出来了,我们设1△2=a.

(1△2)*3=a*3,按“*”的定义:a*3=ma+3n,在只有求出m、n时,我们才能计算a*3的值.因此要计算(1△2)* 3的值,我们就要先求出k、m、n的值.通过1*2 =5可以求出m、n的值,通过(2*3)△4=64求出k的值.

解:因为1*2=m×1+n×2=m+2n,所以有m+2n=5.又因为m、n均为自然数,所以解出:

①当m=1,n=2时:

(2*3)△4=(1×2+2×3)△4

=8△4=k×8×4=32k

有32k=64,解出k=2.

②当m=3,n=1时:

(2*3)△4=(3×2+1×3)△4

=9△4=k×9×4=36k

所以m=l,n=2,k=2.

(1△2)*3=(2×1×2)*3

=4*3

=1×4+2×3

=10.

在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.

习题三

第四讲等差数列及其应用

许多同学都知道这样一个故事:大数学家高斯在很小的时候,就利用巧妙的算法迅速计算出从1到100这100个自然数的总和.大家在佩服赞叹之余,有没有仔细想一想,高斯为什么算得快呢?当然,小高斯的聪明和善于观察是不必说了,往深处想,最基本的原因却是这100个数及其排列的方法本身具有极强的规律性——每项都比它前面的一项大1,即它们构成了差相等的数列,而这种数列有极简便的求和方法.通过这一讲的学习,我们将不仅掌握有关这种数列求和的方法,而且学会利用这种数列来解决许多有趣的问题.

一、等差数列

什么叫等差数列呢?我们先来看几个例子:

①l,2,3,4,5,6,7,8,9,…

②1,3,5,7,9,11,13.

③2,4,6,8,10,12,14…

④3,6,9,12,15,18,21.

⑤100,95,90,85,80,75,70.

⑥20,18,16,14,12,10,8.

这六个数列有一个共同的特点,即相邻两项的差是一个固定的数,像这样的数列就称为等差数列.其中这个固定的数就称为公差,一般用字母d表示,如:

数列①中,d=2-1=3-2=4-3= (1)

数列②中,d=3-1=5-3=…=13-11=2;

数列⑤中,d=100-95=95-90=…=75-70=5;

数列⑥中,d=20-18=18-16=…=10-8=2.

例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.

①6,10,14,18,22, (98)

②1,2,1,2,3,4,5,6;

③1,2,4,8,16,32,64;

④9,8,7,6,5,4,3,2;

⑤3,3,3,3,3,3,3,3;

⑥1,0,1,0,l,0,1,0;

解:①是,公差d=4.

②不是,因为数列的第3项减去第2项不等于数列的第2项减去第1项.

③不是,因为4-2≠2-1.

④是,公差d=l.

⑤是,公差d=0.

⑥不是,因为第1项减去第2项不等于第2项减去第3项.

一般地说,如果一个数列是等差数列,那么这个数列的每一项或者都不小于前面的项,或者每一项都大于前面的项,上述例1的数列⑥中,第1项大于第2项,第2项却又小于第3项,所以,显然不符合等差数列的定义.

为了叙述和书写的方便,通常,我们把数列的第1项记为a1,第2项记为a2,…,第n项记为an,an。又称为数列的通项,a1;又称为数列的首项,最后一项又称为数列的末项.

二、通项公式

对于公差为d的等差数列a1,a2,…an…来说,如果a1;小于a2,则

由此可知:

(1)若a1;大于a2,则同理可推得:

(2)

公式(1)(2)叫做等差数列的通项公式,利用通项公式,在已知首项和公差的情况下可以求出等差数列中的任何一项.

例2 求等差数列1,6,11,16…的第20项.

公差d=6-1=5,所以运用公式(1)可知:

第20项a20=a1=(20-1)×5=1+19×5=96.

一般地,如果知道了通项公式中的两个量就可以求出另外一个量,如:由通项公式,我们可以得到项数公式:

例3 已知等差数列2,5,8,11,14…,问47是其中第几项?

解:首项a1=2,公差d=5-2=3

令an=47

则利用项数公式可得:

n=(47-2)÷3+1=16.

即47是第16项.

例4 如果一等差数列的第4项为21,第6项为33,求它的第8项.

分析与解答

方法1:要求第8项,必须知道首项和公差.

因为a4=a1+3×d,又a4=21,所以a1=21-3×d又a6=a1+5×d,又a6=33,所以a1=33-5×d所以:21-3×d=33-5×d,

所以d=6 a1=21-3×d=3,

所以a8=3+7×6=45.

方法2:考虑到a8=a7+d=a6+d+d=a6+2×d,其中a6已知,只要求2×d即可.

又a6=a5+d=a4+d+d=a4+2×d,

所以2×d=a6-a4

所以a8=3+7×6=45

方法2说明:如果能够灵活运用等差数列各项间的关系,解题将更为简便.

三、等差数列求和

若a1 小于a2,则公差为d的等差数列a1,a2,a3…an可以写为

a1,a1+d,a1+d×2,…,a1+d×(n-1).所以,容易知道:a1+an=a2+an-1=a3+an-2

=a4+an-3=…=an-1+a2=an+a1.

设Sn=a1+a2+a3+…+an

则Sn=an+an-1+an-2+…+a1

两式相加可得:

2×Sn=(a1+an)+(a2+an-1)+…+(an+a1)

即:2×Sn=n×(a1+an),所以,

例5 计算1+5+9+13+17+ (1993)

当a1;大于a2。时,同样也可以得到上面的公式.这个公式就是等差数列的前n项和的公式.

解:因为1,5,9,13,17,…,1993是一个等差数列,且al=1,d=4,an=1993.

所以,n=(an-a1)÷d+1=499.

所以,1+5+9+13+17+…+1993

=(1+1993)×499÷2

=997×499

=497503.

题目做完以后,我们再来分析一下,本题中的等差数列有499项,中间一项即第250项的值是997,而和恰等于997×499.其实,这并不是偶然的现象,关于中项有如下定理:

这个定理称为中项定理.

例6 建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?

解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是一个等差数列.

方法1:

a1=2,d=4,an=2106,

贝n=(an-a1)÷d+1=527

这堆砖共有则中间一项为a264=a1+(264-1)×4=1054.

方法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块).

则中间一项为(a1+an)÷2=1054

a1=2,d=4,an=2106,

这堆砖共有1054×527=555458(块).

n=(an-a1)÷d+1=527

例7 求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.

解:根据题意可列出算式:

(2+4+6+8+...+2000)-(1+3+5+ (1999)

解法1:可以看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:

原式=(2+2000)×1000÷2-(1+1999)×1000÷2

=1000.

解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即

原式=1000×1=1000.

例8 连续九个自然数的和为54,则以这九个自然数的末项作为首项的九个连续自然数之和是多少?

分析与解答

方法1:要想求这九个连续自然数之和,可以先求出这九个连续自然数中最小的一个.即条件中的九个连续自然数的末项.

因为,条件中九个连续自然数的和为54,所以,这九个自然数的中间数为54÷9=6,则末项为6+4=10.因此,所求的九个连续自然数之和为(10+18)×9÷2=126.

方法2:考察两组自然数之间的关系可以发现:后一组自然数的每一项比前一组自然数的对应项大8,因此,后一组自然数的和应为54+8×9=126.

在方法1中,可以用另一种方法来求末项,根据求和公式Sn=(a1+an)×n÷2,则a1+a9=54×2÷9.又因为a1=a9-8,所以代入后也可求出a9=10.

例9 100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?

分析与解答

方法1:要求和,我们可以先把这50个数算出来.

100个连续自然数构成等差数列,且和为8450,则:

首项+末项=8450×2÷100=169,又因为末项比首项大99,所以,首项=(169-99)÷2=35.因此,剩下的50个数为:36,38,40,42,44,46…134.这些数构成等差数列,和为(36+134)×50÷2=4250.

方法2:我们考虑这100个自然数分成的两个数列,这两个数列有相同的公差,相同的项数,且剩下的数组成的数列比取走的数组成的数列的相应项总大1,因此,剩下的数的总和比取走的数的总和大50,又因为它们相加的和为8450.所以,剩下的数的总和为(8450+50)÷2=4250.

四、等差数列的应用

例10 把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

解:由题可知:由210拆成的7个数必构成等差数列,则中间一个数为210÷7=30,所以,这7个数分别是15、20、25、30、35、40、45.即第1个数是15,第6个数是40.

例11 把27枚棋子放到7个不同的空盒中,如果要求每个盒子都不空,且任意两个盒子里的棋子数目都不一样多,问能否办到,若能,写出具体方案,若不能,说明理由.

分析与解答

因为每个盒子都不空,所以盒子中至少有一枚棋子;同时,任两盒中棋子数不一样,所以7个盒中共有的棋子数至少为1+2+3+4+5+6+7=28.但题目中只给了27枚棋子,所以,题中要求不能办到.

例12 从1到50这50个连续自然数中,取两数相加,使其和大于50,有多少种不同的取法?

解:设满足条件的两数为a、b,且a<b,则

若a=1,则b=50,共1种.

若a=2,则b=49,50,共2种.

若a=25,则b=26,27,…50,共25种.

若a=26,则b=27,28,…50,共24种.(a=26,b=25的情形与a=25,b=26相同,舍去).

若a=27,则b=28,29,…50,共23种.

若a=49,则b=50,共1种.

所以,所有不同的取法种数为

1+2+3+…+25+24+23+22+…+l

=2×(1+2+3+…+24)+25

=625.

例13 x+y+z=1993有多少组正整数解

显然,x不能等于1992,1993.

所以,原方程的不同的整数解的组数是:

l+2+3+…+1991=1983036.

本题中运用了分类的思想,先按照x的值分类,在每一类中,又从y的角度来分类,如:x=1987时,因为y+z=6,且y、z均为正整数,所以y最小取1,最大取5,即按y=1,2,3,4,5分类,每一类对应一组解,因此,x=1987时,共5组解.

例13 把所有奇数排列成下面的数表,根据规律,请指出:①197排在第几行的第几个数?

②第10行的第9个数是多少?

1

3 5 7

9 11 13 15 17

19 21 23 25 27 29 31

33 35 37 39 43 45 47 49

……

分析与解答

①197是奇数中的第99个数.

数表中,第1行有1个数.

第2行有3个数.

第3行有5个数…

第n行有2×n-l个数

因此,前n行中共有奇数的个数为:

1+3+5+7+…+(2×n-1)

=[1+(2×n-1)〕×n÷2

=n×n

因为9×9<99<10×10.所以,第99个数位于数表的第10行的倒数第2个数,即第18个数,即197位于第10行第18个数.

②第10行的第9个数是奇数中的第90个数.因为9×9+9=90),它是179.

例14 将自然数如下排列,

1 2 6 7 15 16 …

3 5 8 1

4 17 …

4 9 13 18 …

10 12 …

在这样的排列下,数字3排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列?

分析与解答

不难看出,数表的排列规律如箭头所指,为研究的方便,我们不妨把原图顺时针转动45°,就成为三角阵(如右图),三角阵中,第1行1个数,第2行2个数…第n行就有n个数,设1993在三角阵中的第n行,则:

1+2+3+…+n-1<1993≤1+2+3+…+n

即:n×(n-1)÷2<1993≤n×(n+1)÷2

用试值的方法,可以求出n=63.

又因为1+2+…+62=1953,即第62行中最大的数为

1953.三角阵中,奇数列的数字从左到右,依次增大,又1993-1953=40,所以,1993是三角阵中第63行从左开始数起的第40个数(若从右开始数,则为第24个数).

把三角阵与左图作比较,可以发现:

①三角阵中每一行从左开始数起的第几个数,就位于左图的第几列.

②三角阵中每一行从右开始数起的第几个数,就位于左图的第几行.

由此,我们可知,1993位于原图的24行40列.

习题四

1.求值:

①6+11+16+ (501)

②101+102+103+104+ (999)

2.下面的算式是按一定规律排列的,那么,第100个算式的得数是多少?

4+2,5+8,6+14,7+20,…

3.11至18这8个连续自然数的和再加上1992后所得的值恰好等于另外8个连续数的和,这另外8个连续自然数中的最小数是多少?

4.把100根小棒分成10堆,每堆小棒根数都是单数且一堆比一堆少两根,应如何分?

5.300到400之间能被7整除的各数之和是多少?

6.100到200之间不能被3整除的数之和是多少?

7.把一堆苹果分给8个小朋友,要使每个人都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有几个?

8.下表是一个数字方阵,求表中所有数之和.

1,2,3,4,5,6…98,99,100

2,3,4,5,6,7…99,100,101

3,4,5,6,7,8…100,101,102

100,101,102,103,104,105…197,198,199

第五讲倒推法的妙用

在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题.

例1 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?

分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.

如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?

把一个数用□来表示,根据题目已知条件可得到这样的等式:

{[(□-8)+10]÷7}×4=56.

如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.

解:{[(□-8)+10]÷7}×4=56

[(□-8)+10〕÷7=56÷4

答:于昆这次数学考试成绩是96分.

通过以上例题说明,用倒推法解题时要注意:

①从结果出发,逐步向前一步一步推理.

②在向前推理的过程中,每一步运算都是原来运算的逆运算.

③列式时注意运算顺序,正确使用括号.

例2 马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?

分析马小虎错把减数个位上1看成7,使差减少7—1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.

解:111-(70—10)+(7—1)=57

答:正确的答案是57.

例3 树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?

分析倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.

解:①现在三棵树上各有鸟多少只?48÷3=16(只)

②第一棵树上原有鸟只数. 16+8=24(只)

③第二棵树上原有鸟只数.16+6—8=14(只)

④第三棵树上原有鸟只数.16—6=10(只)

答:第一、二、三棵树上原来各落鸟24只、14只和10只.

例4 篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?

分析依题意,画图进行分析.

解:列综合算式:

{[(1+1)×2+1]×2+1}×2

=22(个)

答:篮子里原有梨22个.

例5 甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?

分析解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”.可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍”.就可以求出甲、乙两个油桶最后有油多少千克.

求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶往乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克.

解:①甲乙两桶油共剩多少千克?

15×2-14=16(千克)

②乙桶油剩多少千克?16÷(3+1)=4(千克)

用倒推法画图如下:

④从甲桶卖出油多少千克?15-11=4(千克)

⑤从乙桶卖出油多少千克?15—5=10(千克)

答:从甲桶卖出油4千克,从乙桶卖出油10千克.

例6 菜站原有冬贮大白菜若干千克.第一天卖出原有大白菜的一半.第二天运进200千克.第三天卖出现有白菜的一半又30千克,结果剩余白菜的3倍是1800千克.求原有冬贮大白菜多少千克?

分析解题时用倒推法进行分析.根据题目的已知条件画线段图(见下图),使数量关系清晰的展现出来.

解:①剩余的白菜是多少千克?1800÷3=600(千克)

②第二天运进200千克后的一半是多少千克?

600+30=630(千克)

③第二天运进200千克后有白菜多少千克?

630×2=1260(千克)

④原来的一半是多少千克?1260—200=1060(千克)

⑤原有贮存多少千克?1060×2=2120(千克)

答:菜站原来贮存大白菜2120千克.

综合算式:

[(1800÷3+30)×2—200]×2

=2120(千克)

答:菜站原有冬贮大白菜2120千克.

习题五

1.某数除以4,乘以5,再除以6,结果是615,求某数.

2.生产一批零件共560个,师徒二人合作用4天做完.已知师傅每天生产零件的个数是徒弟的3倍.师徒二人每天各生产零件多少个?

3.有砖26块,兄弟二人争着挑.弟弟抢在前,刚刚摆好砖,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥5块.这时哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?

4.阿凡提去赶集,他用钱的一半买肉,再用余下钱的一半买鱼,又用剩下钱买菜.别人问他带多少钱,他说:“买菜的钱是1、2、3;3、2、1;1、2、3、4、5、6、7的和;加7加8,加8加7、加9加10加11。”你知道阿凡提一共带了多少钱?买鱼用了多少钱?

第六讲行程问题(一)

我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.

在对小学数学的学习中,我们已经接触过一些简单的行程应用题,并且已经了解到:上述三个量之间存在这样的基本关系:路程=速度×时间.因此,在这一讲中,我们将在前面学习的基础上,主要来研究行程问题中较为复杂的一类问题——反向运动问题,也即在同一道路上的两个运动物体作方向相反的运动的问题.它又包括相遇问题和相背问题.所谓相遇问题,指的就是上述两个物体以不同的点作为起点作相向运动的问题;所谓相背问题,指的就是这两个运动物体以同一点作为起点作背向运动的问题,下面,我们来具体看几个例子.

例1 甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?

分析出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇.

解:30÷(6+4)

=30÷10

=3(小时)

答:3小时后两人相遇.

例1是一个典型的相遇问题.在相遇问题中有这样一个基本数量关系:

路程=速度和×时间.

例2 一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米?

分析货车每小时行45千米,客车每小时比货车快15千米,所以,客车速度为每小时(45+15)千米;中午12点两车相遇时,货车已行了(12—6)小时,而客车已行(12—6-2)小时,这样就可求出甲、乙两地之间的路程.最后,再来求当客车行完全程到达甲地时,货车离乙地的距离.

解:①甲、乙两地之间的距离是:

45×(12—6)+(45+15)×(12—6—2)

=45×6+60×4

=510(千米).

②客车行完全程所需的时间是:

510÷(45+15)

=510÷60

=8.5(小时).

③客车到甲地时,货车离乙地的距离:

510—45×(8.5+2)

=510-472.5

=37.5(千米).

答:客车到甲地时,货车离乙地还有37.5千米.

例3 两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长.

分析首先应统一单位:甲车的速度是每秒钟36000÷3600=10(米),乙车的速度是每秒钟54000÷3600=15(米).本题中,甲车的运动实际上可以看作是甲车乘客以每秒钟10米的速度在运动,乙车的运动则可以看作是乙车车头的运动,因此,我们只需研究下面这样一个运动过程即可:从乙车车头经过甲车乘客的车窗这一时刻起,乙车车头和甲车乘客开始作反向运动14秒,每一秒钟,乙车车头与甲车乘客之间的距离都增大(10+15)米,因此,14秒结束时,车头与乘客之间的距离为(10+15)×14=350(米).又因为甲车乘客最后看到的是乙车车尾,所以,乙车车头与甲车乘客在这段时间内所走的路程之和应恰等于乙车车身的长度,即:乙车车长就等于甲、乙两车在14秒内所走的路程之和.

解:(10+15)×14

=350(米)

答:乙车的车长为350米.

我们也可以把例3称为一个相背运动问题,对于相背问题而言,相遇问题中的基本关系仍然成立.

例4 甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?

分析甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.

解:①AB间的距离是

64×3-48

=192-48

=144(千米).

②两次相遇点的距离为

144—48-64

=32(千米).

答:两次相遇点的距离为32千米.

例5 甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时.在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?

分析甲的速度为乙的2倍,因此,乙走4小时的路,甲只要2小时就可以了,因此,甲走100千米所需的时间为(4—1+4÷2)=5小时.这样就可求出甲的速度.

解:甲的速度为:

100÷(4-1+4÷2)

=10O÷5=20(千米/小时).

乙的速度为:20÷2=10(千米/小时).

答:甲的速度为20千米/小时,乙的速度为10千米/小时.

例6 某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?

分析解这类应用题,首先应明确几个概念:列车通过隧道指的是从车头进入隧道算起到车尾离开隧道为止.因此,这个过程中列车所走的路程等于车长加隧道长;两车相遇,错车而过指的是从两个列车的车头相遇算起到他们的车尾分开为止,这个过程实际上是一个以车头的相遇点为起点的相背运动问题,这两个列车在这段时间里所走的路程之和就等于他们的车长之和.因此,错车时间就等于车长之和除以速度之和.

列车通过250米的隧道用25秒,通过210米长的隧道用23秒,所以列车行驶的路程为(250—210)米时,所用的时间为(25—23)秒.由此可求得列车的车速为(250—210)÷(25—23)=20(米/秒).再根据前面的分析可知:列车在25秒内所走的路程等于隧道长加上车长,因此,这个列车的车长为20×25—250=250(米),从而可求出错车时间.

解:根据另一个列车每小时走72千米,所以,它的速度为:

72000÷3600=20(米/秒),

某列车的速度为:

(25O-210)÷(25-23)=40÷2=20(米/秒)

某列车的车长为:

20×25-250=500-250=250(米),

两列车的错车时间为:

(250+150)÷(20+20)=400÷40=10(秒).

答:错车时间为10秒.

例7 甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在它们出发后的5小时.6小时,8小时先后与甲、乙、丙三辆车相遇,求丙车的速度.

分析甲车每小时比乙车快60-48=12(千米).则5小时后,甲比乙多走的路程为12×5=60(千米).也即在卡车与甲相遇时,卡车与乙的距离为60千米,又因为卡车与乙在卡车与甲相遇的6-5=1小时后相遇,所以,可求出卡车的速度为60÷1-48=12(千米/小时)

卡车在与甲相遇后,再走8-5=3(小时)才能与丙相遇,而此时丙已走了8个小时,因此,卡车3小时所走的路程与丙8小时所走的路程之和就等于甲5小时所走的路程.由此,丙的速度也可求得,应为:(60×5-12×3)÷8=33(千米/小时).

解:卡车的速度:

(60-48)×5÷(6-5)-48=12(千米/小时),

丙车的速度:

(60×5-12×3)÷8=33(千米/小时),

答:丙车的速度为每小时33千米.

注:在本讲中出现的“米/秒”、“千米/小时”等都是速度单位,如5米/秒表示为每秒钟走5米.

习题六

1.甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?

2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?

3.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.

4.甲、乙二人从相距100千米的A、B两地出发相向而行,甲先出发1小时.他们二人在乙出后的4小时相遇,又已知甲比乙每小时快2千米,求甲、乙二人的速度.

5.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长为385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少?

6.前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?

第七讲几何中的计数问题(一)

几何中的计数问题包括:数线段、数角、数长方形、数正方形、数三角形、数综合图形等.通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、思考问题的良好习惯,逐步学会通过观察、思考探寻事物规律的能力.

一、数线段

我们把直线上两点间的部分称为线段,这两个点称为线段的端点.线段是组成三角形、正方形、长方形、多边形等最基本的元素.因此,观察图形中的线段,探寻线段与线段之间、线段与其他图形之间的联系,对于了解图形、分析图形是很重要的.

例1 数一数下列图形中各有多少条线段.

分析要想使数出的每一个图形中线段的总条数,不重复、不遗漏,就需要按照一定的顺序、按照一定的规律去观察、去数.这样才不至于杂乱无章、毫无头绪.我们可以按照两种顺序或两种规律去数.

第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A为左端点的线段有AB、AC两条以B为左端点的线段有BC一条,所以上图(1)中共有线段2+1=3条.同样按照从左至右的顺序观察图(2)中,以A为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD 两条,以C为左端点的线段有CD一条.所以上页图(2)中共有线段为3+2+1=6条.

第二种:按照基本线段多少的顺序去数.所谓基本线段是指一条大线段中若有n个分点,则这条大线段就被这n个分点分成n+1条小线段,这每条小线段称为基本线段.如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD分成AB、BC、CD三条基本线段,那么线段AD总共有多少条线段?首先有三条基本线段,其次是包含有二条基本线段的是:AC、BD二条,然后是包含有三条基本线段的是AD这样一条.所以线段AD上总共有线段3+2+1=6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:首先有4条基本线段,其次是包含有二条基本线段的有3条,然后是包含有三条基本线段的有2条,最后是包含有4条基本线段的有一条,所以线段AE上总共有线段是4+3+2+1=10条.

解:①2+1=3(条).

②3+2+1=6(条).

③4+3+2+1=10(条).

小结:上述三例说明:要想不重复、不遗漏地数出所有线段,必须按照一定顺序有规律的去数,这个规律就是:线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1.也就是基本线段的条数.例如右图中线段AF 上所有点数(包括两个端点A、F)共有6个,所以从1开始的连续自然数的和中最大的加数是6—1=5,或者线段AF上的分点有4个(B、C、D、E).所以从1开始的连续自然数的和中最大的加数是4+1=5.也就是线段AF上基本线段(AB、BC、CD、DE、EF)的条数是5.所以线段AF上总共有线段的条数是5+4+3+2+1=15(条).

二、数角

例2 数出右图中总共有多少个角.

分析在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:

4+3+2+1=10(个).

解:4+3+2+1=10(个).

小结:数角的方法可以采用例1数线段的方法来数,就是角的总数等于从1开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1,也就是基本角的个数.

例3 数一数右图中总共有多少个角?

解:因为∠AOB内角分线OC1、OC2…OC9共有9条,即9+1=10个基本角.

所以总共有角:10+9+8+…+4+3+2+1=55(个).

三、数三角形

例4 如右图中,各个图形内各有多少个三角形?

分析可以采用类似

例1数线段的两种方法来数,如图(2):

第一种方法:先数以AB为一条边的三角形共有:

△ABD、△ABE、△ABF、△ABC四个三角形.

再数以AD为一条边的三角形共有:

△ADE、△ADF、△ADC三个三角形.

以AE为一条边的三角形共有:

△AEF、△AEC二个三角形.

最后以AF为一条边的三角形共有△AFC一个三角形.

所以三角形的个数总共有4+3+2+1=10.

第二种方法:先数图中小三角形共有:

△ABD、△ADE、△AEF、△AFC四个三角形.

再数由两个小三角形组合在一起的三角形共有:

△ABE、△ADF、△AEC三个三角形,

以三个小三角形组合在一起的三角形共有:

△ABF、△ADC二个三角形,

最后数以四个小三角形组合在一起的只有△ABC一个.

所以图中三角形的个数总共有:4+3+2+1=10(个).

解:①3+2+1=6(个)

②4+3+2+1=10(个).

答:图(1)及图(2)中各有三角形分别是6个和10个.

小结:计算三角形的总数也等于从1开始的几个连续自然数的和,其中最大的加数就是三角形一边上的分点数加1,也就是三角形这边上分成的基本线段的条数.

例5 如右图中,数一数共有多少条线段?共有多少个三角形?

分析在数的过程中应充分利用上几例总结的规律,明确数什么?

怎么数?这样两个问题.数:就是要数出图中基本线段(基本三角形)的条数,算:就是以基本线段(基本三角形)条数为最大加数的从1开始的连续几个自然数的和.

①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).

②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成基本小三角形有4个.所以在△AGH中共有三角形4+3+2+1=10(个).在△AMN与△ABC中,三角形有同样的个数,所以在△ABC 中三角形个数总共:

(4+3+2+1)×3=10×3=30(个).

解:①在△ABC中共有线段是:

(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)

②在△ABC中共有三角形是:

(4+3+2+1)×3=10×3=30(个).

例6 如右图中,共有多少个角?

分析本题虽然与上几例有区别,但仍可以采用上几例所总结的规律去解决.

∠1、∠2、∠3、∠4我们可视为4个基本角,由2个基本角组成的有:∠1与∠2、∠2与∠3、∠3与∠4、∠4与∠1,共4个角.由3个基本角组成的角有:∠1、∠2与∠3;∠2、∠3与∠4;∠3、∠4与∠1;∠4、∠1与∠2,共4个角,由4个基本角组成的角只有一个.

所以图中总共有角是:4×3+1=13(个).

解:所以图中共有角是:4×3+1=13(个).

小结:由本题可以推出一般情况:若周角中含有n个基本角,那么它上面角的总数是n(n-1)+1.

华罗庚学校数学课本二年级

华罗庚学校数学课本二 年级 标准化管理部编码-[99968T-6889628-J68568-1689N]

华罗庚学校数学课本:二年级 上册 第一讲速算与巧算 一、“凑整”先算 1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11)

=(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和,再把 31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84

这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变 计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19) =45-1=44 这样想:加18减19的结果就等于减1. 三、计算等差连续数的和 相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如: 1,2,3,4,5,6,7,8,9 1,3,5,7,9

华罗庚学校数学课本电子版

华罗庚学校数学课本电子版 第一讲认识图形(一) 1.这叫什么?这叫“点”。 用笔在纸上画一个点,可以画大些,也可以画小些。点在纸上占一个位置。 2.这叫什么?这叫“线段”。 沿着直尺把两点用笔连起来,就能画出一条线段。线段有两个端点。 3.这叫什么?这叫“射线”。 从一点出发,沿着直尺画出去,就能画出一条射线。射线有一个端点,另一边延伸得很远很远,没有尽头。 4.这叫什么?这叫“直线”。 沿着直尺用笔可以画出直线。直线没有端点,可以向两边无限延伸。 5.这两条直线相交。 两条直线相交,只有一个交点。 6.这两条直线平行。 两条直线互相平行,没有交点,无论延伸多远都不相交。 7.这叫什么?这叫“角”。 角是由从一点引出的两条射线构成的。这点叫角的顶点,射线叫角的边。角分锐角、直角和钝角三种。 直角的两边互相垂直,三角板有一个角就是这样的直角。教室里天花板上的角都是直角。 锐角比直角小,钝角比直角大。

习题一 1.点(1)看,这些点排列得多好! (2)看,这个带箭头的线上画了点。 2.线段下图中的线段表示小棍,看小棍的摆法多有趣! (1)一根小棍。可以横着摆,也可以竖着摆。 (2)两根小棍。可以都横着摆,也可以都竖着摆,还可以一横一竖摆。 (3)三根小棍。可以像下面这样摆。 3.两条直线 哪两条直线相交?哪两条直线垂直?哪两条直线平行?

4.你能在自己的周围发现这样的角吗? 第二讲认识图形(二) 一、认识三角形 1.这叫“三角形”。 三角形有三条边,三个角,三个顶点。 2.这叫“直角三角形”。 直角三角形是一种特殊的三角形,它有一个角是直角。它的三条边中有两条叫直角边,一条叫斜边。 3.这叫“等腰三角形”。 它也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫“腰”,另外的一条边叫“底”。 4.这叫“等腰直角三角形”或叫“直角等腰三角形”。它既是直角三角形,又是等腰三角形。

华罗庚学校数学课本:二年级

华罗庚学校数学课本:二年级 上册 第一讲速算与巧算 一、“凑整”先算 1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11)

=(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6

=30+30+30-6=90-6=84 这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变 计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19) =45-1=44 这样想:加18减19的结果就等于减1. 三、计算等差连续数的和 相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如: 1,2,3,4,5,6,7,8,9

华罗庚学校数学课本(6年级下册)第01讲 列方程解应用题

第一讲列方程解应用题 这一讲学习列方程解应用题. 例1甲乙两个数,甲数除以乙数商2余17.乙数的10倍除以甲数商3余45.求甲、乙二数. 分析被除数、除数、商和余数的关系:被除数=除数×商+余数.如果设乙数为x,则根据甲数除以乙数商2余17,得甲数=2x+17.又根据乙数的10倍除以甲数商3余45得10x=3(2x+17)+45,列出方程. 解:设乙数为x,则甲数为2x+17. 10x=3(2x+17)+45 10x=6x+51+45 4x=96 x=24 2x+17=2×24+17=65. 答:甲数是65,乙数是24. 例2电扇厂计划20天生产电扇1600台.生产5天后,由于改进技术,效率提高25%,完成计划还要多少天? 思路1: 分析依题意,看到工效(每天生产的台数)和时间(完成任务需要的天数)是变量,而生产5天后剩下的台数是不变量(剩余工作量).原有的工效:1600÷20=80(台),提高后的工效:80×(1+25%)=100(台).时间有原计划的天数,又有提高效率后的天数,因此列出方程的等量关系是:提高后的工效x所需的天数=剩下台数. 解:设完成计划还需x天. 1600÷20×(1+25%)×x=1600-1600÷20×5 80×1.25x=1600-400 100x=1200 x=12.

答:完成计划还需12天. 思路2: 分析“思路1”是从具体数量入手列出方程的.还可以从“率”入手列方程.已知“效率提高25%”是指比原效率提高25%.把原来效率看成 解:设完成计划还要x天. 答:完成计划还需12天. 例3有一项工程,由甲单独做,需12天完成,丙单独做需20天完成.甲、乙、丙合作,需5天完成.如果这项工程由乙单独做,需几天完成? 工作总量. 解:设乙单独做,需x天完成这项工程.

(完整word版)华罗庚学校数学课本:一年级(上册)

华罗庚学校数学课本 一年级 上册 刘彭芝主编子悦爸整理

目录 第一讲认识图形(一) (1) 习题一 (2) 第二讲认识图形(二) (4) 习题二 (7) 第三讲认识图形(三) (8) 习题三 (9) 第四讲数一数(一) (11) 习题四 (12) 习题四解答 (14) 第五讲数一数(二) (15) 习题五 (16) 习题五解答 (18) 第六讲动手画画 (20) 习题六 (21) 第七讲摆摆看看 (23) 习题七 (24) 习题七解答 (25) 第八讲做做想想 (27) 习题八 (27) 习题八解答 (29) 第九讲区分图形 (31) 习题九 (32) 习题九解答 (33) 第十讲立体平面展开 (35) 习题十 (36) 第十一讲做立体模型 (37) 习题十一 (38) 第十二讲图形的整体与部分 (39)

习题十二 (40) 习题十二解答 (42) 第十三讲折叠描痕法 (43) 习题十三 (44) 习题十三解答 (44) 第十四讲多个图形的组拼 (46) 习题十四 (47) 习题十四解答 (48) 第十五讲一个图形的等积变换 (50) 习题十五 (51) 习题十五解答 (52) 第十六讲一个图形的等份分划 (54) 习题十六 (55) 习题十六解答 (56) 第十七讲发现图形的变化规律 (58) 习题十七 (59) 习题十七解答 (61)

第一讲认识图形(一) 1.这叫什么?这叫“点”。 用笔在纸上画一个点,可以画大些,也可以画小些。点在纸上占一个位置。 2.这叫什么?这叫“线段”。 沿着直尺把两点用笔连起来,就能画出一条线段。线段有两个端点。 3.这叫什么?这叫“射线”。 从一点出发,沿着直尺画出去,就能画出一条射线。射线有一个端点,另一边延伸得很远很远,没有尽头。 4.这叫什么?这叫“直线”。 沿着直尺用笔可以画出直线。直线没有端点,可以向两边无限延伸。 5.这两条直线相交。 两条直线相交,只有一个交点。 6.这两条直线平行。 两条直线互相平行,没有交点,无论延伸多远都不相交。 7.这叫什么?这叫“角”。

著名数学家华罗庚生平简介

著名数学家华罗庚生平简介 华罗庚,中国现代数学家。1910年11月12日生于江苏金坛,1985年6月12日卒于日本东京。1924年金坛中学初中毕业,但因家境不好,读完初中后,便不得不退学去当店员。18岁时患伤寒病,造成右腿残疾。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。 从20世纪60年代开始,他把数学方法应用于实际,筛选出以提高工作效率为目标的优选法和统筹法,取得显著经济效益。 华罗庚同志是当代自学成才的科学巨匠,是世界著名的数学家。他是中国解析数论、典型群、矩阵几何学、自守函数论与多复变函数论等很多方面研究的创始人与开拓者。为以后矩阵几何学等,作下了基点。 ■早年学习时期 1910年11月12日出生于江苏省金坛县一个小商人家庭,身高1.65米,父亲华瑞栋,开一间小杂货铺,母亲是一位贤惠的家庭妇女。华罗庚出生时,父亲已经40岁。40岁得子,夫妻俩把儿子看成掌上明珠,为了给儿子祝福,一生下来就用两个箩筐扣住了他。华罗庚因此得名。他12岁从县城仁劬小学毕业后,进入金坛县立初级中学学习便深深爱上了数学。一天,老师出了道“物不知其数”的算题。老师说,这是《孙子算经》中一道有名的算题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”“23!”老师的话音刚落,华罗庚的答案就脱口而出。当时华罗庚并未学过《孙子算经>>,他是用如下妙法思考的:“三三数之剩二,七七数之剩二,余数都是二,此数可能是3×7+2=23,用5除之恰余3,所以23就是所求之数。”华罗庚不承认自己是天才。 1925年初中毕业后,因家境贫寒,无力进入高中学习,只好到黄炎培在上海创办的中华职业学校学习会计,为的是能谋个会计之类的职业养家糊口。不到一年,由于生活费用昂贵,被迫中途辍学,回到金坛帮助父亲料理杂货铺。在单调的站柜台生活中,他开始自学数学。他回家乡一面帮助父亲在“乾生泰”这个只有一间小门面的杂货店里干活、记账,一面继续钻研数学。回忆当时他刻苦自学的情景,他的姐姐华莲青说:“尽管是冬天,罗庚依然在账台上看他的数学书。鼻涕流下时,他用左手在鼻子上一抹,往旁边一甩,没有甩掉,就这样伸着,右手还在不停得写……” 那时罗庚站在柜台前,顾客来了就帮助父亲做生意,打算盘、记账,顾客一走就又埋头看书演算起数学题来。有时入了迷,竟忘了接待顾客,甚至把算题结果当作顾客应付的货款,使顾客吓一跳。因为经常发生类似的莫名其妙的事情,时间久了,街坊邻居都传为笑谈,大家给他起了个绰号,叫“罗呆子”。每逢遇到怠慢顾客的事情发生,父亲又气又急,说他念“天书”念呆了,要强行把书烧掉。争执发生时,华罗庚总是死死得抱着书不放。

华罗庚学校数学教材(五年级上)第11讲 简单的抽屉原理

本系列共15讲 第十一讲简单的抽屉原理 . 文档贡献者:与你的缘 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里。尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果。如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果。由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果。道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了。由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理。不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔…等十二种生肖)相同。怎样证明

这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚。事实上,由于人数(13)比属相(12)多,因此至少有两个人属相相同(在这里,把13个人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 例1:有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子。请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉,把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉,由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。 例2:一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 分析与解答扑克牌中有方块、梅花、黑桃、红桃4种花色,

小学三年级华罗庚学校数学课本(奥数)[doc]

上册华罗庚学校数学课本:三年级 下册 第一讲速算与巧算(一)第二讲速算与巧算(二) 第三讲上楼梯问题 第四讲植树与方阵问题 第五讲找几何图形的规律 第六讲找简单数列的规律 第七讲填算式(一) 第八讲填算式(二) 第九讲数字谜(一) 第十讲数字谜(二) 第十一讲巧填算符(一) 第十二讲巧填算符(二) 第十三讲火柴棍游戏(一)第十四讲火柴棍游戏(二)第十五讲综合练习题第一讲从数表中找规律 第二讲从哥尼斯堡七桥问题谈起第三讲多笔画及应用问题 第四讲最短路线问题 第五讲归一问题 第六讲平均数问题 第七讲和倍问题 第八讲差倍问题 第九讲和差问题 第十讲年龄问题 第十一讲鸡兔同笼问题 第十二讲盈亏问题 第十三讲巧求周长 第十四讲从数的二进制谈起 第十五讲综合练习

上册 第一讲速算与巧算(一) 一、加法中的巧算 1.什么叫“补数”? 两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。 如:1+9=10,3+7=10, 2+8=10,4+6=10, 5+5=10。 又如:11+89=100,33+67=100, 22+78=100,44+56=100, 55+45=100, 在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89 的“补数”.也就是说两个数互为“补数”。 对于一个较大的数,如何能很快地算出它的“补数”来呢?一 般来说,可以这样“凑”数:从最高位凑起,使各位数字相加 得9,到最后个位数字相加得10。 如:87655→12345,46802→53198, 87362→12638,… 下面讲利用“补数”巧算加法,通常称为“凑整法”。 2.互补数先加。 例1巧算下面各题: ①36+87+64 99+136+101 ③1361+972+639+28 解:①式=(36+64)+87 =100+87=187 ②式=(99+101)+136 =200+136=336 ③式=(1361+639)+(972+28) =2000+1000=3000 3.拆出补数来先加。 例2 ①188+873 ②548+996 9898+203 解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061 ②式=(548-4)+(996+4) =544+1000=1544 ③式=(9898+102)+(203-102) =10000+101=10101 4.竖式运算中互补数先加。 如: 二、减法中的巧算 1.把几个互为“补数”的减数先加起来,再从被减数中减去。例 3 300-73-27 ②1000-90-80-20-10 解:①式= 300-(73+27) =300-100=200 ②式=1000-(90+80+20+10) =1000-200=800 2.先减去那些与被减数有相同尾数的减数。 例4 4723-(723+189) ②2356-159-256 解:①式=4723-723-189 =4000-189=3811 ②式=2356-256-159 =2100-159 =1941 3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。 例5 ①506-397 ②323-189 ③467+997 ④987-178-222-390 解:①式=500+6-400+3(把多减的3再加上) =109 ②式=323-200+11(把多减的11再加上) =123+11=134 ③式=467+1000-3(把多加的3再减去) =1464 ④式=987-(178+222)-390 =987-400-400+10=197 三、加减混合式的巧算 1.去括号和添括号的法则 在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即: a+(b+c+d)=a+b+c+d a-(b+a+d)=a-b-c-d a-(b-c)=a-b+c 例6①100+(10+20+30) ②100-(10+20+3O) ③100-(30-10) 解:①式=100+10+20+30 =160 ②式=100-10-20-30 =40 ③式=100-30+10 =80 例7计算下面各题: ①100+10+20+30 ②100-10-20-30 ③100-30+10 解:①式=100+(10+20+30) =100+60=160 ②式=100-(10+20+30) =100-60=40

华罗庚谈数学

华罗庚谈“怎样学好数学” 华罗庚——享有世界声誉的数学家,自学成才的典范。生前曾任中国科学院数学研究所所长、中国数学会理事长、中国科技大学副校长等职。以下是他在1962年对广东省数学会会员和中学教师的一次讲话中关于“怎样学好数学”的内容,相信对同学们学好数学会有所教益。 一、基本运算要熟、要快基本运算不但应当“会”,而且要熟、要快。这样的要求不但是为了目前的质量,而且更重要的是保证进一步学习的进度与质量,是为了运用自如。应当与“会了就可以,习题可以少做”的思想斗争。 二、要尽可能多做些习题应当尽可能地多做些习题,以达到熟能生巧的境地。不要以为多做习题搞得熟些是浪费时间,少做几个习题,煮成夹生饭那才是浪费时间呢!算术不熟练,做代数题时处处用到算术,每一个基本运算都比旁人慢,因而做代数习题所花的时间自然比那算术熟练的人所花的时间多了。不仅如此,如果一个人运算熟,在听老师进一步讲课的时候,对于一些与以往知识有关的推导部分很快地接受了,只要专听这一节课的主要的关键性的几点就可以了。而不熟练的人却必须枝枝节节地每步必细听,每步必细想,这样虽然把自己的神经搞得十分紧张而疲乏,但结果还不能抓住要点。换言之,基本训练熟练的人,他仅仅在已有的知识上添上一点或两点新东西,而不熟练的则势必处处被动,添上一大堆东西,当然也就串不起来了。 三、学好数学必须不怕算,要算到底客观事物的发展愈来越复杂了,要求愈精密了。如果要求运算一百次的计算中,我们错了一次,那我们的成绩不是99分而是0分,因为答错了!如果是“人造卫星”,它就硬是不肯上天。怎样来对付“烦”的计算?最好先有一些准备,其中包括思想上的和熟练运算技巧上的。

华罗庚学校数学教材(五年级下)第10讲 逻辑推理(一)

本系列共15讲 第十讲逻辑推理(一) . 文档贡献者:与你的缘 由于数学学科的特点,通过数学的学习来培养少年儿童的逻辑推理能力是一种极好的途径。为了使同学们在思考问题时更严密更合理,会有根有据地想问题,而不是凭空猜想,这里我们专门讨论一些有关逻辑推理的问题。 解答这类问题,首先要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的情况,逐步归纳,找到正确的答案。 例1公路上按一路纵队排列着五辆大客车,每辆车的后面都贴上了该车的目的地的标志。每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志。调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断。他先让第三个司机猜猜自己的车是开往哪里的。这个司机看看前两辆车的标志,想了想说“不知道”。第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道。第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,

说出了自己的目的地。 请同学们想一想,第一个司机的车是开往哪儿去的?他又是怎样分析出来的? 解:根据第三辆车司机的“不知道”,且已知条件只有两辆车开往A市,说明第一、二辆车不可能都开往A市(否则,如果第一、二辆车都开往A市,那么第三辆车的司机立即可以断定他的车一定开往B市)。 再根据第二辆车司机的“不知道”,则第一辆车一定不是开往A 市的(否则,如果第一辆车开往A市,则第二辆车即可推断他一定开往B市)。 运用以上分析推理,第一辆车的司机可以判断,他一定开往B 市。 例2李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。事先规定,兄妹二人不许搭伴。 第一盘:李明和小华对张虎和小红; 第二盘:张虎和小林对李明和王宁的妹妹; 请你判断:小华、小红和小林各是谁的妹妹? 解:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹

华罗庚学校数学教材(五年级上)第07讲 行程问题

本系列共15讲 第七讲行程问题 .文档贡献者:与你的缘 在这一讲中,我们将要研究的是行程问题中一些综合性较强的题目。为此,我们需要先回顾一下已学过的基本数量关系: 路程=速度×时间 总路程=速度和×时间 路程差=速度差×追击时间 例1:小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合。问:小华解这道题用了多长时间? 分析:这道题实际上是一个行程问题。开始时两针成一直线,最后两针第一次重合。因此,在我们所考察的这段时间内,两针的路程差为30分格,又因为时针每小时走5分格,即它的速度为12 1 分格/分钟,而分针的速度为1分格/分钟,所以,当它们第一次重合时,一定是分针从后面追上时针。这是一个追击问题追及时间就是小明的解题时间。 解:30÷(1-)=30÷=32(分钟)121121111 8例2:甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,

丙每分钟走40米。甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇。求A、B两地间的距离。 画图如下: 分析:结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500米。 又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样可求出乙从B到C的时间为1500÷10=150分钟,也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。 解:(1)甲和乙15分钟的相遇路程: (40+60)×15=1500米 (2)乙和丙的速度差: 50-40=10(米/分)

华罗庚学校数学教材(五年级下)第03讲 巧求表面积

本系列共15讲 第三讲巧求表面积 . 文档贡献者:与你的缘 我们已经学习了长方体和正方体,知道长方体或正方体六个面面积的总和叫做长方体或正方体的表面积。如果长方体的长用a表示、宽用b表示、高用h表示,那么,长方体的表面积=(ab+ah +bh)×2。如果正方体的棱长用a表示,则正方体的表面积=6a2。对于由几个长方体或正方体组合而成的几何体,或者是一个长方体或正方体组合而成的几何形体,它们的表面积又如何求呢?涉及立体图形的问题,往往可考查同学们的看图能力和空间想象能力。小学阶段遇到的立体图形主要是长方体和正方体,这些图形的特点都是可以从六个方向去看,特别是求表面积时,就是上下、左右和前后六个方向(有时只考虑上、左、前三个方向)的平面图形的面积的总和。有了这个原则,在解决类似问题时就十分方便了。 例1在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(下图),求这个立体图形的表面积。

分析我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面。这样这个立体图形有表面积就可以分成这样两部分: 上下方向:大正方体的两个底面;侧面:小正方体的四个侧面 大正方体的四个侧面。 解:上下方向:5×5×2=50(平方分米) 侧面:5×5×4=100(平方分米) 4×4×4=64(平方分米) 这个立体图形的表面积为: 50+100+64=214(平方分米) 答:这个立体图形的表面积为214平方分米。 例2下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方体小洞,第三个正方体小洞的1 2

华罗庚学校数学教材六年级上比和比例

华罗庚学校数学教材六年级上比和比例 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

本系列共14讲 第二讲比和比例 . 文档贡献者:与你的缘 在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断。 成正比或反比的量中都有两种相关联的量.一种量(记作x)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k).在判断变量x与y是否成正、反比例时,我们要紧紧抓住这个不变量k.如成正比例;如果k是y与x的积,即在x 变化时,y与x的积不变:xy=k,那么y与x成反比例.如果这两 个关系式都不成立,那么y与x不成(正和反)比例. 下面我们从最基本的判断两种量是否成比例的例题开始. 例1下列各题中的两种量是否成比例成什么比例 ①速度一定,路程与时间. ②路程一定,速度与时间. ③路程一定,已走的路程与未走的路程. ④总时间一定,要制造的零件总数和制造每个零件所用的时间. ⑤总产量一定,亩产量和播种面积. ⑥整除情况下被除数一定,除数和商. ⑦同时同地,竿高和影长. ⑧半径一定,圆心角的度数和扇形面积.

⑨两个齿轮啮合转动时转速和齿数. ⑩圆的半径和面积. (11)长方体体积一定,底面积和高. (12)正方形的边长和它的面积. (13)乘公共汽车的站数和票价. (14)房间面积一定,每块地板砖的面积与用砖的块数. (15)汽车行驶时每公里的耗油量一定,所行驶的距离和耗油总量. 分析以上每题都是两种相关联的量,一种量变化,另一种量也随着变化,那么怎样来确定这两种量成哪种比例或不成比例呢关键是能否把两个两种形式,或只能写出加减法关系,那么这两种量就不成比例.例如①×零件数=总时间,总时间一定,制造每个零件用的时间与要制造的零件总数成反比例.③路程一定,已走的路程和未走的路程是加减法关系,不成比例. 解:成正比例的有:①、⑦、⑧、(15) 成反比例的有:②、④、⑤、⑥、⑨、(11)、(14) 不成比例的有:③、⑩、(12)、(13). 例2一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间分析要求此人走完全程用了多少时间,必须根据已知条件先求出此人走上坡路用了多少时间,必须知道走上坡路的速度(题中每小

华罗庚学校数学教材(六年级下)第14讲-关于空间想象力的综合训练题

本系列共14 讲 第十四讲关于空间想象力的综合训练题 . 文档贡献者:WINNER 1.将下图中的硬纸片沿虚线折起来,便可以作成一个正方体.问这个正方体的2号面的对面是几号面? 2.有一个长方体,它的正面和上面的面积之和是 209,如果它的长、宽、高都是质数,求这个长方体的体积. 3.有一个正方体,边长是 5.如果它的左上方截去一个边长分别是5、3、2的长方体(如下图),求它的表面积减少的百分比是多少? 4.有三个大小一样的正方体,将接触的面用胶粘接在一起成下图的形状,表面积比原来减少了16平方厘米.求所成形体的体积. 5.如下图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?

6.一个正方体形的纸盒中恰好能放入一个体积为 628 立方厘米 的圆柱体(下图).问纸盒的容积有多大?(圆周率取为 3.14). 7.一个高为 30 厘米,底面为边长是 10 厘米的正方形的长方体水 桶,其中装有 1 容积的水。现在向桶中投入边长为 2 厘米×2 厘米×3 2 厘米的长方体石块,问需要投入多少块这种石块才能使水面恰与桶高 相齐? 8,有两种不同形状的纸板,一种是正方形的,另一种是长方形 的,正方形纸板的总数与长方形纸板的总数之比是 1∶2。用这些纸 板做成一些竖式和横式的无盖纸盒,正好将纸板用完。问在所做的纸 盒中,竖式纸盒的总数与横式纸盒的总数之比是多少? 9.如下图,在棱长为 3 的正方体中由上到下,由左到右,由前到 后,有三个底面积是 1 的正方形高为 3 的长方体的洞,求所得形体的 表面积是多少? 10.将边长为 10 的正方体木块六个面都染上红色后,锯成边长为

中国华罗庚学校数学课本习题

( “方法为上”六年级数学学习辅导 )中国华罗庚学校数学课本习题. 第一章分数应用题 第一节 分数应用题的基本类型 例1、一桶油,第一次用去1/3,正好是4升,第二次又用去这桶油的1/4,还剩多少升? 例2、某工厂计划生产一批零件,第一次完成计划的1/2, 第二次完成计划的3/7,第三次生产450个,结果超出计划的1/4,计划生产零件多少个? 例3、王师傅四天完成一批零件,第一天和第二天共做了54个,第二,第三和第四天共做了90个。已知第二天做的个数占这批零件的1/5.这批零件一共有多少个? 例4、六(1)班男生的一半和女生的1/4共16人,女生的一半和男生的1/4共16人。六一班学生共有学生多少人? 同步精练 1、一个粮食仓库,原来存有一批粮食,运走2/3后,又运来5.6吨,这时现有存粮是原来存粮的4/5,粮仓现有存粮多少吨? 2、一辆汽车从甲地开往乙地,行了全程的8/15后,超过终点1又1/5千米,甲乙两地全程是多少千米? 3、两袋大米,乙袋比甲袋重12千克。如果从甲袋倒入乙袋6千克,这时甲袋大米重量是乙袋大米的5/8.两袋大米原来共有多少千克? 4、两堆煤,从甲堆煤运走1/4,乙堆煤运走一部分后剩下3/5,这这时甲堆重量是乙队重量的3/5,甲队原有120吨,乙队原有多少吨? 5、一条水渠,第一天挖了25米,第二天挖了余下的2/5,这这时剩下的与挖好的正好相等。这条水渠有多长? 6、一个粮仓,原来存有一批粮食,运走 32后,又运来5.6吨,这是现有存粮是原来存粮的54,粮库原有存粮多少吨? 7、一种石英表,先涨价 101,然后降价101,这时售价49.5元,原价是多少元? 8、小红读一本书,第一天读了全书的 32,第二天读了余下的4 1,两天共读30页,这本书共有多少页?

华罗庚谈怎样学习数学

华罗庚谈怎样学习数学 □张绍东 (南京师范大学数学系 210097) 华罗庚是蜚声中外的数学家.他是中国解析数论、典型群、矩阵几何学、自守函数、与多复变函数论等很多方面研究的创始人与开拓者.他的研究领域很广,著述很多.有些已列入本世纪数学经典著作之列.堪称世界名列前茅的数学家之一,他是受人爱戴的世界第一流的数学家和对人类作出特多贡献的伟大的学者. 华罗庚还是中国著名的数学教育家,他积极倡导教改,对课程、教材、教法都有独到的见解,对促进中国数学的提高和发展起到了莫大的作用.华罗庚经常作学术报告,讲述数学的重要性和功能以及学习数学的方法等.他还在一些学术刊物上著文,指导学生学习数学.现在仅就他如何指导学生学习数学,谈谈他的指导方法. 一、树立雄心、打好基础 数学是一门老老实实的学问,来不得半点虚伪.在数学研究中决不能存有侥幸心理,想不劳而获是绝对办不到的.任何重大的数学成果都不是轻易地发明创造出来的.学有成就只能属于那些有素养的人,属于那些勤学好问的人,属于那些有锲而不舍精神的人,决不属于那些懒汉.要想学习好必须树下雄心壮志,要有决心、毅力,要有蓬勃持久的朝气,要不怕艰苦敢于钻研.华罗庚曾说:“科学上没有平坦的大道,真理的长河有无数礁石险滩,只有不畏攀登的采药者,只有不怕巨浪的弄潮儿,才能登上高峰采得仙草,深入水底觅得骊珠.”华罗庚还对青年学生说:“取法务上,仅得乎中”.他勉励学生要把奋斗目标定得不妨稍高一点.他又说:“发愤早为好,苟晚 休嫌迟.最忌不努力,一生都无知.”他经常劝告学生,攀登科学高峰,要及早努力,不要有“年轻明聪,迟点无妨”的思想. 雄心壮志要有持久的热诚,这种热诚是永恒的,决不能是一曝十寒,三天打鱼两天晒网的思想.要坚持下去,要有“长到老、学到老”的精神. 打好基础主要是对一切数学的基本内容——数学概念、定理、定律、性质、公式等,真正学深、学透、会用.基础越坚固就越加有利于继续学习,运用起来也就越加得心应手.当然也就进步快,并且易于攻尖登高. 打好基础必须按步就班,循序渐进,切不可急于求成或越级而进.还需要制定周密的学习计划,不让它有一步落空.譬如建筑宝塔,要建得又高又大,既不能建在沙滩上,也不能有一层的不牢固.否则,必然倒塌无疑. 怎样检验学习的基础是否已经打好?主要表现在“用”上.如果你能够“用”得恰当、正确,就说明你真正学“懂”了.如果你解决问题的速度也提高了,这就可以说明你学得较为深透了.一个人的知识要既有广度,又要有深度,才能称之谓有学识、有见解、有能力;否则,虽是读了很多书,但不能应用,认识未能提高,又不能服务于人民,也只能称之谓“书篓子”. 二、认真的独立思考 事物是在不断地发展变化的,随之而来的是提出了许多新问题要解决.但在书上不一定能查出解决的办法,老师们也不一定知道.要解决这些新的问题,就需要另辟蹊径,因此培养人们独立思考的能力是特别重要 ? 1 3 ? 《数学教师》1997年第9期●数学家与数学

华罗庚学校数学课本6上

华罗庚学校数学课本(六年级·修订版) 上册 第一讲工程问题 第二讲比和比例 第三讲分数、百分数应用题(一) 第四讲分数、百分数应用题(二) 第五讲长方体和正方体 第六讲立体图形的计算 第七讲旋转体的计算 第八讲应用同余解题 第九讲二进制小数 第十讲棋盘中的数学(一) 第十一讲棋盘中的数学(二) 第十二讲棋盘中的数学(三) 第十三讲棋盘中的数学(四) 第十四讲典型试题分析

第一讲工程问题 工程问题是应用题中的一种类型.在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量). 这三个量之间有下述一些关系式: 工作效率×工作时间=工作总量, 工作总量÷工作时间=工作效率, 工作总量÷工作效率=工作时间. 为叙述方便,把这三个量简称工量、工时和工效. 例1一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成? 答:甲、乙、丙三队合作需10天完成. 说明:我们通常把工量“一项工程”看成一个单位.这样,工效就用工

例2师徒二人合作生产一批零件,6天可以完成任务.师傅先做5 天 批零件各需几天? 工 效和.要求每人单独做各需几天,首先要求出各自的工效,关键在于把师傅先做5天,接着徒弟做3天转化为师徒二人合作3天,师傅再做2天. 答:如果单独做,师傅需10天,徒弟需15天. 例3一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天? 分析解答工程问题时,除了用一般的算术方法解答外,还可以根据题目的条件,找到等量关系,列方程解题。 解:设甲做了x天.那么, 两边同乘36,得到:3x+40-4x=36,

华罗庚学校数学教材(六年级下)第07讲 整数的分拆

本系列共14讲 第七讲整数的分拆 . 文档贡献者:与你的缘 整数分拆是数论中一个既古老又活跃的问题.把自然数n分成为不计顺序的若干个自然数之和 n=n1+n2+…+n m(n1≥n2≥…≥n m≥1)的一种表示法,叫做n的一种分拆.对被加项及项数m加以一些限制条件,就得到某种特殊类型的分拆.早在中世纪,就有关于特殊的整数分拆问题的研究.1742年德国的哥德巴赫提出“每个不小于6的偶数都可以写成两个奇质数的和”,这就是著名的哥德巴赫猜想,中国数学家陈景润在研究中取得了突出的成果.下面我们通过一些例题,简单介绍有关整数分拆的基本知识. 一、整数分拆中的计数问题 例1有多少种方法可以把6表示为若干个自然数之和? 解:根据分拆的项数分别讨论如下: ①把6分拆成一个自然数之和只有1种方式; ②把6分拆成两个自然数之和有3种方式 6=5+1=4+2=3+3; ③把6分拆成3个自然数之和有3种方式 6=4+1+1=3+2+1=2+2+2; ④把6分拆成4个自然数之和有2种方式 6=3+1+1+1=2+2+1+1; ⑤把6分拆成5个自然数之和只有1种方式

6=2+1+1+1+1; ⑥把6分拆成6个自然数之和只有1种方式 6=1+1+1+1+1+1.因此,把6分拆成若干个自然数之和共有 1+3+3+2+1+1=11种不同的方法. 说明:本例是不加限制条件的分拆,称为无限制分拆,它是一类重要的分拆. 例2有多少种方法可以把1994表示为两个自然数之和? 解法1:采用有限穷举法并考虑到加法交换律: 1994=1993+1=1+1993 =1992+2=2+1992 =… =998+996=996+998 =997+997 因此,一共有997种方法可以把1994写成两个自然数之和. 解法2:构造加法算式: 于是,只须考虑从上式右边的1993个加号“+”中每次确定一个,并把其前、后的1分别相加,就可以得到一种分拆方法;再考虑到加法交换律,因此共有997种不同的分拆方式. 说明:应用本例的解法,可以得到一般性结论:把自然数n≥2表示为两个自然数之和,一共有k种不同的方式,其中

华罗庚的数学故事

华罗庚的数学故事 著名数学家华罗庚在学习中,既肯下苦功,又善动脑筋。他十四岁的时候,有一次,数学老师王维克在课堂上给同学们出了这样一道题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”此题出自古代的《孙子算经》,意思是说:有一种东西,不知道数量,如果三个三个地去数它,最后剩二;五个五个地去数它,最后剩三;七个七个地去数它,最后剩二。问这种东西共有多少。王老师刚把题读完,华罗庚的答案就脱口而出了:“二十三!”“怎么,你看过《孙子算经》?”王老师惊诧地问。华罗庚回答说:“我不知道《孙子算经》这本书,更没有看过。”“那你是怎么算出来的?”王老师又问。华罗庚有板有眼地答道:“我是这样想的,三个三个地数,余二,七个七个地数,余二,余数都是二,那么,总数就可能是三乘七加二,等于二十三,二十三用五去除,余数又正好是三,所以,二十三就是所求的数了。”“啊——”王老师简直被惊呆了,“算得巧,算得巧!” 4 数学家华罗庚的小故事三1930年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑。最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员。”熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才。他当即做出决定,将华罗庚请到清华大学来。从此,华罗庚就成为清华大学数学系助理员。在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间。说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯。他当然没有什么特异功能,只是头脑中一种逻辑思维活动。他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题。碰到难处,再翻身下床,打开书看一会儿。就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了。华罗庚被人们看成是不寻常的助理员。第二年,他的论文开始在国外着名的数学杂志陆续发表。清华大学破了先例,决定把只有初中学历的华罗庚提升为助教。几年之后,华罗庚被保送到英国剑桥大学留学。可是他不愿读博士学位,只求做个访问学者。因为做访问学者可以冲破束缚,同时攻读七、八门学科。他说:“我到英国,是为了求学问,不是为了得学位的。”华罗庚没有拿到博士学位。在剑桥的两年内,他写了20篇论文。论水平,每一篇都可以拿到一个博士学位。其中一篇关于“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”。华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业。]

相关主题
文本预览
相关文档 最新文档