当前位置:文档之家› 杨辉三角性质证明

杨辉三角性质证明

杨辉三角性质证明
杨辉三角性质证明

1.二项式定理的证明(用数学归纳法)

证明:(1)当n=1时,左边=(a+b)1= a+b=右边;因此,当n=1时等式成立。

(2)假设n=k时等式成立,即

(a+b)k= C k0a k+C k1a k-1b+……+C k r a k-r b r+

C k r+1a k-r-1b r+1+……+C k k-1ab k-1+C k k b k

现在证明当n=k+1时等式也成立。

由于(a+b)k+1=(a+b)k(a+b)

=( C k0a k+C k1a k-1b+……+C k r a k-r b r+ C k r+1a k-r-1b r+1+……

+C k k-1ab k-1+C k k b k)(a+b)

= C k0a k+1+C k1a k b+…+C k r a k-r+1b r+ C k r+1a k-r b r+1+…

+C k k-1a2b k-1+C k k ab k

+ C k0a k b+C k1a k-1b2+……+C k r a k-r b r+1+ C k r+1a k-r-1b r+2+……

+C k k-1ab k+C k k b k+1

= C k0a k+1+(C k1+ C k0)a k b+……+(C k r+1+C k r)a k-r b r+1+……+(C k k+ C k k-1)ab k+C k k b k+1

利用:C k0= C k+10,C k1+ C k0= C k+11……C k r+1+C k r= C k+1r+1……

C k k+ C k k-1= C k+1k,C k k= C k+1k+1则得到(a+b)k+1=

C k+10a k+1+C k+11a k b+……+C k+1r+1a k-r b r+1+……

+C k+1k ab k+C k+1k+1b k+1。

这就是说,如果n=k时等式成立,那么n=k+1时等式也成立。

根据(1)和(2),可知关于任意自然数n,公式都成立。

2.证明:当}12,,1{-∈k

m 时,

m k C 1

2-是奇数。

证明:对任何一个正整数m ,都存在唯一的自然数m

k 与正奇数m l ,使

m km

l m ?=2。设11

21l k ?=,

2=22

2l k ?,…,n k l n ?=2

2,….当}

12,,2,1{-∈k m 时,m m C k

k k m

k

???---=

- 21)2()22)(12(12

m km

m km k k k k k k k l l l l l l 2)

22(2)22(2)22(2

2112211`--?-=

m

m km

k k k k k l l l l l l 2121)

2()2

)(2

(2

1

---=

---

∵上式的分子、分母都是奇数,且分式值是正整数,∴

m k C 1

2-是奇数。

3.证明:k k C +k k C

1

++k k C

2

++…+k

n C

1-+

k n

C =11++k n C

法二:11++k k C +

k k C

1

++k k C

2

++k

k C

3++…+

k

n C

1-+

k n

C

=1

2++k k C +k k C

2

++k

k C

3++…+

k

n C

1-+

k n

C

=13

++k k C +k

k C 3++…+

k

n C

1-+

k n

C =…

=11

+-k n C

+k

n C

1-+

k n C =1+k n

C

+k n

C =1

1++k n C

4.证明

131

3

6)1()1(k

k C

C

k k k k k +=++-=+∴ 2

2

1

42

)1(216??

????+=+=++n n C

C

n n

1

1

1111111213111211)()()()(++++++-+++++++++++=-+-++-+-+=k n k n k n k n k n k k k k k k k k k k C C C C C C C C C C )

()(6211

1211313433333

n n C C C C C C n +++++++=++++

5.(1)将各斜边的数字相加后按从上而下的顺序列出:1,1,2,3,5,8,13,21,34。

(2)研究上述数列的规律后,可以猜测:无穷阶杨辉三角类似的数列为:

{})(,1:*

1221N

n a a a a a a n n n n ∈+===++

(3)将n a 表示成组合数的和,并证明

n n n a a a +=++12

1221

12--+-+++=k k k k k

k C

C

C

a ,

*)(02

2211

12N n C

C

C

a k k k

k k k ∈+++=-----

根据杨辉三角的基本性质3可以推出

1221222122,-+--+=+=k k k k k k a a a a a a .

6.12-n

阶杨辉三角中,偶数与奇数,哪个更多?

12-n

阶杨辉三角中,共有n

3

个奇数,

共有n

n n 32

2

1

1

2-+--个偶数(k ∈N*),

试比较n

3与n

n n 32

21

1

2-+--的大小

7.演示实验

教师或学生将16个均匀小球逐个平稳地放入如图的教具内。统计最后各个矩形框内的小球个数。连续做三次实验,分析统计结果;并将结果推广到有n+1层的教具,n 2个小球的情形,并给出合理解析。

(1)设小球从第一层落入第n 层下面的第k 个矩形框的通道条数为F (n ,k ),则根据教具的对称性及小球的均匀性,可建立如下递推模式: F (1,1)=1,F (n ,k )=F (n ,n-k+1), F (n+1,k )=F (n ,k-1)+F (n ,k ),

k=1,2,…,n+1,规定F (n ,0)=F (n ,n+1)=0(n ∈N*)。 类比杨辉三角形的基本性质:

r n

r n

r n r n n

r n C

C

C

C

C C +===-+-11

0,,1

可猜测:

1,,2,1,),1(1+==+-n k C k n F k n

(可以用数列方法证明结论为真,留课后思考) 故在理想状态下,n

2个小球从第一层落到第n 层,

从左到右各矩形框内的小球个数分别为

n n n n

k n n n C

C

C C C ,,,,,,110- 。

(2)小球从某层落到下层可看作进行一次随机试

验,其中小球向左边落入的概率为21

。那么小球从第

一层落到第n+1层可以看成是进行n 次独立重复试验,小球最后落入第k 个矩形框内可以看成是小球从左边落入恰好发生n-k+1次,其概率为

1,,2,1,212111+=??? ???=??? ???=-+-n k C C

P n

k n n k n n

k 。

在大量重复试验下,统计规律为:n

2个小球落到

第n+1层的第k 个矩形框内的小球个数为

1,,2,1,21+==?-n k C

P k n

n

k 。

8.“杨辉三角”,与“11的方幂”

仔细观察“杨辉三角”不难发现,0行是1=110,1行是11=111,2行是121=112,3行是1331=113,……;由此猜测:n行就是11n.这种猜测是正确的!不过这里要注意的一点是,对第5及以下的各行,要注意进位问题,凡大于或等于10的数必须逢十进一,例如116,第6行写的是1、6、15、20、15、6、1,第三、第四、第五个数进位以后就应该是1771561,所以,116=1771561.

9.“杨辉三角”与“兔子繁殖问题”

中世纪意大利数学家斐波那契的传世之作《算术之法》中提出了一个饶有趣味的问题:假定一对刚出生的兔子一个月就能长成大兔子,再过一个月就开始生下一对小兔子,并且以后每个月都生一对小兔子.设所生一对兔子均为一雄一雌,且均无死亡.问一对刚出生的小兔一年内可以繁殖成多少对兔子?

对于斐波那契提出的这个“兔子繁殖问题”,虽然我们可以一个月一个月向后推算一对刚出生的小兔在一年内可繁殖成多少对兔子,但毕竟要费一番功夫,如果把它与杨辉三角联系起来,就会发现一个很有趣的结果:兔子繁殖问题的答案可以从杨辉三角得到.

首先,我们把杨辉三角略加改写,列成如下的直角三角形表,表中每一斜线(平行的)上各个数之和列在表的左侧,如

则左侧从上而下的一列数1,1,2,3,5,8,13,…,正好是刚生的兔子,第一个月后的兔子.第二个月后的兔了,第三个月后的兔子,…个月后的兔子的对数.“兔子繁殖问题”的答案就是上表写到第12行左侧的那个数,即233.左侧这列数又称为“斐波那契数”.

10.“杨辉三角”与“纵横路线图”

“纵横路线图”是数学中的一类有趣的问题,中小学的数学中时有出现

图1是某城市的一部分街道图,纵横各有五条路如果从A处走到B处(只能由北到南,由西向东),那么有多少种不同的走法?

我们把图1稍加转动,使A在正上方,B在正下方,然后在图1的交叉点标上相应的杨辉三角数,其数阵就是图2的菱形数表.

有趣的是,B处位置所对应的杨辉三角数,正好就是本题的答案(70).

有了杨辉三角,我行们就可以很快地得到从A处走到任意交叉点的不同走法的种数.由此看

来,杨辉三角与纵横路线图问题有着天然的“姻缘”.

椭圆中焦点三角形的性质(含答案解析)

焦点三角形习题 性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为a b 2 2 性质二:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形 21F PF 中,21θ=∠PF F 则2 tan 221θ b S PF F =?. 证明:记2211||,||r PF r PF ==, 由椭圆的第一定义得.4)(,22 22121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:.)2(cos 22 212 22 1c r r r r =-+θ 配方得:.4cos 22)(2 2121221c r r r r r r =--+θ 即.4)cos 1(242 212 c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 性质三:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形 21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ 性质三 证明:设,,2211r PF r PF ==则在21PF F ?中,由余弦定理得: 1222242)(2cos 2 12 221221221212 212221--=--+=-+=r r c a r r c r r r r r r F F r r θ

双曲线焦点三角形的几何性质

双曲线焦点三角形的几 何性质 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

双曲线焦点三角形的几个性质 在椭圆中,焦点三角形中蕴含着很多性质,这些性质都可以类比到双曲线焦点三角形中:设若双曲线方程为122 22=-b y a x ,21,F F 分别为它的左右焦点,P 为双曲线上任意一点,则有: 性质1、若θ=∠21PF F 则2cot 221θb S PF F =?特别地,当 9021=∠PF F 时,有221b S PF F =? 性质2、焦点三角形21F PF 在P ∠处的内角平分线,过2F 作平分线的垂线,设垂足为Q ,则Q 点的轨迹是? 性质3、以21,r r 为直径做一个圆与大圆(以21A A 为直径的圆)相切。 性质4、双曲线焦点三角形的内切圆与21,F F 相切于实轴顶点;且当P 点在双曲线左支时,切点为左顶点,且当P 点在双曲线右支时,切点为右顶点。 证明:设双曲线122 22=-b y a x 的焦点三角形的内切圆且三边21F F ,1PF ,2PF 于点A,B,C ,双曲线的两个顶点为21,A A 所以A 点在双曲线上,又因为A 在21F F 上,A 是双曲线与x 轴的交点即点21,A A 性质5、在双曲线中A ,B 在双曲线上且关于原点对称,P 为椭圆上任意一点,则22b a k k PB PA = 性质6、P 点在x=c 上移动的过程当中,张角APB ∠的取值范围(A ,B 为两顶点)。]arctan ,0[b a 性质7、双曲线离心率为e ,其焦点三角形21F PF 的旁心为A ,线段PA 的延长线交21F F 的延长线于点B ,则e AP BA =| ||| 证明:由角平分线性质得e a c P F P F B F B F P F B F P F B F AP BA ==--===22||||||||||||||||||||21212211 性质8、双曲线的焦点三角形21F PF 中,βα=∠=∠1221,F PF F PF

杨辉三角与二项式系数的性质(教案)

1. 3.2“杨辉三角”与二项式系数的性质 教学目标: 知识与技能:掌握二项式系数的四个性质。 过程与方法:培养观察发现,抽象概括及分析解决问题的能力。 情感、态度与价值观:要启发学生认真分析书本图1-5-1提供的信息,从特殊到一般,归纳猜想,合情推理得到二项式系数的性质再给出严格的证明。 教学重点:如何灵活运用展开式、通项公式、二项式系数的性质解题教学难点:如何灵活运用展开式、通项公式、二项式系数的性质解题授课类型:新授课 教 具:多媒体、实物投影仪 第一课时 一、复习引入: 1.二项式定理及其特例: (1)01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, (2)1 (1)1n r r n n n x C x C x x +=++ ++ +. 2.二项展开式的通项公式:1r n r r r n T C a b -+= 3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性 二、讲解新课: 1二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数 表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和 2.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成 以r 为自变量的函数()f r 定义域是{0,1,2, ,}n ,例当6n =时,其图象是7个孤立的点(如图) (1)对称性.与首末两端“等距离”的两个二项式系数相等 (∵m n m n n C C -=). 直线2 n r = 是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!k k n n n n n n k n k C C k k ----+-+= =? ,

杨辉三角与二项式系数的性质教学反思07

杨辉三角与二项式系数的性质 教学反思 本节课有以下几点值得一提: 一、目标定位准确 本节课,在充分挖掘教学内容的内在联系,了解学生已有知识基础,充分分析学情后,确定的教学目标:理解、领悟二项式系数性质;渗透数形结合和分类讨论思想;灵活有效地运用赋值法.应该说具有具体而又准确,科学而有效的特点.随着课堂的实践得到了落实,并且将“知识目标”、“能力目标”、“情感目标”融为一体. 教学目标基本符合学生“认识规律”,以递进的形式呈现:观察分析、归纳猜想、抽象概括,提炼上升;特殊——一般——特殊到一般…,课堂实践表明,这些目标,在师生共同努力及合作下是完全可以达到的. 二、突出主体地位 1.放手发动学生 把课堂还给学生,一直是课改的大方向,也是新课标的原动力之一. 还给学生什么呢?教师作了很好的诠释: 一是给“问题”,当然问题有预设的,也有生成的,符合从学生“思维最近发展区”出发这一根本教学原则. 二是给“时间”,这体现了教师的先进教学理念,即便是教学难点“中间项系数最大”这一组合数计算讨论过程仍由学生尝试. 当然,n=6,7时,离散型函数的图象起了直观引领,奠基的重要作用. 不为完成任务所累,不为主宰课堂所困. 三是给“机会”,让学生展示自主探索,合作交流的成果,极大地保护和激发了学生学习的热情和积极性,参与程度和激情得到了空前的提高. 2.彰显理性数学 本节课,无论是对称性,增减性(最大值),及二项式系数和的逐步生成,学生都能从“特殊到一般”的认识规律,归纳猜想到结论. 但数形结合的函数思想,组合数两个性质的运用,两个计数原理的巧妙“会师”,奇数项二项式系数和等于偶数项二项式系数和,反馈升华例示中赋值法再现. 这正是“数学演绎”、“理性数学”的精华,让学生找到内化和建构的多种途径.

双曲线焦点三角形的几个性质63740讲课讲稿

精品文档 文[1]给出了椭圆焦点三角形的一些性质,受此启发,经过研究,本文总结出双曲线焦点三角形如下的一些性质: 设若双曲线方程为22 22x y 1a b -=,F 1,F 2分别为它的左右焦点,P 为双曲线上任意一点,则有: 性质1、若12F PF ,∠=θ则122F PF S b cot 2 θ=V ;特别地,当12F PF 90∠=o 时,有122F PF S b =V 。

精品文档 222121212221212121222 1212221222 1222PF PF cos |PF ||PF ||FF | 2PF PF cos (|PF ||PF |)2|PF ||PF ||FF | 2PF PF cos (2a)2|PF ||PF |(2c)2PF PF (cos 1)4(a c ) b b PF PF 21cos sin 2 θ=+-θ=-+-θ=+-θ-=-==θ -θ, 12F PF 121S |PF ||PF |sin 2∴=θV 22 b 2sin cos 222sin 2 θθ=?θ2b cot 2θ= 易得90θ=o 时,有122F PF S b =V 性质2、双曲线焦点三角形的内切圆与F 1F 2相切于实轴顶点;且当P 点在双曲线左支时,切点为左顶点,且当P 点在双曲线右支时,切点为右顶点。 证明:设双曲线22 22x y 1a b -=的焦点三角形的内切圆且三边F 1F 2,PF 1,PF 2于点A,B,C ,双曲线的两个顶点为A 1,A 2 121212|PF ||PF ||CF ||BF ||AF ||AF |-=-=- 12|PF ||PF |2a -=Q ,12|AF ||AF |2a ∴-=, 1212A A FF A x A ,A ∴Q 在双曲线上,又在上, 是双曲线与轴的交点即点

(完整版)教学案例.杨辉三角与二项式系数性质(标准)

1.3.2二项式系数的性质(第一课时) 学校:新塘中学 班级:高二A8班 教师:段建辉 ●教学目标 (一)知识与技能 1.二项式系数的性质:对称性,增减性与最大值,各二项式系数的和. 2.掌握“赋值法”,并会简单应用 (二)情感与价值观 1.树立由一般到特殊及特殊到一般的意识. 2.了解中国古代数学成就及地位............. ●教学重点:二项式系数的性质 ●教学难点:二项式系数的最大值的理解与二项展开式中系数最大项有的求解. ●教学方法:发现法 ●授课类型:新授 ●教学情境设计: 一、复习回顾 1.二项式定理及其特例: (1)01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈L L , (2)1(1)1n r r n n n x C x C x x +=+++++L L . 2.二项展开式的通项公式:1r n r r r n T C a b -+= 二、引入 通项公式中的r n C ,我们称其为二项式系数.当n 依次取1,2,3…时, n b a )(+二项式系数,如下表所示:

表1 此表叫二项式系数表,早在南宋数学家杨辉所著的《详解九章算法》一书中出现了又叫杨辉三角.国外最早发现是在欧洲,叫帕斯卡三角,比中国晚了500年 下面我们可以利用“杨辉三角”来研究二项式系数的性质 三、探究 观察二项式系数表,根据提示的方法,寻找表中的规律. 【注意】 ?1)不要孤立的看、规律应该体现在联系之中 ?2)既要注意横向观察,也要注意纵向观察,横向观察是重点 ?3)可以结合函数图象或图表来研究,也可以和集合作联系 1、二项式系数表的规律 ①每行两端都是1 ②除1以外的每1个数都等于它肩上两个数的和(如何用数学知识解释?) 【提示】设这一数为r C 1-r n 和C r n ,由组合数知识可知: 1 1 01C C 02 C 12 C 2 2C 03 C 13 C 23 C 33 C 1 4C 0 4 C 3 4C 2 4C 4 4C 0 5C 1 5C 2 5C 35 C 4 5C 55 C

4、1二项式定理与杨辉三角完整讲义(最终修订版)

二项式定理 知识要点 (一)探究 3 4 a b a b ++,()()的展开式 问题1:()()112233 a b a b a b +++()展开式中每一项是怎样构成的?展开式有几项? 问题2:将上式中,若令123123, a a a a b b b b ======,则展开式又是什么? 思考一:合并同类项后,为什么2 a b 的系数是3? 问题3: 4 a b +()的展开式又是什么呢? 结论: 404132223344 44444a b C a C a b C a b C ab C b +=++++(); (二)猜想、证明“二项式定理” 问题4: n a b +()的展开式又是什么呢? 思考二: (1) 将 n a b +()展开有多少项? (2)每一项中,字母,a b 的指数有什么特点? (3)字母,a b 指数的含义是什么?是怎么得到的? (4)如何确定,a b 的系数? 二项式定理: 0111222()n n n n r n r r n n n n n n n a b C a C a b C a b C a b C b ---+=++++++L L ()n *∈N ; (三)归纳小结:二项式定理的公式特征 (1)项数:_______; (2)次数:字母a 按降幂排列,次数由____递减到_____;字母b 按升幂排列,次数由____递增到______; (3)二项式系数:下标为_____,上标由_____递增至_____; (4)通项:1k T +=__________;指的是第1k +项,该项的二项式系数为______; (5)公式所表示的定理叫_____________,右边的多项式叫做n a b +()的二项展开式。

概率、组合、二项式定理和杨辉三角

概率 2.1离散型随机变量及其分布列 一、离散型随机变量 在射击比赛中,选手击中靶上的圆形或环形区域内得分,得分值由靶心往外依次可记为:10环,9环,8环,…,1环,0环。那么射击选手射击一次,可以出现的结果为:10环,9环,8环,…,1环,0环。 例如抛一枚硬币,所有可能的结果是:“正面向上”,“反面向上”。 1、 随机变量:在这些试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是 随着试验的结果的不同而变化的,我们把变量X 叫做一个随机变量。 随机变量常用大写字母X,Y …表示。 例如:设某射击选手每次射击所得的环数是X ,那么X 是一个随机变量。X 的取值范围是{0,1,2,3,4,5,6,7,8,9,10}。 例:100件产品中,含有5件次品,从中取出4件,那么可能出现的“次品件数”。设X 是一个随机变量,X={ }。 练习1:写出下列各离散型随机变量可能取的值: (1)从10张已编号的卡片(1—10号)中任取一张,被取出的卡片的号数; (2)抛掷一个骰子得到的点数; (3)一个袋子里装有5个白球和5个黑球,从中任取3个,其中所含白球的个数; 练习2:把一枚硬币先后抛掷两次,如果出现两个正面得5分,出现两个反面得-3分,其他结果得0分,列表写出可能出现的结果与对应的分值。 2、离散型随机变量:如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量。 二、离散型随机变量的分布列 1、 离散型随机变量X 的概率分布(或离散型随机变量X 的分布列) 概率分布表需要列出: (1) X 所有可能的值; (2) X 取每一个值的概率。如下表: X x1 x2 … xi … xn P p1 p2 … pi … pn 2、 离散型随机变量的分布列有下面两条性质: (1) p i ≥0,i=1,2,3…. ,n ; (2) p 1+p 2+…+p n =1. 3、 两点分布:如果随机变量X 的分布列为 其中0

双曲线焦点三角形的几个性质

双曲线焦点三角形的几个性质 文[1]给出了椭圆焦点三角形的一些性质,受此启发,经过研究,本文总结出双曲线焦点三角形如下的一些性质: 设若双曲线方程为 222 2 x y 1a b -=,F 1,F 2分别为它的左右焦点,P 为双曲线上任意一点,则有: 性质1、若12F PF ,∠=θ则1 2 2 F PF S b cot 2 θ= ;特别地,当12F PF 90∠= 时,有122 F PF S b = 。 22 2 1212122 2 121212122 2 12122 2 122 2 122 2PF PF cos |PF ||PF ||F F | 2PF PF cos (|PF ||PF |)2|PF ||PF ||F F |2PF PF cos (2a )2|PF ||PF |(2c)2PF PF (cos 1)4(a c )b b PF PF 2 1cos sin 2 θ=+-θ=-+-θ=+-θ-=-== θ-θ , 12F PF 121S |P F ||P F |sin 2 ∴= θ 2 2b 2s i n c o s 22 2sin 2θθ= ?θ 2 b c o t 2θ= 易得90θ= 时,有122 F PF S b = 性质2、双曲线焦点三角形的内切圆与F 1F 2相切于实轴顶点;且当P 点在双曲线左支时,切点为左顶点,且当P 点在双曲线右支时,切点为右顶点。

证明:设双曲线 222 2 x y 1a b - =的焦点三角形的内切圆且三边F 1F 2,PF 1,PF 2于点A,B,C ,双 曲线的两个顶点为A 1,A 2 121212|PF ||PF ||CF ||BF ||AF ||AF |-=-=- 12|PF ||PF |2a -= ,12|AF ||AF |2a ∴-=, 1212 A A F F A x A ,A ∴ 在双曲线上,又在上,是双曲线与轴的交点即点 性质3、双曲线离心率为e ,其焦点三角形PF 1F 2的旁心为A ,线段PA 的延长线交F 1F 2的延长线于点B ,则 |BA |e |AP | = 证明:由角平分线性质得 12121212|F B ||F B ||F B ||F B ||BA |2c e |AP | |F P | |F P | |F P ||F P | 2a -=== ==-

杨辉三角与二项式定理教学设计

1.3.2“杨辉三角”与二项式定理 昌邑一中吴福顺 一、复习引入: 1.二项式定理及其特例: (1), (2) . 2 .二项展开式的通项公式: 3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性二、讲解新课: (首先介绍杨辉本人,让学生了解杨辉) 1 二项式系数表(杨辉三角) 展开式的二项式系数,当依次取…时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和2.二项式系数的性质: 展开式的二项式系数是,,,…,.可以看成以为自变量的函数 定义域是,例当时,其图象是个孤立的点(如图) (1)对称性.与首末两端“等距离”的两个二项式系数相等(∵). 直线是图象的对称轴. (2)增减性与最大值.∵, ∴相对于的增减情况由决定,, 当时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值; 当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值. (3)各二项式系数和: ∵, 令,则

(讲解完成后,学生搜索有关二项式系数性质的网页,更加全面的了解二项式系数) 三、讲解范例: 例1.在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和证明:在展开式中,令,则, 即, ∴, 即在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和. (搜索赋值法,了解什么是赋值法) 说明:由性质(3)及例1知 . 例2.已知,求: (1);(2);(3) . 解:(1)当时,,展开式右边为 ∴, 当时,,∴, (2)令,① 令,② ①②得:,∴ . (3)由展开式知:均为负,均为正, ∴由(2)中①+②得:, ∴, ∴ 例3.求 (1+x)+(1+x)2+…+(1+x)10展开式中x3的系数 解: =,

杨辉三角与二项式定理导学案

§1.3.2 “杨辉三角”与二项式系数的性质 主讲:泉州中远学校高二数学组朱坤城 【三维目标】 1. 使学生建立“杨辉三角”与二项式系数之间的直觉,并探索其中的规律; 2.能运用函数观点分析处理二项式系数的性质; 3. 理解和掌握二项式系数的性质,并会简单的应用。 4. 引导学生发现、欣赏数学中的美,弘扬民族文化。 【教学重难点】 教学重点:二项式系数的性质及其应用; 教学难点:杨辉三角的基本性质的探索和发现。 【教学过程】 【问题探究1】。杨辉三角的来历及规律 早在我国南宋数学家杨辉1261年所著的《详解九章算法》一书中说明了表里“一”以外的每一个数都等于它肩上两个数的和;指出这个方法出于《释锁》算书,且我国北宋数学家贾宪(约公元11世纪)已经用过它.这表明我国发现这个表不晚于11世纪;在欧洲,这个表被认为是法国数学家帕斯卡(1623-1662)首先发现的,他们把这个表叫做帕斯卡三角.这就是说,杨辉三角的发现要比欧洲早五百年左右. 认识杨辉三角: 1 1 1 12 1 133 1

1464 1 1510105 1 161520156 1 你能发现这个三角数阵的几个规律: 从以上的数阵,想想我们学过的哪些知识和它有联系? 【问题探究2】二项式定理与杨辉三角的联系。 问题1:二项式展开式是: 试把( a+b) n(n=0,1,2,3,4,5,6)展开式的二项式系数填入课本P32的表格。问题2:为了方便,我们将上表改写成如下形式. (a+b)0 (1) (a+b)1 …………………………………………………1 1 (a+b)2…………………………………………………12 1 (a+b)3………………………………………………133 1 (a+b)4……………………………………………1464 1 (a+b)5…………………………………………1510105 1 (a+b)6………………………………………161520156 1 …………………………… 【问题探究3】、从函数角度分析二项式系数:

焦点三角形的性质

椭圆中焦点三角形的性质及应用 定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。与焦点三角形的有关问题有意地考查了定义、三角形中的的正(余)弦定理、内角和定理、面积公式等. 一.焦点三角形的形状判定及周长、面积计算 例1 椭圆上一点P 到焦点21,F F 的距离之差为2,试判断21F PF ?的形状. 解:由 112 162 2=+y x 椭圆定义: 3||,5||.2||||,8|||212121==∴=-=+PF PF PF PF PF PF . 又4||21=F F Θ,故满足:,||||||2 12 212 2PF F F PF =+故21F PF ?为直角三角形. 说明:考查定义、利用已知、发挥联想,从而解题成功. 性质一:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形 21F PF 中,21θ=∠PF F 则2 tan 221θ b S PF F =?。 θ cos 2)2(212 2212 2 12PF PF PF PF F F c -+==Θ)cos 1(2)(21221θ+-+=PF PF PF PF θ θθcos 12)cos 1(244) cos 1(24)(2 222 22121+= +-=+-+= ∴b c a c PF PF PF PF 2 tan cos 1sin 2122212 1θθθb b PF PF S PF F =+==∴? 性质二:已知椭圆方程为),0(122 22>>=+b a b y a x 左右两焦点分别为,,21F F 设焦点三角 形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点。 证明:设),(o o y x P ,由焦半径公式可知:o ex a PF +=1,o ex a PF -=1 在21PF F ?中,2 12 2 121212cos PF PF F F PF PF -+= θ2 12 21221242)(PF PF c PF PF PF PF --+=

杨辉三角的规律以与推导公式-杨辉三角规律

杨辉三角的规律以及定理 1 二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 杨辉三角我们首先从一个二次多项式 (a+b) 2 的展开式来探讨。 由上式得出: (a+b) 2= a 2+2ab+b 2 此代数式的系数为: 1 2 1 则 (a+b) 3 的展开式是什么呢?答案为: a 3+3a 2b+3a b 2+b 3 由此可发现, 此代数式的系数为: 1 3 3 1 但 似乎没有什么规律,所以让我们再来看看 (a+b) 4 的展开式。 展开式为: a 4 +4a 3b+6a 2b2+4ab 3+b 4 由此又可发现,代数式的系数为: 1 4641 似乎发现了一些规律,就可以发现以下呈三角形的数列: 1 (11 ) 1 1 (11 1 ) 1 2 1 (11 2 ) 1 3 3 1 (11 3 ) 1 4 6 4 1 (11 4 ) 1 5 10 10 5 1 (11 5 ) 1 6 15 20 15 6 1 (11 6) 杨辉三角形的系数分别为: 1,(1,1 ),(1,2,1 ),( 1,3,3,1 ),( 1,4,6,4,1 )( 1,5,10,10,5,1 ),( 1,6,15,20,15,6,1 ), ( 1,7,21,35,35,21,7,1)所以: (a+b) 7=a 7+7a 6 b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7。 由上式可以看出, (a+b) n 等于 a 的次数依次下降 n 、n-1 、n- 2?n -n ,b 的次数依次上升, 0、1、2?n 次方。系数是 杨辉三角里的系数。 2 杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1=2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) ?? 相加得到的数是 1, 2, 4, 8, 16, 32, 64,?刚好是 2 的 0, 1,2, 3, 4, 5, 6,? n 次幂,即杨辉三角第 n 行中 n 个数之和等于 2 的 n-1 次幂 3 杨辉三角中斜行和水平行之间的关系

2019-2020学年高一数学 杨辉三角与二项式系数(二)作业.doc

2019-2020学年高一数学 杨辉三角与二项式系数(二)作业 1.(a+b)n 展开式中第四项与第六项的系数相等,则n 为( ) A .8 B .9 C .10 D .11 2.二项式(1-x)4n+1的展开式系数最大的项是( ) A .第2n+1项 B .第2n+2项 C .第2n 项 D 第2n+1项或2n+2项 3.10110-1的末尾连续零的个数是( ) A .1个 B .2个 C .3个 D .4个 4.若n 为奇数,777712211---+???+++n n n n n n n C C C 被9除所得的余数是( ) A .0 B .2 C .7 D .8 5.5 n +13 n (n N ∈)除以3的余数是( ) A .0 B .0或1 C .0或2 D .2 6.数(1.05)6的计算结果精确到0.01的近似值是( ) A .1.23 B .1.24 C .1.33 D .1.44 7.!20123181920!417181920!21920C 0 4?????????+???+???+?+ 的值是( ) A .217 B .218 C .219 D .220 8.(1-2x)15的展开式中的各项系数和是( ) A .1 B .-1 C .215 D .315 9. 在(ax+1)7的展开式中,(a>1),x 3的系数是x 2的系数与x 4的系数的等差中项,则a 的值是 。 10.设112131)13(x x + 展开式中各项系数和为A ,而它的二项式系数之和为B ,若A+B=272,那么展开式中x 2项的系数是 。 11.关于二项式(x 1)2007有下列四个命题: ①该二项展开式中非常数项的系数和是1; ②该二项展开式中系数最大的项是第1004项; ③该二项展开式中第6项为200162007x C ; ④当x=2008时,(x 1)2007 除以2008的余数是2007。 其中正确命题的序号是 。 12.将杨辉三角中的奇数换成1,偶数换成0,得到如下图所示的01三角数表,从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 行全行的数都为1的是第 行。 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1 …… ……… ……… ……… 13.用二项式定理证明6363+17能被16整除.

双曲线中的焦点三角形性质整理.pdf

双曲线中的焦点三角形 江苏省盱眙中学 赵福余 1.设双曲线19 42 2=?y x ,1F 、2F 是其两个焦点,点P 在双曲线上,若?=∠6021PF F ,则21PF F ?的面积为 . 设双曲线为()0,0122 22>>=?b a b y a x ,1F 、2F 是其两个焦点,点P 在双曲线上, 性质1 :若θ=∠21PF F ,则21PF F ?的面积为 . 性质2:通过以上求解过程,若θ=∠21PF F ,则=21PF PF ;21PF PF 的最小值是 . (1)设双曲线14 42 2=?y x ,1F 、2F 是其两个焦点,点P 在双曲线上,?=∠9021PF F ,则21PF F ?的周长为 . (2)若1F 、2F 分别是双曲线19 162 2=?y x 的左、右焦点,AB 是双曲线左支上过点1F 的弦,且6=AB ,则2ABF ?的周长是 . 2.双曲线焦点三角形21PF F ?的内切圆与21F F 相切于点A ,则=21.AF AF . 性质3:切点A 的位置为 . 3.设双曲线()0,0122 22>>=?b a b y a x ,1F 、2F 是其两个焦点,点P 在双曲线上,O 是中心,则OP PF PF t 2 1+=的范围是 . 性质4:21.PF PF 与OP 的等式关系为 . 4.设双曲线()0,0122 22>>=?b a b y a x ,1F 、2F 是其两个焦点,点P 在双曲线右支上一点若离心率2=e ,则=2tan 2tan β α .

性质5:=2tan 2tan β α .(用离心率e 表示) 5.双曲线离心率为e ,其焦点三角形21F PF ?的旁心为A ,线段PA 的延长线交21F F 的延长线于点B ,若4=BA ,2=AP ,则离心率=e . 性质6:=e .(用BA , AP 表示)

高考数学总复习 杨辉三角与二项式系数的性质教案

河北省二十冶综合学校高中分校高考数学总复习 杨辉三角与 二项式系数的性质教案 教学目标:掌握二项式系数的四个性质。 教学重点:如何灵活运用展开式、通项公式、二项式系数的性质解题。 教学难点:如何灵活运用展开式、通项公式、二项式系数的性质解题。 一,复习1.二项式定理及其特例: (1)01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, (2)1(1)1n r r n n n x C x C x x +=+++++. 2.二项展开式的通项公式: 二、讲解新课: 1二项式系数表(杨辉三角) 课本32页探 究: ,。 2.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变 量的函数()f r 定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图) (1)对称性: ,

。 (2)增减性与最大值: , . . (3)各二项式系数和: ∵1(1)1n r r n n n x C x C x x +=+++++, 令 ,则0122n r n n n n n n C C C C C =+++ +++ 三,课堂小练 (1)20)(b a +第 项的二项式系数最大,最大是 。 (2)19)(b a +第 项的二项式系数最大,最大是 。 (3)n x )21(+的展开式中第5项与第8项的二项式系数相等,求展开式中二项式系数最大的项是 。 注意:二项式系数最大的项不一定是系数最大的项。 (4)=++++77372717C C C C 。 三、讲解范例: 例1.在()n a b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和 说明:由性质(3)及例1知021312n n n n n C C C C -++=++=. 例2.已知7270127(12)x a a x a x a x -=++++,求:

教学案例.杨辉三角与二项式系数性质

二项式系数的性质(第一课时) 学校:新塘中学 班级:高二A8班 教师:段建辉 ●教学目标 (一)知识与技能 1.二项式系数的性质:对称性,增减性与最大值,各二项式系数的和. 2.掌握“赋值法”,并会简单应用 (二)情感与价值观 1.树立由一般到特殊及特殊到一般的意识. 2.了解中国古代数学成就及地位............. ●教学重点:二项式系数的性质 ●教学难点:二项式系数的最大值的理解与二项展开式中系数最大项有的求解. ●教学方法:发现法 ●授课类型:新授 ●教学情境设计: 一、复习回顾 1.二项式定理及其特例: (1)01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈L L , (2)1(1)1n r r n n n x C x C x x +=+++++L L . 2.二项展开式的通项公式:1r n r r r n T C a b -+= 二、引入 通项公式中的r n C ,我们称其为二项式系数.当n 依次取1,2,3…时, n b a )(+二项式系数,如下表所示: 表1 此表叫二项式系数表,早在南宋数学家杨辉所著的《详解九章算法》一书中出现了又叫杨辉三角.国外最早发现是在欧洲,叫帕斯卡三角,比中国晚了500年 11 01C C 02 C 12 C 2 2C 0 3 C 13 C 23 C 33 C 1 4C 0 4 C 3 4C 2 4C 4 4C 05 C 15 C 25 C 35 C 45 C 55 C

下面我们可以利用“杨辉三角”来研究二项式系数的性质 三、探究 观察二项式系数表,根据提示的方法,寻找表中的规律. 【注意】 ?1)不要孤立的看、规律应该体现在联系之中 ?2)既要注意横向观察,也要注意纵向观察,横向观察是重点 ?3)可以结合函数图象或图表来研究,也可以和集合作联系 1、二项式系数表的规律 ①每行两端都是1 ②除1以外的每1个数都等于它肩上两个数的和(如何用数学知识解释) 【提示】设这一数为 r C 1-r n 和C r n ,由组合数知识可知: ③与首末两端“等距离”的两个二项式系数相等 ④中间的数值最大 2、二项式系数的函数观点 n b a )(+展开式的二项式系数依次是:C n 0 , C n 1…C n r …C n n . 从函数角度看,r n C 可看成是以r 为自变量的函数)(r f y = 其定义域是:{0,1,2…n } 当n=5及n=6时,分别作出其图象 图1 图2 据图可分析出函数r n C r f =)(,图象的对称轴是2 n r = 3、二项式系数的性质 据图1,2和表1可得出二项式系数的性质 【1】对称性 与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). 直线2 n r = 是图象的对称轴. [典型问题] .已知5 15C =a ,9 15C =b ,那么10 16C =__________;

杨辉三角与二项式系数的性质 说课稿 教案 教学设计

“杨辉三角”与二项式系数的性质 学习目标: 1掌握二项式定理和二项式系数的性质。 2.能灵活运用展开式、通项公式、二项式系数的性质解题 学习重点:如何灵活运用展开式、通项公式、二项式系数的性质解题 学习难点:如何灵活运用展开式、通项公式、二项式系数的性质解题 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.二项式定理及其特例: (1), (2). 2.二项展开式的通项公式: 3.求常数项、有理项和系数最大的项时,要根据通项公式讨论 对的限制;求有理项时要注意到指数及项数的整数性 41二项式系数表(杨辉三角) 展开式的二项式系数,当依次取…时,二项式 系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和 5.二项式系数的性质: 展开式的二项式系数是,,,…,.可以看成以为自变量的函数,定义域是,例当时,其图象是个孤立的点(如图) (1)对称性.与首末两端“等距离”的两个二项式系数相等(∵). 直线是图象的对称轴.

(2)增减性与最大值:当是偶数时,中间一项取得最大值;当是奇数时,中间两 项,取得最大值. (3)各二项式系数和: ∵, 令,则 二、讲解范例: 例1.设, 当时,求的值 解:令得: , ∴, 点评:对于,令即可得各项系数的和的值;令即,可得奇数项系数和与偶数项和的关系 例2.求证:. 证(法一)倒序相加:设① 又∵② ∵,∴, 由①+②得:, ∴,即. (法二):左边各组合数的通项为 ,

∴. 例3.已知:的展开式中,各项系数和比它的二项式系数和大. (1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项 解:令,则展开式中各项系数和为, 又展开式中二项式系数和为, ∴,. (1)∵,展开式共项,二项式系数最大的项为第三、四两项, ∴,, (2)设展开式中第项系数最大,则, ∴,∴, 即展开式中第项系数最大,. 例4.已知, 求证:当为偶数时,能被整除 分析:由二项式定理的逆用化简,再把变形,化为含有因数的多项式∵, ∴,∵为偶数,∴设(), ∴ (), 当=时,显然能被整除, 当时,()式能被整除, 所以,当为偶数时,能被整除

圆锥曲线焦点三角形和焦点弦性质的1

圆锥曲线焦点三角形和焦点弦性质的探讨 数学系2008级6班唐流聪 指导教师 XXX 摘要:圆锥曲线是现行高中解析几何学的重要内容之一,且圆锥曲线知识既是高中数学的重点,又是难点,因而成为高考的重点考查内容。而圆锥曲线的主要内容之一是过圆锥曲线焦点的弦或直线的有关问题,学生在求解此类题目时,常常感到无从下手。为解除这种困惑,在全面研究了高中数学教材及要求的基础上,通过分析、推导的方法,文章对椭圆焦点三角形的性质,双曲线焦点三角形的性质及圆锥曲线焦点弦的性质进行了研究和探讨,得出圆锥曲线焦点三角形的五条基本性质,以便使学生对相关知识有一个更全面、更系统、更深刻的了解,从而进一步提高运用这些性质去解决相关题目的数学能力和应用能力。 关键词:圆锥曲线;焦点三角形;性质;焦点 On the Properties of Conic Focal Point Triangle and Focal Point String Abstract: The cone curve, as an important part of content of analytical geometry in present high school, is rated not only as a key point but also a difficulty in mathematics teaching in senior high school, and so it becomes a key examination point in the college entrance examination. The most important content of cone curve is the problems concerning the string or straight line which passes through the conic focal point. Faced with this kind of questions, some students do not always know what to begin with. To relieve their confusion, this paper, on the basis of a thorough study of the mathematical teaching material for high schools and by means of analysis and deduction, probes into the nature of ellipse focal point triangle, the nature of hyperbolic curve focal point triangle and the nature of conic focal point string, and points out five basic properties of the conic focal point triangle. These properties can help students further understand the conic knowledge systematically and improve their mathematics competence and application ability in solving mathematical problems. Key words: cone curve; focal point triangle; properties; focal point 1引言 圆锥曲线是现行高中解析几何学的重要内容之一,且圆锥曲线知识既是高中数学的重点,又是难点.而圆锥曲线的主要内容之一是过圆锥曲线焦点的弦或直线的相关问题.在求解这类问题时,许多学生常常感到束手无策,部分学生由于计算量大的繁锁,产生厌学数学的情绪.为了解除这种困惑,培养或提高学生学习数学的兴趣,让学生掌握一定的解题方法或数学思想是很必要的.在数学中,我们常常是利用性质去讨论问题,因此,文章首先探讨圆锥曲线焦点三角形及焦点弦的性质,然后再讨论这些性质的应用. 圆锥曲线焦点三角形及焦点弦具有不少性质,许多教师或专家已做过研究.文献[2]主要是对椭圆焦点三角形的性质进行研究,而文献[7]主要是对双曲线焦点三角形的性质进行研究.文献[2]、[7]都是孤立地进行探讨,缺乏系统性,显得单一.文献[1]、[10]主要围绕焦点三角形的内切圆将椭圆焦点三角形与双曲线焦点三角形的性质结合起来探讨,弥补了文

相关主题
文本预览
相关文档 最新文档