当前位置:文档之家› 加速度传感器的应用设计

加速度传感器的应用设计

一等奖

?

?

二等奖

?

二等奖??

三等奖?

?

三等奖???

三等奖?

?

三等奖??

三等奖

?

三等奖

?

?

三等奖??

三等奖?

?

三等奖??

三等奖

?

?

三等奖

?

三等奖??

加速度传感器传感器课程设计

一、 设计要求 1、功能与用途 加速度传感器在现代生产生活中被应用于许许多多的方面,如手提电脑的硬盘抗摔保护,另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,自动调节相机的聚焦。而这些产品中由于要求对温度的干扰有很大的免疫力,其中采用的都是压电式加速度传感器。压电加速度传感器还应用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面,灵敏度是压电加速度传感器应用时候要考虑到的重要因素之一。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 2、指标要求 分别用压电式传感器、电阻应变式传感器、电容传感器实现加速度的测量将非电量转化为电量输出。 二、设计方案及其特点 依据压电效应、电阻应变效应以电容相关的物理参数及性质随外力而变化的特性,可制作成压电式加速度传感器、电阻应变式加速度传感器及电容式加速度传感器。三种加速度传感器的设计及特点分别叙述如下: 1、方案一 压电式加速度传感器 压电加速度测量系统结构框图如图1所示: 压电加速度传感器采用具有压电效应的压电材料作基本元件 ,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。这些压电材料 ,当沿着一定 压电加速度 传感器 电荷放大器 信号处理电 路 A/D 转 换电路 图1 压电加速度测量系统结构框图

方向对其施力而使它变形时,内部就产生极化现象 ,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后 ,又重新恢复不带电的状态;当作用力的方向改变时 ,电荷的极性也随着改变。电信号经前置放大器放大 ,即可由一般测量仪器测试出电荷(电压)大小 ,从而得出物体的加速度 加速度计的使用上限频率取决于幅频曲线中的共振频率图2。 方案二 电阻应变式加速度传感器 应变式加速度传感器主要用于物体加速度的测量。其基本工作原理是:物体运动的加速度与作用在它上面的力成正比,与物体的质量成反比,即a=F/m 。 图3中1是等强度梁,自由端安装质量块2,另一端固定在壳体3上。等强度梁上粘贴四个电阻应变敏感元件4 。 测量时,将传感器壳体与被测对象刚性连接,当被测物体以加速度a 运动时,质量块受到一个与加速度方向相反的惯性力作用, 使悬臂梁变形,该变形被粘贴在悬臂梁上的应变片感受到并随之产生应变,从而使应变片的电阻发生变化。 电阻的变化引起应变片组成的桥路出现不平衡,从而输出电压, 即可得出加速度a 值的大 图2 压电式加速度计的幅频特性曲线 3 2 1 4 1—等强度梁;2—质量块;3—壳体; 4—电阻应变敏感元体 图3 应变式加速度传感器结构

三轴加速度传感器原理应用及前景分析

三轴加速度传感器原理及应用 2012年09月09日 12:42来源:本站整理作者:胡哥我要评论(0) 三轴加速度传感器原理 MEMS换能器(Transducer)可分为传感器(Sensor)和致动器(Actuator)两类。其中传感器会接受外界的传递的物理性输入,通过感测器转换为电子信号,再最终转换为可用的信息,如加速度传感器、陀螺仪、压力传感器等。其主要感应方式是对一些微小的物理量的变化进行测量,如电阻值、电容值、应力、形变、位移等,再通过电压信号来表示这些变化量。致动器则接受来自控制器的电子信号指令,做出其要求的反应动作,如光敏开关、MEMS显示器等。 目前的加速度传感器有多种实现方式,主要可分为压电式、电容式及热感应式三种,这三种技术各有其优缺点。以电容式3轴加速度计的技术原理为例。电容式加速度计能够感测不同方向的加速度或振动等运动状况。其主要为利用硅的机械性质设计出的可移动机构,机构中主要包括两组硅梳齿(Silicon Fingers),一组固定,另一组随即运动物体移动;前者相当于固定的电极,后者的功能则是可移动电极。当可移动的梳齿产生了位移,就会随之产生与位移成比例电容值的改变。 当运动物体出现变速运动而产生加速度时,其内部的电极位置发生变化,就会反映到电容值的变化(ΔC),该电容差值会传送给一颗接口芯片(InteRFace Chip)并由其输出电压值。因此3轴加速度传感器必然包含一个单纯的机械性MEMS传感器和一枚ASIC接口芯片两部分,前者内部有成群移动的电子,主要测量XY及Z轴的区域,后者则将电容值的变化转换为电压输出。 文中所述的传感器和ASIC接口芯片两部分都可以采用CMOS制程来生产,而在目前的实际生产制造中,由于二者实现技术上的差异,这两部分大都会通过不同的加工流程来生产,再最终封装整合到一起成为系统单封装芯片(SiP)。封装形式可采用堆叠(Stacked)或并排(Side-by-Side)。 手持设备设计的关键之一是尺寸的小巧。目前ST采用先进LGA封装的加速度传感器的尺寸仅有3 X 5 X 1mm,十分适合便携式移动设备的应用。但考虑到用户对尺寸可能提出的进一步需求,加速度传感器的设计要实现更小的尺寸、更高的性能和更低的成本;其检测与混合讯号单元也会朝向晶圆级封装(WLP)发展。 下一代产品的设计永远是ST关注的要点。就加速度传感器的发展而言,单芯片结构自然是

压电式加速度传感器

HEFEI UNIVERSITY OF TECHNOLOGY 《传感器原理及应用》课程 考核论文 题目压电式加速度传感器班级机设七班 学号 20111488 姓名孙国强 成绩 机械与汽车工程学院机械电子工程系 二零一四年五月

压电式加速度传感器 摘要:现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动 态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。其中,压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。 一、传感器物理效应及工作原理 压电效应:某些材料在受力时所产生的电极化现象。正压电效应:某些电介质在受到某一方向的机械力而变形时,在一定表面上产生电荷,若外力变向,电荷极性随之而变;当撤除外力后,又重新回到不带电状态。逆压电效应:当在电介质的极化方向施加电场,电场力使其在一定方向上产生机械变形或机械应力;当撤除外加电场时,变形或应力随之消失,又称电致伸缩效应。 压电材料:石英晶体是目前广泛应用成本较低的人造石英晶体,有很大的机械强度和稳定的机械性能,温度稳定性好,但灵敏度低,介电常数小,因此逐渐被其他压电材料所代替,至今石英仍是最重要的也是用量最大的振荡器、谐振器和窄带滤波器等元件的压电材料。除此之外,压电陶瓷有较高的压电系数和介电常数,灵敏度高,但机械强度不如石英晶体好。 压电式加速度传感器又称为压电加速度计,它是典型的有源传感器,利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。 压电加速度传感器的原理框图如图1所示,原理如图2所示。

加速度传感器和压电式传感器应用

加速度传感器及压电式传感器应用 摘要:加速度传感器是一种惯性传感器,它能感受加速度并转换成可用输出信号,被广泛用于航空航天、武器系统、汽车、消费电子等。通过加速度的测量,本文简单介绍了加速度传感器的种类、原理及相关应用并着重介绍了压电式加速度传感器。 关键词:加速度,传感器,应用 一加速度传感器概况 加速度检测是基于测试仪器检测质量敏感加速度产生惯性力的测量,是一种全自主的惯性测量,加速度检测广泛应用于航天、航空和航海的惯性导航系统及运载武器的制导系统中,在振动试验、地震监测、爆破工程、地基测量、地矿勘测等领域也有广泛的应用。 测量加速度,目前主要是通过加速度传感器(俗称加速度计),并配以适当的检测电路进行的,在(1~64)Hz的设备频率下典型的加速度测量范围为(0.1~10)g。。加速度传感器的种类繁多,依据对加速度计内检测质量所产生的惯性力的检测方式来分,加速度计可分为压电式、压阻式、应变式、电容式、振梁式、磁电感应式、隧道电流式、热电式等;按检测质量的支承方式来分,则可分为悬臂梁式、摆式、折叠梁式、简支承梁式等。多数加速度传感器是根据压电效应的原理来工作的,当输入加速度时,加速度通过质量块形成的惯性力加在压电材料上,压电材料产生的变形和由此产生的电荷与加速度成正比,输出电量经放大后就可检测出加速度大小。下表为部分加速度计的检测方法及其主要性能特点。 型式测量范围灵偏稳定性分辨力特点 压电式(5~)g (~)g(~)g固有频率较高,用于冲击 及振动测量,大地测量及 惯性导航等 应变式± (0.5~200)g 低频响应较好,固有频率低,适用于低频振动测量 压阻式± (20~)g 灵敏度较高,便于集成化,耐冲击,易受温度影响 液浮摆式±(1~15)g (~)g(~)g带力反馈和温控,分辨力 高,成本较高,适用于惯 性导航

力平衡加速度传感器原理设计t

力平衡加速度传感器原理设计 摘要:本文介绍了一种力平衡加速度传感器的原理设计方法。差容式力平衡加速度传感器在传统的机械传感器的基础上,采用差动电容结构,利用反馈原理把被测的加速度转换为电容器的电容量变化,将加速度的变化转变为电压值。使传感器的灵敏度、非线性、测量范围等性能得到很大的提高,使其在地震、建筑、交通、航空等各领域得到广泛应用。 关键词:加速度差容式力平衡传感器 加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。它是工业、国防等许多领域中进行冲击、振动测量常用的测试仪器。 1、加速度传感器原理概述 加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量变化。实现这种功能的方法有变间隙,变面积,变介电常量三种,差容式力平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单,动态响应好,能实现无接触式测量,灵敏度好,分辨率强,能测量0.01um甚至更微小的位移,但是由于本身的电容量一般很小,仅几pF至几百pF,其容抗可高达几MΩ至几百 MΩ,所以对绝缘电阻的要求较高,并且寄生电容(引线电容及仪器中各元器件与极板间电容等)不可忽视。近年来由于广泛应用集成电路,使电子线路紧靠传感器的极板,使寄生电容,非线性等缺点不断得到克服。 差容式力平衡加速度传感器的机械部分紧靠电路板,把加速度的变化转变为电容中间极的位移变化,后续电路通过对位移的检测,输出

一个对应的电压值,由此即可以求得加速度值。为保证传感器的正常工作.,加在电容两个极板的偏置电压必须由过零比较器的输出方波电压来提供。 2、变间隙电容的基本工作原理 如式2-1所示是以空气为介质,两个平行金属板组成的平行板电容器,当不考虑边缘电场影响时,它的电容量可用下式表示: 由式(2-1)可知,平板电容器的电容量是、A、的函数,如果将上极板固定,下极板与被测运动物体相连,当被测运动物体作上、下位移(即变化)或左右位移(即A变化)时,将引起电容量的变化,通过测量电路将这种电容变化转换为电压、电流、频率等电信号输出根据输出信号的大小,即可测定物体位移的大小,若把这种变化应用到电容式差容式力平衡传感器中,当有加速度信号时,就会引起电容变化 C,然后转换成电压信号输出,根据此电压信号即可计算出加速度的大小。 由式(2-2)可知,极板间电容C与极板间距离是成反比的双曲线关系。由于这种传感器特性的非线性,所以工作时,一般动极片不能在

三轴角度检测(倾角传感器MMA7455(加速度传感器))

#include #include //要用到_nop_();函数 #define uchar unsigned char #define uint unsigned int /***************************************************************************/ /*********** 单片机引脚定义 ************/ /***************************************************************************/ sbit sda=P1^0; //I2C 数据传送位 sbit scl=P1^1; //I2C 时钟传送位 char x,y,z,num[9]={0,0,0}; /****************************************************************************** / /********** 数据部 分 ***********/ /****************************************************************************** / #define IIC_READ 0x1D //定义读指令 #define IIC_WRITE 0x1D //定义写指令 #define LCD_data P0 //数据口 sbit inter_0=P3^2; sbit LCD_RS = P2^7; //寄存器选择输入 sbit LCD_RW = P2^6; //液晶读/写控制 sbit LCD_EN = P2^5; //液晶使能控制 sbit LCD_PSB = P2^4; //串/并方式控制 void delay_1ms(uint x) { uint i,j; for(j=0;j

加速度传感器的选择

加速度传感器选型 压电加速度传感器因其频响宽、动态范围大、可靠性高、使用方便,受到广泛应用。在一般通用振动测量时,用户主要关心的技术指标为:灵敏度、频率范围,内部结构、内置电路型与纯压电型的区别,现场环境与后续仪器配置等。 一、灵敏度的选择 制造商在产品介绍或说明书中一般都给出传感器的灵敏度和参考量程范围,目的是让用户在选择不同灵敏度的加速度传感器时能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度传感器自身的非线性影响和后续仪器的最大输出电压。 估算方法:最大被测加速度×传感器电荷(电压)灵敏度,其数值是否超过配套仪器的最大输入电荷(电压)值。建议如已知被测加速度范围可在传感器指标中的“参考量程范围”中选择(兼顾频响、重量),同时,在频响、质量允许的情况下,尽量选择高灵敏度的传感器,以提高后续仪器输入信号,提高信噪比。在兼顾频响、质量的同时,可参照以下范围选择传感器灵敏度:以电荷输出型压电加速度传感器为例: 1、土木工程和超大型机械结构的振动在0.1g-10g (1g=9.81m/s2)左右,可选电荷灵敏度在300pC/ms-2~ 30pC/ms-2的压电加速度传感器,属于电荷输出型压电加速度传感器 2、特殊的土木结构(如桩基)和机械设备的振动在100ms-2~1000ms-2,可选择20pC/ms-2~2pC/ms-2的加速度传感器。 3、冲击,碰撞测量量程一般10000ms-2~1000000ms-2,可选则传感器灵敏度是0.2pC/ms-2~ 0.002pC/ms-2的加速度传感器。 二、频率选择 制造商给出的加速度传感器的频响曲线是用螺钉刚性连接安装的。 一般将曲线分成二段:谐振频率和使用频率。使用频率是按灵敏度偏差给出的,有±10%、±5%、±3dB。谐振频率一般是避开不用的,但也有特例,如轴承故障检测。选择加速度传感器的频率范围应高于被测试件的振动频率。有倍频分析要求的加速度传感器频率响应应更高。土木工程一般是低频振动,加速度传感器频率响应范围可选择0.2Hz~1kHz,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估算振动频率,选择0.5Hz~ 5kHz 的加速度传感器。如发电机转速在3000rms 时,除以60s 此时它的主频率为50Hz。碰撞、冲击测量高频居多。 加速度传感器的安装方式不同也会改变使用频响(对振动值影响不大)。 安装面要平整、光洁,安装选择应根据方便、安全的原则。我们给出同一只AD500S 加速度传感器不同安装方式的使用频率:螺钉刚性连接(±10%误差)10kHz;环氧胶或“502”粘接安装6kHz;磁力吸座安装 2kHz;双面胶安装1kHz。由此可见,安装方式的不同对测试频率的响应影响很大,应注意选择。加速度传感器的质量、灵敏度与使用频率成反比,灵敏度高,质量大,使用频率低,这也是选择的技巧。 三、内部结构 内部结构是指敏感材料晶体片感受振动的方式及安装形式。有压缩和剪切两大类,常见的有中心压缩、平面剪切、三角剪切、环型剪切。 中心压缩型频响高于剪切型,剪切型对环境适应性好于中心压缩型。如配用积分型电荷放大器测量速度、位移时,最好选用剪切型产品,这样所获得的信号波动小,稳定性好。 四、内置电路 内置的概念是将放大电路置于加速度传感器内,成为具有电压输出功能的传感元件。它可分双电源(四线)和单电源(二线、带偏置,又称ICP) 两种,下面所指内装电路专指ICP

加速度传感器在汽车领域的应用

Endevco (恩德福克)加速度传感器在汽车领域的应用 近30年来,Endevco 的压阻式加速度传感器已成为汽车障碍物及模拟假人安全性测试的行业标准。Endevco 的压电式,集成压电式和可变电容式加速度传感器能够用于汽车发动机,排气系统,部件和停车系统的动态测试是基于它尺寸微小,耐高温及结构牢固的特点。Endevco 压力传感器主要是用于防刹车锁死系统(ABS ),传动装置,燃料油系统以及安全气囊充气器等汽车检测系统的测试。这些压力传感器运用了先进的硅微技术元件并能产生高宽频响和高信号输出,从而使其成为那些过去由于尺寸原因而无法实现应用的理想选择。 Endevco 加速度传感器是有国家公路交通安全管理局(NHTSA )和其他政府机构认定的用于制定原厂规格的首要产品。同时继续提供技术指导,Endevco 的碰撞传感器已经达到或超过了SAE 规格的J211和J2579的要求。 Model 7264系列是一组重量只有1g 的压阻式加速度传感器。用于颤振试验,模型检验,生物动态测试及其他相关领域,要求低质量加载且宽频率响应。还可以用于轻量级物件的冲击测试,符合模拟假人测试SAEJ211规格。高精度的型号及各种线缆和连接器可供选择 Model 7264B 相对Model 7264有所改进。它利用了一个先进的带有完整机 械限动气的微型元件。这个单片传感器相对原来的设计提供了更加良好的坚固性,稳定性和可靠性。Model 7264B 阻尼极小,因此在有效频率范围内不会产生相位移。Model 7264B 符合SAEJ211冲击试验性能规格和SAEJ2570假人测试装置传感器规格。高精度的型号及各种线缆和连接器可供选择。 Model 7264C 相对Model 7264有所改进。并可直接替换Model 7264,因为测 震质量的中心位置是相同的。它利用了一个先进的带有完整机械限动器的微型元件。Model 7264C 同样符合SAEJ211冲击试验性能和SAEJ2570假人测试装置传感器规格。高精度的型号及各种线缆和连接器可供选择。 Model 7264D 相对这个类型的其他型号的传感器做了很大的改进。它大于 40000HZ 的高谐振频率可以使其在不受杂散影响的情况下对许多频率作出响应。可直接替换Model 7264和Model 7264C ,因为测震质量的中心位置是相同的。Model 7264D 同样符合SAEJ211冲击试验性能和SAEJ2570假人测试装置传感器规格。Model 7264D 可提供优良的线性,标准低横向灵敏度和低零测量输出(ZMO )误差。有各种线缆和连接器供选择。 Model 7231C-750是一款专为汽车碰撞试验研究的坚固,无阻尼,中等g 值的压阻式加速度传感器。已经成为假人响应研究的FMVSS208标准,可用来测量假人头部、胸部 、臀部及身体其他部位的加速度进而研究车辆安全性能及约束设计。高精度的型号及各种线缆和连接器可供选择。 Model 7265A 系列是一组低质量的压阻式加速度传感器,它是专为那些要求 G&P Technology 冠标科技有限公司 Endevco

重力传感器

重力传感器 一、简介: 敏感元件制成的储能弹簧来驱动电触点,完成从重力变化到电信号的转换。目 前绝大多数中高端智能手机和平板电脑 内置了重力传感器,如苹果的系列产品 iphone和iPad, Android系列的手机等。 重力传感器在手机横竖的时候屏幕会自 动转,在玩游戏可以代替上下左右,比如 说玩赛车游戏,可以不通过按键,将手机 平放,左右摇摆就可以代替模拟机游戏的 方向左右移动了。 二、工作原理: “对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应”。 (2)重力传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计 算出产生电压和所施加的加速度之间 的关系,就可以将加速度转化成电压输 应,光效应,但是其最基本的原理都是 由于加速度产生某个介质产生变形,通 过测量其变形量并用相关电路转化成 电压输出。

三、应用: (1)、通过重力传感器测量由于重力引起的加速 度,可以计算出设备相对于水平面的倾斜角度。通过 分析动态加速度,你可以分析出设备移动的方式。但 是刚开始的时候,你会发现光测量倾角和加速度好像 不是很有用。但是现在工程师们已经想出了很多方法 获得更多的有用的信息。 (2)、加速度传感器可以帮助仿生学机器人了解它现在身处的环境。是在爬山,还是在走下坡,是否摔倒。或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。一个好的程序员能够使用加速度传感器来回答所有上述问题。 (3)、重力传感器可以用来分析发动机的振动。 (4)、重力传感器在进入消费电子市场之前,实际上已被广泛应用于汽车电子领域,主要集中在车身操控、安全系统和导航,典型的应用如汽车安全气囊(Airbag)、ABS防抱死刹车系统、电子稳定程序(ESP)、电控悬挂系统等。 四、手机应用: 重力感应器是由苹果公司率先开发的 用在了iphone和ipod-nano4上面。说的 简单点就是,你本来把手机拿在手里是竖 着的,你将它转90度,横过来,它的页面 就跟随你的重心自动反应过来,也就是说 页面也转了90度,极具人性化。

应变片式加速度传感器设计

应变片式加速度传感器设计

应变片式加速度传感器 姓名: 学号: 院(系):电气工程学院 专业名称:电气工程及其自动化班级:电气2(专升本)

2015年5月20日 说明书摘要 通过应变片感应加速度的变化,并把应变片接到直流电桥中,通过电阻的变化引起直流电桥电压的变化,再将电桥输出的电压通过逻辑电路放大输出,然后将输出的电压信号送到控制中心,从而达到对加速度进行实时监控的目的。其结构由(1)惯性质量块(2)应变量 (3) 硅油阻尼液 (4)应变片 (5)温度补偿电阻 (6)绝缘套管 (7)接线柱 (8)电缆 (9)压线柱 (10)壳体 (11)限位块组成。应变片式加速度传感器通过敏感栅将低频运动物体的加速度转化为应变片的应变,引起电桥桥臂电阻的变化,经过温度补偿、放大后输出加速度信号。其特点为应变片式加速度传感器具有体积小、低功耗、结构简单、抗干扰能力强、运行稳定、经济性好。 1

权利要求书 1、通过应变片感应加速度的变化,并把应变片接到直流电桥中,通过电阻的变化引起直流电桥电压的变化,再将电桥输出的电压通过逻辑电路放大输出,然后将输出的电压信号送到控制中心,从而达到对加速度进行实时监控的目的。其结构由(1)惯性质量块(2)应变量 (3 )硅油阻尼液 (4)应变片 (5)温度补偿电阻 (6)绝缘套管 (7)接线柱 (8)电缆 (9)压线柱 (10)壳体 (11)限位块组成。电桥采用直流12V电源供电,采用稳压的直流电源供电,运放器采用双电源供电,电源电压为±12V。 2、加速度传感器的敏感轴检测输入加速度,并将其作用转换为电阻应变片阻值的变化,通过变送电路,将这种变化转换为对应的电压输出,从而达到测量加速度的目的。传感器的主要量程:±20g;输出:0~5V;零位输出:2.5V,用应变片测量的应变是通过测量敏感栅的电阻相对变化来得到。应变片灵敏度系数很小(K≈2),而机械应变一般在10με~3000με之间(有时也可达到6000με),电阻相对变化是很小的,需要采用差动电桥。当悬臂梁发生形变时,应变片的电阻值发生改变,全桥式布片应变引起应变片电阻的变化,从而达到测量振动加速度的目的。当悬臂梁受到加速度作用时,其自由端必将发生位移,通过计算得到加速度—电压的转换关系。

三轴加速度传感器

Three-axis acceleration sensor variable in capacitance under application of acceleration United States Patent 5383364 Abstract: An acceleration sensor comprises an upper semiconductor substrate having a rigid frame, four deformable beams connected with the rigid frame, and a weight portion supported by the plurality of deformable beams, a lower semiconductor substrate bonded to the rigid frame, a plurality of movable electrodes attached to the weight portion, and electrically isolated from one another, and a plurality of stationary electrodes attached to the second semiconductor substrate, and opposite to the plurality of movable electrodes for forming a plurality of variable capacitors, and the center of gravity of the weight portion is spaced from a common neutral surface of the four beams for allowing acceleration to produce bending moment exerted on the four beams, thereby causing the variable capacitors to independently change the capacitance. Inventors: Takahashi, Masaji (Tokyo, JP) Kondo, Yuji (Tokyo, JP) Application Number: 07/972537 Publication Date: 01/24/1995 Filing Date: 11/06/1992 Export Citation: Click for automatic bibliography generation Assignee: NEC Corporation (Tokyo, JP) Primary Class: 73/514.32 Other Classes: 73/514.34, 73/514.36, 361/280 International Classes: G01P15/125; G01P15/18; (IPC1-7): G01P15/125 Field of Search: 73/517R, 73/517AV, 73/517B, 361/280 View Patent Images: Download PDF 5383364 PDF help US Patent References: 5243861 Capacitive type semiconductor accelerometer 1993-09-14 Kloeck et al. 735/17R 5134881 Micro-machined accelerometer with composite material springs 1992-08-04

三轴加速度传感器MMA7260

MMA7260 三轴加速度传感器使用手册 一、MMA7260QT的简介 MMA7260QT低成本微型电容式加速度传感器,采用了信号调理、单极低通滤波器和温度补偿技术,并且提供4个量程可选,用户可在4个灵敏度中的选择。该器件带有低通滤波并已做零g补偿。本产品还提供休眠模式,因而是电池充电的手持设备产品的理想之选。 二、特性: (1) 可选灵敏度(1.5g/2g/4g/6g) (2) 低功耗:500 μA (3) 休眠模式: 3 μA (4) 低压运行:2.2 V - 3.6 V (5) 6mm x 6mm x 1.45 mm的无引线四方扁平 (QFN) 封装; (6) 高灵敏度(800 mV/g @ 1.5g) (7) 快速开启 (8) 低通滤波器具备内部信号调理 (9) 设计稳定、防震能力强 (10) 无铅焊接 (11) 环保封装 (12) 成本低 三、典型应用: 三轴加速度传感器是一种可以对物体运动过程中的加速度进行测量的电子设备,典型互动应用中的加速度传感器可以用来对物体的姿态或者运动方向进行检测,比 如其中WII和iPhone中的经典应用。Nokia最新推出的手机N95利用内置的加速度传感器,让用户可以通过机身的摆动进行各种操作,包括主菜单操 作、图片浏览、切歌操作甚至进行游戏的控制等,非常全面,甚至超越了苹果 iPhone的动作感应功能的应用范畴。 基于Freescale公司MMA7260的这个三轴加速度传感器,对于普通的互动应用来讲应该是一个不错的选择, 可以用于摩托车和汽车防盗报警器,遥控航模,游戏手柄,跌倒探测,硬盘冲击保护,倾斜角度测量,电梯安全监控等需要测试加速度的地方。

加速度传感器

加速度传感器 一、简介 加速度传感器是一种能够测量加速度的传感器。通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。 二、分类 压电式 压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。压电式加速度传感器的原理是利用压电陶瓷或石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。 压阻式 基于世界领先的MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监测等领域。 电容式 电容式加速度传感器是基于电容原理的极距变化型的电容传感器。电容式加速度传感器/电容式加速度计是对比较通用的加速度传感器。在某些领域无可替代,如安全气囊,手机移动设备等。电容式加速度传感器/电容式加速度计采用了微机电系统(MEMS)工艺,在大量生产时变得经济,从而保证了较低的成本。 伺服式 伺服式加速度传感器是一种闭环测试系统,具有动态性能好、动态范围大和线性度好等特点。其工作原理,传感器的振动系统由"m-k”系统组成,与一般加速度计相同,但质量m上还接着一个电磁线圈,当基座上有加速度输入时,质量块偏离平衡位置,该位移大小

由位移传感器检测出来,经伺服放大器放大后转换为电流输出,该电流流过电磁线圈,在永久磁铁的磁场中产生电磁恢复力,力图使质量块保持在仪表壳体中原来的平衡位置上,所以伺服加速度传感器在闭环状态下工作。由于有反馈作用,增强了抗干扰的能力,提高测量精度,扩大了测量范围,伺服加速度测量技术广泛地应用于惯性导航和惯性制导系统中,在高精度的振动测量和标定中也有应用。 三、应用 1、汽车安全 加速度传感器主要用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面。 在安全应用中,加速度计的快速反应非常重要。安全气囊应在什么时候弹出要迅速确定,所以加速度计必须在瞬间做出反应。通过采用可迅速达到稳定状态而不是振动不止的传感器设计可以缩短器件的反应时间。其中,压阻式加速度传感器由于在汽车工业中的广泛应用而发展最快。 2、游戏控制 加速度传感器可以检测上下左右的倾角的变化,因此通过前后倾斜手持设备来实现对游戏中物体的前后左右的方向控制,就变得很简单。 3、图像自动翻转 用加速度传感器检测手持设备的旋转动作及方向,实现所要显示图像的转正。 4、电子指南针倾斜校正 磁传感器是通过测量磁通量的大小来确定方向的。当磁传感器发生倾斜时,通过磁传感器的地磁通量将发生变化,从而使方向指向产生误差。因此,如果不带倾斜校正的电子指南针,需要用户水平放置。而利用加速度传感器可以测量倾角的这一原理,可以对电子指南针的倾斜进行补偿。 5、GPS导航系统死角的补偿 GPS系统是通过接收三颗呈120度分布的卫星信号来最终确定物体的方位的。在一些特殊的场合和地貌,如遂道、高楼林立、丛林地带,GPS信号会变弱甚至完全失去,这也就是所谓的死角。而通过加装加速度传感器及以前我们所通用的惯性导航,便可以进行系统

常用加速度传感器有哪几种分类

1、常用加速度传感器有哪几种分类各有什么特点 答:加速度传感器按工作原理可分为压电式、压阻式和电容式。 压电式传感器是通过利用某些特殊的敏感芯体受振动加速度作用后会产生与之成正比的电荷信号的特性,来实现振动加速度的测量的,这种传感器一般都具有测量频率范围宽、量程大、体积小、重量轻、结构简单坚固、受外界干扰小以及产生电荷信号不需要任何外界电源等优点,它最大的缺点是不能测量零频率信号。 压阻式传感器的敏感芯体为半导体材料制成电阻测量电桥来实现测量加速度信号,这种传感器的频率测量范围和量程也很大,体积小重量轻,但是缺点也很明显,就是受温度影响较大,一般都需要进行温度补偿。 电容式传感器中一般有个可运动质量块与一个固定电极组成一个电容,当受加速度作用时,质量块与固定电极之间的间隙会发生变化,从而使电容值发生变化。它的优点很突出,灵敏度高、零频响应、受环境(尤其是温度)影响小等,缺点也同样突出,主要是输入输出非线形对应、量程很有限以及本身是高阻抗信号源,需后继电路给予改善。 相比之下,压电式传感器应用更为广泛一些,压阻式也有一定程度的应用,而电容式主要专用于低频测量。 2、压电式传感器又分哪几种 答:压电式传感器有多种分类方式。 按敏感芯体材料分为压电晶体(一般为石英)和压电陶瓷两类。压电陶瓷比压电晶体的压电系数要高,而且各项机电系数随温度时间等外界条件的变化相对较小,因此一般更常用的是压电陶瓷。 按敏感芯体结构形式分为压缩式、剪切式和弯曲变形梁式。压缩式结构最简单,价格便宜,但是不能有效排除各种干扰;剪切式受干扰影响最小,目前最为常用,但是制造工艺要求较高,所以价格偏高;弯曲变形梁式比较少见,其结构能够产生较大的电荷输出信号,但是测量频率范围较低,受温度影响易产生漂移,因此不推荐使用。 按信号输出的方式分为电荷输出式和低阻抗电压输出式(ICP)。电荷输出式直接输出高阻抗电荷信号,必须通过二次仪表转换成低阻抗电压读取,而高阻抗电荷信号较容易受干扰,所以对测试环境、连接线缆等的要求较高; 而ICP型传感器内部安装了前置放大器,直接转换成电压信号输出,所以相对有信号质量好、噪声小、抗干扰能力强、能实现远距离测量等优点,目前正逐步取代电荷输出式传感器。 3、选择压电式加速度传感器时有哪些基本原则 答:选择一般应用场合的压电式加速度传感器时,要从三个方面全面考虑: ①振动量值的大小②信号频率范围③测试现场环境。 作为一般的原则,灵敏度高的传感器量程范围小,反之灵敏度低的量程范围大,而且一般情况下,灵敏度越高,敏感芯体的质量块越大,其谐振频率也越低,如果谐振波叠加在被测信号上,会造成失真输出,因此选择时除

基于加速度传感器和单片机的毕业设计

目录 摘要 ..................................................................................................... III Abstract ................................................................................................ IV 第1章绪论 . (1) 1.1 课题背景 (1) 1.2 课题目的与意义 (2) 1.3 课题研究现状 (3) 1.4 本文主要容及结构安排 (5) 第2章硬件设计 (6) 2.1 硬件器件的选择 (6) 2.1.1 SPCE061A单片机 (6) 2.1.2 MMA7260QT三轴加速度传感器 (10) 2.2 系统电路的连接 (11) 2.3单片机控制单元的硬件设计 (13) 2.3.1 输入/输出控制单元设计 (13) 2.3.2 模拟数字转换设计 (16) 2.3.3 DAC方式音频输出设计 (23) 2.4 传感器控制单元设计 (24) 2.5 本章小结 (26) 第3章软件设计 (27) 3.1 软件系统的开发设计 (27) 3.2 音频设计 (29) 3.2.1 音频处理方案 (29) 3.2.2 语音自动播放函数设计 (30) 3.2.3 语音文件压缩设计 (33) 3.3 I/O接口及A/D转换设计 (34) 3.3.1 I/O接口设计 (34) 3.3.2 A/D转换设计 (34) 3.4 主程序设计 (36)

3.5 本章小结 (40) 结论 (41) 参考文献 (43) 致 (45) 附录一: (46) 附录二: (64)

利用加速度传感器测量物体的倾斜角度

利用加速度传感器测量物体的倾斜角度 1 说明测量物体的倾斜角度是加速器传感器的一种常见的应用。虽然其基本原理十分简单,但是在具体实现中仍然会遇到很多困难,比如倾斜角度的精度问题,数学计算过于复杂等等。本文将对精度问题进行详细讨论,并给出一种简化的计算方法。 2 基本原理由于加速度传感器在静止放置时受到重力作用,因此会有1g 的重力加速度。利用这个性质,通过测量重力加速度在加速度传感器的X 轴和Y 轴上的分量,可以计算出其在垂直平面上的倾斜角度。这样,根据以上原理一个2 轴加速度传感器可以测量在X-Y 平面上的倾斜角度。需要注意的是,2 轴加速度传感器只能测量X 轴和Y 轴上的重力分量,因而只能测量因而只能测量X-Y平面上的倾斜角度。可是由于物体在空间倾斜的时候,很难保证倾斜完全在X-Y 平面上,这样只使用2 轴加速度传感器进行测量会存在局限性,因此,我们考虑使用 3 轴加速度传感器。如下图所示,3 轴加速度传感器可以测量X 轴、Y 轴和Z 轴的重力分量,计算空间倾斜角度的公式可以推广为 。这个公式就是本文中用来测量物体倾斜角度的基本原理。

需要说明的是,这里利用的是物体在静止时受到重力的性质,如果物体同时也有运动加速度的话,那么这个公式将不再准确。所以必须为公式增加一个限制条件,即3 硬件实现目前,在消费类产品中使用的加速度传感器分为数字输出(例如ADXL345)和模拟输出(例如ADXL335)两种。数字输出的加速度传感器可以直接通过I2C 或SPI 总线与MCU 进行连接;模拟输出的加速度传感器则需要使用ADC 进行采样。现在,普遍使用的MCU 中基本都有内置的ADC 通道,所以无论是数字输出还是模拟输出的加速度传感器都可以非常容易地和MCU 进行连接,进而实现测量功能。

加速度传感器选用

工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2 (m/s2),或重力加速度(g)。 描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。 传感器的种类选择 ·压电式- 原理和特点 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常

大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。 ·压阻式 应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。同时压阻式加速度传感器测量频率范围也可从直流信号到具有刚度高,测量频率范围到几十千赫兹的高频测量。超小型化的设计也是压阻式传感器的一个亮点。需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。压阻式加速度传感器的另一缺点是受温度的影响较大,实用的传感器一般都需要进行温度补偿。在价格方面,大批量使用的压阻式传感器成本价具有很大的市场竞争力,但对特殊使用的敏感芯体制造成本将远高于压电型加速度传感器。 ·电容式 电容型加速度传感器的结构形式一般也采用弹簧质量系统。当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改善。在实际应用中电容式加速度传感器较多地用于低频测量,其通用性不如压电式加速度传感器,且成本也比压电式加速度传感器高得多。

相关主题
文本预览
相关文档 最新文档