当前位置:文档之家› 生化复习重点

生化复习重点

生化复习重点
生化复习重点

一、名词解释

生物化学复习材料

1. 血糖:通过各种途径进入血液的葡萄糖称为血糖。

2. 糖原合成与分解:由单糖合成糖原的过程称为糖原合成,糖原分解是指糖原分解成葡萄糖的过程。

3. 糖异生:由非糖物质合成葡萄糖的过程。

4. 糖酵解:在供氧不足时,葡萄糖在细胞液中分解成丙酮酸,丙酮酸进一步还原成乳酸(同时释放少量能量合成ATP)的过程。

5. 三羧酸循环:在线粒体内,乙酰CoA与草酰乙酸缩合生成柠檬酸,柠檬酸在经过一系列酶促反应之后又生成草酰乙酸,形成一个反应循环,该循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以称为三羧酸循环。

6. 有氧氧化:在供养充足时,葡萄糖在细胞液中分解生成的丙酮酸进入线粒体,彻底氧化成CO2和H2O,并释放大量能量,称为有氧氧化途径。

7. 血脂:血浆中脂类的总称。主要包括甘油三酯、磷脂、胆固醇和游离脂肪酸。

8. 血浆脂蛋白:是脂类在血浆中的存在形式和转运形式。(一类由脂肪、磷脂、胆固醇及其酯与不同载脂蛋白按不同比例组成的,便于通过血液运输的复合体,包括CM、VLDL、LDL 和HDL。)

9. 脂肪动员:脂肪细胞内的甘油三酯被脂肪酶水解生成甘油和脂肪酸,释放入血,供给全身各组织氧化利用的过程。

10. 酮体:包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸分解代谢的正常产物。

11. 必需脂肪酸:亚油酸、α亚麻酸和花生四烯酸是多不饱和脂肪酸,是维持人和动物正常生命活动所必需的脂肪酸,但哺乳动物体内不能合成或合成量不足,必须从食物中摄取,所以称为必需脂肪酸。

12. 必需氨基酸:8种体内需要而自身又不能合成、必须由食物供给的氨基酸称为必需氨基酸。

13. 食物蛋白质的互补作用:将不同种类营养价值较低的蛋白质混合食用,可以相互补充所缺少的必需氨基酸,从而提高其营养价值,称为蛋白质的互补作用。

14. 转氨基作用:是指由氨基转移酶催化,将氨基酸的α-氨基转移到一个α-酮酸的羧基位置上,生成相应的α-酮酸和一个新的α-氨基酸。该过程只发生氨基转移,不产生游离的NH3。

15. 一碳单位:有些氨基酸在分解代谢过程中可以产生含有一个碳原子的活性基团,称为一碳单位。

16. 遗传密码子:从mRNA编码区5’端向3’端按每3个相邻碱基为一组连续分组,每组碱基构成一个遗传密码,称为密码子。

17. 中心法则:是对DNA、RNA和蛋白质之间基本功能关系的解释,即DNA是自身复制及转录合成RNA的模板,RNA是翻译合成蛋白质的模板,因此,遗传信息的流向是DNA →RNA→蛋白质。【在某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)是对中心法则的补充。】

18. 半保留复制:(半保留复制是DNA复制最重要的特征。)当DNA进行复制时,亲代DNA 双链必须解开,两股链分别作为模板,按照碱基互补配对原则指导合成一股新的互补链,最终得到与亲代DNA碱基序列完全一样的两个子代DNA分子,每个子代DNA分子都含有一股亲代DNA链和一股新生DNA链,这种复制方式称为半保留复制。

19. 逆转录:是以RNA为模板、以dNTP为原料、由逆转录酶催化合成DNA的过程,该过程的信息传递方向是从RNA到DNA。

20. 转录:是指生物体按碱基互补配对原则把DNA碱基序列转化成RNA碱基序列、从而将遗传信息传递到RNA分子上的过程。

21. 启动子:原核生物和真核生物基因的启动子均由RNA聚合酶结合位点、转录起始位点及控制转录起始的其他调控序列组成,是启动转录的特异序列。

22. 翻译:翻译又称为蛋白质的生物合成过程,是核糖体协助tRNA从mRNA读取遗传信息、用氨基酸合成蛋白质的过程,是mRNA碱基序列决定蛋白质氨基酸序列的过程,或者说是把碱基语言翻译成氨基酸语言的过程。

23. 点突变:点突变又称错配,即单一碱基配对错误造成的变异,包括转换和颠换。

24. 框移突变:突变点以后的遗传密码全部改变,造成蛋白质的氨基酸组成和序列的改变。碱基的缺失和插入会导致移码突变。不过,插入或缺失3n个碱基不会导致移码突变。25. 基因表达:指基因经过转录和翻译等一系列复杂过程,指导合成具有特定生理功能的产物。

27. 变构调节:特定物质与酶蛋白活性中心之外的某一部位以非共价键结合,改变酶蛋白构象,从而改变其活性,这种调节称为酶的变构调节。

28. 化学修饰调节:通过酶促反应使酶蛋白以共价键结合某种特定基团,或脱去该特定基团,导致酶蛋白构象改变,酶活性也随之改变,这种调节称为酶的化学修饰调节。

29. 外显子:是真核生物基因经过转录加工后保留于RNA中的序列和相应的DNA序列。

内含子:是真核生物基因在转录后加工时被切除的RNA序列和相应的DNA序列。

30. 胆色素:血红素的主要分解产物,包括胆红素、胆绿素、胆素原和胆素等。

31. 生物转化:肝脏将外源性或内源性非营养物质进行转化,最终增加其水溶性(或极性),使其易于随胆汁或尿液排出体外,这一过程称为生物转化。

32. 碱储/二氧化碳结合力:血浆NaHCO3的含量在一定程度上代表了机体缓冲酸的能力,习惯上将血浆NaHCO3称为碱储或碱储备。碱储量用血浆二氧化碳结合力(血浆CO2-CP)来表示。

33. 酶:是由活细胞合成的、具有催化作用的蛋白质。

34. 酶原/酶原激活:酶的无活性前体称为酶原,酶原向酶转化的过程称为酶原的激活。

35. 同工酶:是指能催化相同的化学反应、但酶蛋白的分子组成、分子结构和理化性质乃至免疫学性质和电泳行为都不相同的一组酶,是生命在长期进化过程中的基因分化的产物。

36. 生物氧化:是指糖类、脂类和蛋白质等营养物质在体内氧化分解、最终生成CO2和H2O 并释放能量满足生命活动需要的过程。

37. 氧化磷酸化:在生物氧化过程中,营养物质氧化释放的电子经呼吸链传递给O2生成H2O,所释放的自由能推动ADP磷酸化生成ATP,这一过程称为氧化磷酸化。

38.呼吸链:由位于真核生物线粒体内膜(原核生物细胞膜)上的一组排列有序的递氢体和递电子体构成,其功能是将营养物质氧化释放的电子传递给O2和HO2。

二、问答题

1.简要说明血糖的来源和去路及机体对其的调节;

一、血糖的来源和去路

1、血糖的来源⑴肝中糖异生作用。

2、血糖的去路⑴⑵⑶

⑷血糖过高时随尿排出。

二、血糖浓度的调节

1、

2、

3、神经调节⑵激素调节

上述为简略版答案;

以下为详尽版答案:

【答:血糖来源:①食物糖消化吸收;②肝糖原分解;③肝脏内糖异生作用

去路:①氧化分解供能;②合成糖原;③转化成其他糖类或非糖类物质;④血糖过高时随尿液排出

机体对其的调节:(1)肝脏的调节:肝脏是维持血糖浓度的最主要器官,是通过控制糖原的合成与分解及糖异生来调节血糖的。当血糖浓度高于正常水平时,肝糖原合成作用加强,促进血糖消耗;糖异生作用减弱,限制血糖补充,从而使血糖浓度降至正常水平。当血糖浓度低于正常水平时,肝糖原分解作用加强,糖异生作用加强,从而使血糖浓度升至正常水平。当然,肝脏对血糖浓度的调节是在神经和激素的控制下进行的。(2)肾脏调节:肾脏对糖具有很强的重吸收能力,其极限值(可以用血糖浓度来表示,为8.9~10.0mmol/L (160~180mg/L),该值)称为肾糖阈。当血糖浓度低于肾糖阈时,肾小管就能重吸收肾小球滤液中的葡萄糖,以维持正常的血糖浓度。当血糖浓度高于肾糖阈,从肾小球滤出的糖过多,超过肾小管重吸收糖的能力,就会出现糖尿。(3)神经和激素调节:正副交感神经调节;胰岛β细胞分泌的胰岛素是唯一能降低血糖的激素;而能升高血糖浓度的激素主要有胰岛细胞分泌的胰高血糖素、肾上腺髓质分泌的肾上腺素、肾上腺皮质分泌的糖皮质激素、腺垂体分泌的生长激素和甲状腺分泌的甲状腺激素等。这些激素主要通过调节糖代谢的各主要途径来维持血糖浓度。】

2、简要说明血浆甘油三酯的来源和去路及激素对其的调节;

答:(1)、甘油三酯的合成代谢

合成的部位:肝脏、脂肪组织、小肠粘膜等

原料:①甘油和脂酸主要来自于葡萄糖代谢;②CM中的FFA(来自食物脂肪)。

基本合成过程:①甘油一酯途径(小肠粘膜细胞)。②甘油二酯途径(肝、脂肪细胞)。(2)、甘油三酯的分解代谢

①脂肪的动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。其中关键酶是激素敏感性甘油三酯脂肪酶

②甘油的氧化:甘油经血运至肝、肾、肠等组织,彻底氧化。

③脂酸的β-氧化:氧化部位:除脑组织外,大多数组织均可进行,其中肝、肌肉最活跃。过程:(a)脂酸的活化——脂酰CoA 的生成(胞液)。(b)脂酰CoA进入线粒体:借助于肉碱的携带。

3、试述五种脂蛋白的组成特点和生理功能试述五种脂蛋白的组成特点和生理功能(或意义)答:①CM【(乳糜微粒)含甘油三酯最多,占脂蛋白颗粒的80%~95%。】功能主要是转运来自食物的外源性甘油三酯。

②VLDL【(极低密度脂蛋白)含甘油三酯占脂蛋白的50%~70%。】功能主要是转运肝脏合成的内源性甘油三酯。

③LDL【(低密度脂蛋白)含40%~50%胆固醇及其酯。】功能为从肝脏向肝外组织转运胆固醇。

④HDL【(高密度脂蛋白)中含蛋白质最多,占50%,密度最高,磷脂占25%,胆固醇占20%。颗粒最小,密度最大。】功能主要是从肝外组织向肝脏转运胆固醇。

⑤IDL(中密度脂蛋白)是VLDL在血浆中代谢的中间产物【又称为VLDL残体】。多数IDL被肝细胞摄取【,其余IDL的甘油三酯继续被脂蛋白脂酶水解,】这些IDL最后成为【富含胆固醇、胆固醇酯和apoB-100的】LDL。

4、请叙述胆固醇的生物合成与糖代谢的关系请叙述胆固醇的生物合成与糖代谢的关系答:除了脑组织和成熟红细胞之外,人体各组织都可以合成胆固醇,其中肝脏的合成能力最强,占全身胆固醇总量的80%,另外有10%由小肠合成。胆固醇的合成场所是细胞液和内质网,合成原料是乙酰CoA,此外还需要NADPH供氢,ATP供能。乙酰CoA和ATP主

要来自糖的有氧氧化,NADPH主要来自磷酸戊糖途径。

5、试叙述进食过量糖类食物可导致发胖试叙述进食过量糖类食物可导致发胖

答:体内糖转化成脂肪的过程:糖代谢产生的乙酰CoA可以合成脂肪酸和胆固醇,糖代谢产生的磷酸二羟丙酮可以还原生成3-磷酸甘油。糖代谢可产生ATP、NADPH+H+,然后由ATP供能,NADPH+H+供氢,在3-磷酸甘油基础上逐步结合3分子脂肪酸,合成甘油三脂。所以从食物中摄取的糖可以简要说明血浆甘油三酯的来源和去路及激素对其的调节作用;生成脂肪酸和3-磷酸甘油,进而合成甘油三酯,进入脂库。因此,进食过量的糖类食物会导致体内脂肪合成增多,从而引起发胖。

6、简述以下代谢的大致过程和生理意义简述以下代谢的大致过程和生理意义

①有氧氧化的过程:有氧氧化途径分为三个阶段:(1)葡萄糖在细胞液中氧化分解生成丙酮酸;(2)丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化作用下(氧化脱羧)生成乙酰CoA;(3)乙酰基进入三羧酸循环彻底氧化成CO2和H2O。

生理意义:人体代谢所需的能量主要来自糖的有氧氧化。

②三羧酸循环的大致过程:1.乙酰CoA与草酰乙酸缩合成柠檬酸2.柠檬酸异构成异柠檬酸3.异柠檬酸氧化脱羧生成α-酮戊二酸4.α-酮戊二酸氧化脱羧生成琥珀酰CoA 5.琥珀酰CoA生成琥珀酸6.草酰乙酸再生

生理意义:三羧酸循环是糖类、脂类和蛋白质彻底氧化分解代谢的共同途径;三羧酸循环是糖类、脂类和蛋白质代谢联系的枢纽。

③糖原合成的过程:包括4步反应:(1)葡萄糖磷酸化生成6-磷酸葡萄糖;(2)6-磷酸葡萄糖异构成1-磷酸葡萄糖;(3)1-磷酸葡萄糖与UTP反应生成UDP-Glc(葡萄糖);(4)在糖原合酶的催化下,UDP-Glc的葡萄糖残基加到糖原引物(Gn)分子上生成糖原(Gn+1),这样在原有的糖原分子上增加了一个葡萄糖残基。

糖原的分解过程:(1)糖原磷酸化酶催化糖原非还原端的α-1,4-糖苷键磷酸解,生成1-磷酸葡萄糖;(2)1-磷酸葡萄糖异构生成6-磷酸葡萄糖; (3)葡萄糖-6-磷酸酶催化6-磷酸葡萄糖水解生成葡萄糖;(4)糖原的残余部分即极限糊精,脱去分支后形成寡糖链,寡糖链可以继续由糖原磷酸化酶催化磷酸解,生成1-磷酸葡萄糖。

生理意义:糖原的合成与分解是维持血糖正常水平的重要途径。

⑤鸟氨酸循环的大致过程:(1)鸟氨酸与NH3及CO2结合生成瓜氨酸;(2)瓜氨酸再(从ASP)接受一分子NH3生成精氨酸;(3)精氨酸水解产生一分子尿素并重新生成鸟氨酸;(4)鸟氨酸进入下一轮循环。

生理意义:合成尿素,是含氮废物排出的主要途径.

⑥脂肪酸的β氧化过程:包括4步反应:(1)脂肪酸活化成脂酰CoA;(2)脂酰CoA 以肉碱为载体转运进入线粒体;(3)脂酰CoA通过氧化包括脱氢、加水、再脱氢和硫解四步反应,生成乙酰CoA;(4)乙酰CoA进入三羧酸循环彻底氧化生成CO2和H2O,释放能量推动合成ATP。

生理意义:主要是氧化分解提供能量,生成乙酰辅酶A。

酮体合成与分解:酮体在肝细胞的线粒体中由乙酰CoA合成。酮体包括乙酰乙酸、β-羟丁酸和丙酮。酮体是脂肪酸分解代谢的正常产物,是乙酰CoA的转运形式。酮体是水溶性小分子,容易透过毛细血管壁,被肝外组织特别是心脏、肾脏和骨骼肌吸收利用。饥饿时血糖水平下降,脑组织也可以利用酮体。

7、简述体内氨基酸/丙氨酸/谷氨酸有哪些代谢去路;

(1)氨基酸的代谢去路:

①合成组织蛋白;②脱氨基产生α-酮酸和NH3等;③脱羧基产生胺类和CO2;④通过特殊代谢途径生成一些含氮活性物质。

(2)丙氨酸的代谢去路:①主要是参与合成组织蛋白;②脱氨基生成丙酮酸和谷氨酸;③脱羧基生成丙酮酸。

(3)谷氨酸的代谢去路:①主要是参与合成组织蛋白;②脱氨基生成α-酮戊二酸和NH3;

③脱羧基生成氨基丁酸和CO2;④参与合成谷氨酰胺和核苷酸。

8、氨与胆红素对人体有毒性,人体分别是如何进行氨与胆红素的转运,以避免其对组织的毒性作用;

答:氨的转运:(1)在肝脏合成尿素,通过肾脏排除体外;(2)合成非必需氨基酸和嘌呤碱基和嘧啶碱基等含氮物质;(3)部分由谷氨酰胺转运至肾脏,水解产生NH3,与H+结合成NH4+,排除体外。

胆红素的转运:①游离胆红素与血浆清蛋白有极高的亲和力,所以入血后形成胆红素—清蛋白复合物,从而促进胆红素在血浆中的运输,限制其透过血管进入细胞造成危害,阻止其透过肾小球滤过膜;②胆红素-清蛋白复合物随血液转运到肝脏后,胆红素与清蛋白分离,胆红素通过特异性细胞膜受体进入肝细胞,并与细胞液中的(Y蛋白和Z蛋白两种)载体蛋白结合形成胆红素-载体蛋白复合物,向滑面内质网转运;③在滑面内质网,胆红素与两分子UDP-葡糖醛酸结合生成胆红素二葡糖醛酸酯,称为结合胆红素或肝胆红素;④结合胆红素(的水溶性强,)易于从肝细胞分泌,汇入胆汁并排入肠道;⑤排入肠道的结合胆红素在肠道菌的作用下脱去葡糖醛酸,再还原成无色胆素原。(80%~90%的)胆素原随粪便排出体外。未排出的胆素原一部分由肠道重吸收,通过门静脉回到肝脏,形成胆素原的肠肝循环;其余进入体循环,随尿液排出体外。

9、试叙述DNA与RNA的结构和组分的异同点

答:⑴组分:

同:①DNA与RNA都是由磷酸、戊糖和含氮碱基组成;②DNA与RNA均含有四种常规

碱基,包括两种嘌呤碱基和两种嘧啶碱基。嘌呤碱基均为腺嘌呤和鸟嘌呤;两种嘧啶碱基之一均为胞嘧啶。

异:①DNA中的戊糖是核糖,而RNA中的戊糖是脱氧核糖。②DNA中的另一种嘧啶是胸腺嘧啶,而RNA中的另一种嘧啶是尿嘧啶。

⑵结构:

同:①DNA与RNA都含有一级结构和二级结构;②DNA与RNA的一级结构都是通过3ˊ,5ˊ-磷酸二酯键连接而成的。

异:①DNA的一级结构是多聚脱氧核苷酸链,也指脱氧核苷酸的排列顺序。而RNA的一级结构是多核苷酸链。②DNA的二级结构是由两股链反向互补构成,并进一步形成的右手双螺旋结构。而RNA的二级结构是通过单股链自身回折配对局部形成双螺旋区(通过链内互补构成局部双螺旋),不配对部分形成环状。③DNA含有三级结构,而RNA没有。10、试叙述复制和转录过程的异同点

答:①模板:复制的模板为解开的两条DNA单链,而转录的模板是一条DNA链的一段,故为不对称转录。两者都是以DNA为模板。

②参与酶:参与复制的酶主要有DNA聚合酶、拓扑酶、解链酶、引物酶、连接酶,参与转录的酶主要是RNA聚合酶。DNA聚合酶和RNA聚合酶催化核酸合成的方向都是5ˊ→3ˊ,其中核苷酸间均以3ˊ,5ˊ- 磷酸二酯键相连。两者都是酶促的核酸聚合过程,都需要依赖RNA聚合酶。

③原料:复制的原料主要是四种dNTP,转录的原料主要是四种NTP。两者都是以核苷酸为原料。

④引物:复制需要以RNA为引物,而转录不需要引物。

⑤配对:复制的碱基配对是A=T,G≡C;而转录的碱基配对是A=U,G≡C,T = A。两者都

遵循碱基配对原则。

⑥连续性:复制方式是半不连续复制,而转录是连续进行的。

⑦后加工:复制产物为两条与亲链相同的子代DNA 双链,不需要加工修饰。而转录产物为与DNA 模板链互补的RNA 分子,还需要经过剪接等加工过程才有生物学活性。 ⑧产物:复制产物是子代双链DNA ,而转录产物是mRNA 、tRNA 、rRNA 。

11、参与蛋白质合成的核酸有哪些?各自作用如何各自作用如何各自作用如何各自作用如何?蛋白质合成时氨基酸排列由什么决定并按什么规律进行?

答:包括的核酸有:mRNA 是指导蛋白质合成的直接模板; tRNA 既是氨基酸的转运工具又是读码器;rRNA 和蛋白质组成的核糖体是合成蛋白质的机器。由 mRNA 携带的遗传信息决定蛋白质的氨基酸序列。规律:①tRNA 的反密码子和mRNA 的密码子是反向结合的;②mRNA 的阅读方向是5ˊ→3ˊ;③肽链延长方向:N 端→C 端。

12、请叙述体内胆汁酸的分类、生成部位及其作用;关键酶及生理作用 答:根据结构分为两类:一类是游离胆汁酸,一类是结合胆汁酸; 根据来源分为两类:一类是初级胆汁酸,一类是次级胆汁酸。

(1) 作用:胆汁酸作为胆固醇的转化产物,胆汁酸具有较高的亲水性,既直接

参与食物脂类的消化吸收,又是胆固醇的主要排泄形式,并促进胆固醇的

按来源分类

按结构分类

游离胆汁酸 结合胆汁酸

初级胆汁酸

胆酸、鹅脱氧酸

形成于肝脏

甘氨酸 牛磺酸 甘氨鹅脱氧胆酸 牛黄鹅脱氧胆酸

形成于肝脏 次级胆汁酸

脱氧胆酸、石胆酸 形成于肠道

甘氨脱氧胆酸 牛黄脱氧胆酸 甘氨石胆酸 牛黄石胆酸

形成于肝脏

直接排泄。

① 参与食物脂类的消化吸收 胆汁酸分子结构具有亲水面和疏水面,能够乳化脂类,扩大脂类和脂酶的接触面,促进之类的消化。

② 是胆固醇的主要排泄形式 正常人每天有0.4-0.6g 胆固醇在肝脏内转化成胆汁酸,通过肠道排出体外。

③ 抑制胆汁中胆固醇的析出 部分胆固醇可以随胆汁汇入胆囊。当胆汁在胆囊中进一步浓缩时,难溶于水的胆固醇较易析出。胆汁中的胆汁酸和磷脂酰胆碱可以与胆固醇形成微团,阻止其析出。

13、黄疸有哪几种类型?其产生的原因和相应的血、尿、粪便检查变化情况如何?

14.、何谓高(低)血钾?其与酸碱平衡有何关系?主要危害是什么?

黄疸类

产生原因

血胆红素

尿色

尿三胆

粪便颜色

结合胆红素

游离胆红素

尿胆红素

尿胆素原

尿胆素

溶血性

黄疸

各种原因导致红细胞破坏过

多,产生胆红素过多,超过

肝脏的转化能力所致 增

加 不

变 较深

阴性

加深

肝细胞

性黄疸

肝脏病变导致肝功能减退,

对胆红素的摄取转化和排泄

发生障碍所致 增加 升

高 变浅

阳性

一定

不一定

正常/变浅

阻塞性

黄疸

各种原因造成胆管阻塞,使

肝内胆红素排出受阻,返流

入血所致

不变 升

变浅

阳性

变浅/陶土色

答:⑴血钾浓度高于3.5mmol/L称为高血钾。血钾浓度低于3.5mmol/L称为低血钾。

⑵当血钾浓度增高时,部分K﹢进入细胞内与H交换,肾小管细胞泌K﹢加强,K﹢-Na﹢交换减少,导致酸中毒。尿钾排出增多,排H﹢减少,尿pH值增大。反之,血钾浓度降低时,部分H﹢进入细胞内与K﹢交换,导致碱中毒。尿钾排出减少,排H﹢增多,尿pH值下降,呈酸性。

⑶高血钾的危害:①神经肌肉应激性增高:表现为手足感觉异常、极度疲乏、肌肉酸痛、面色苍白、肢体湿冷、嗜睡、神志模糊及骨骼肌麻痹等症状。②心肌应激性和自律性降低:会出现心率缓慢、心律不齐、心音减弱,严重时心跳会停止于舒张状态。由于Na﹢、Ca﹢与K﹢对心肌有拮抗作用,故低Na﹢、低Ca﹢会加剧血钾对心肌的危害。

(4)低血钾的危害:①神经肌肉应激性降低:表现为全身软弱无力、反射减弱或消失甚至出现呼吸麻痹等症状。②心肌应激性和自律性增加:常出现以异位搏动为主的心律失常。15、血液正常pH值是多少?它的相对恒定是由体内什么机制调节的定是由体内什么机制调节的?了解血液pH值对判断酸碱平衡有何意义?

答:⑴血液正常pH值是7.35~7.45.

⑵机体可以通过血液缓冲、肺呼吸和肾脏的排泄与重吸收来维持体液pH值的相对稳定,维持酸碱平衡。

⑶了解血液pH值有助于了解机体酸碱平衡情况。正常情况下血液pH值是7.35~7.45;在酸碱平衡失调初期,由于体液的缓冲作用和肺、肾脏的调节及细胞内外离子的交换,可以获得部分代偿,此时虽然NaHCO3和H2CO3的绝对浓度已经有变化,但二者的比值仍维持在20:1左右,所以血浆pH值尚能维持在正常范围内(7.35~7.45);当酸碱平衡严重失调、超出人体的代偿能力时,人体酸碱平衡调节系统虽然已经发挥作用,但[NaHCO3]/[H2CO3]比值发生改变,血浆pH值超出7.35~7.45范围。如果血浆pH值超出7.0~7.8范围,会危

及人的生命。

16、简述体内以下物质的代谢来源去路

答:(1) 丙酮酸

来源:①3-磷酸甘油醛转化成丙酮酸(糖酵解过程第二阶段);②葡萄糖氧化分解生成丙酮酸(糖的有氧氧化第一阶段)【以上两点二选一】;③苹果酸氧化脱羧生成丙酮酸(乙酰CoA 合成脂肪酸第三步);④草酰乙酸生成磷酸烯醇式丙酮酸(糖异生的丙酮酸羧化支路);⑤乳酸脱氢生成丙酮酸

去路:①还原成乳酸(糖酵解过程第四阶段);②氧化脱羧生成乙酰CoA(糖的有氧氧化第二阶段);③催化羧化成草酰乙酸(糖异生丙酮酸羧化支路);④羧化生成草酰乙酸(乙酰CoA合成脂肪酸第四步)

(2)乳酸

来源:葡萄糖的无氧代谢产生

去路:①糖异生作用合成葡萄糖;②乳酸脱氢生成丙酮酸进入三羧酸循环

(3) 乙酰辅酶A

来源:①柠檬酸裂解(柠檬酸通过柠檬酸转运体转运到细胞液中,由柠檬酸裂解酶催化裂解生成乙酰CoA和草酰乙酸);②丙酮酸氧化脱羧生成(糖的有氧氧化第二阶段);③由乙酰乙酰CoA分解生成(酮体利用);④脂肪酸的β氧化产生

去路:①合成脂肪酸;②进入三羧酸循环;③合成酮体(酮体合成);④合成胆固醇(4) 脂肪酸

来源:①从食物摄取;②体内利用乙酰CoA合成

去路:①作为储能物质分布在皮下、腹腔大网膜、肠系膜和内脏周围;②氧化分解供能(5)胆固醇来源:①从食物摄取;②由乙酰CoA、NADPH和ATP在体内的组织细胞液

和内质网合成

去路:①转化成胆汁酸;②转化成内固醇激素(如肾上腺皮质激素、性激素);③转化成7

-脱氢胆固醇;④随粪便和皮脂腺排除体外

(6)氨

来源:①氨基酸脱氨基产生;②胺类物质氧化产生;③肠道内的腐败作用和尿素分解产生

去路:①在肝脏合成尿素,通过肾脏排除体外;②合成非必需氨基酸和嘌呤碱基和嘧啶碱基

等含氮物质;③部分由谷氨酰胺转运至肾脏,水解产生NH3,与H+结合成NH4+,排除体

外。

17、调节水盐代谢体液平衡的激素有哪些,各自作用如何?水代谢异常有哪几种类型?

答:①抗利尿激素的调节:【抗利尿激素(ADH)是下丘脑视上核神经细胞分泌的一种九肽,

沿下丘脑-垂体束进入神经垂体储存,需要时释放入血液,作用于肾脏。】抗利尿激素的主要

生理功能是增强肾远曲小管和集合管对水的重吸收,降低排尿量,维持体液渗透压的相对稳

定。【抗利尿激素的主要作用机制是通过cAMP-蛋白激酶A途径(第十三章,200页),使

远曲小管核集合管细胞膜蛋白质磷酸化,加快水的重吸收。】②醛固酮的调节:醛固酮(是

肾上腺皮质球状带分泌的一种类固醇激素,)主要生理功能是促进肾远曲小管H﹢-Na﹢交

换和K﹢- Na﹢交换,同时也促进水和氯的重吸收,即排钾泌氢、保钠保水。【醛固酮的作

用机制可能是通过促进Na﹢K﹢ATPase的合成而增强肾小管上皮细胞基膜面的Na﹢K﹢

ATPase活性,利于排钾泌氢和保钠,也可能是增强肾小管上皮细胞膜对离子的通透性。】③

心钠素(是由心房细胞合成和分泌的一种肽类激素,)对水、钠代谢具有重要的调节作用。

ANP的主要生理功能是抑制肾远曲小管和集合管对水、钠的重吸收,提高肾小球滤过率,

抑制肾素、醛固酮和抗利尿激素的分泌,因而具有很强的利尿、利钠效应。

项目水肿(血浆胶体渗透压↓毛细血管静脉压↓)脱水(细胞内水、钠缺失,细胞外液容量减少)

名称

心源性水肿肾源性水肿肝源性水肿高渗性脱水低渗性脱水等渗性脱水

概念机体失水>失钠,

血清钠浓

度>150mmol/L,

血浆渗透

压>310mmol/L,

细胞内、外液量均

减少。

机体失水、失钠,

且失钠>失水, 血

清钠浓度

<130mmol/L,血

浆渗透压

<280mmol/L,伴

有细胞外液量的减

机体失水、失钠,

钠水成比例丢失,血

清钠浓度正常,血

浆渗透压正常

原因和机制

1、水摄入减少:少

见(1)水源断绝

(2)进食或饮水困

难(3)渴感消失

2、水丢失过多(1)

呼吸道失水过多:

过度通气,丢失纯

水(2)皮肤失水

过多:高高热热

(3)经胃肠道丢

失:小儿秋泻,排

水样便,大量含钠

量低的消化液丢失

(4)经肾失水过多

【尿崩症:中枢性:

ADH产生↓

肾性:肾小管对

ADH反应性↓】

渗透性利尿:大量

使用高渗脱水剂、

急性肾衰多尿期早

期。

1、经肾丢失

(1)长期连续使

用高效利尿剂:速

尿、利尿酸等能抑

制髓袢升支对Na+

的重吸收

(2)肾上腺皮质功

能不全:Addison

病→醛固酮分泌不

足→肾小管对Na+

的重吸收↓

(3)远端肾小

管酸中毒(I型

RTA)→集合管泌

H+功能↓→

H+-Na+交换↓→

Na+排出↑(4)其

它:急性肾衰多尿

期晚期、肾实质病

2、肾外丢失(1)

消化道失液(2)

液体在第三间隙积

聚:大量腹水、胸

水(3)经皮肤丢

失大量出汗:汗液

NaCl浓度为

0.25% 大面积

烧伤

特点:细胞内液正

常、细胞外液减少

※等渗体液大量丢

※等渗性脱水为暂

时状态

不显失水

不处理→高渗性脱

只补水不补盐→低

渗性脱水

早期不易发生外

周循环衰竭:1、

口渴明显:自动找

水喝2、ADH分泌

1、细胞外液减少,

易发生外周循环衰

竭→休克

(1)细胞外液丢

18、结合你所学的生化知识,谈谈缺钙时如何补钙; 答:影响钙吸收的因素:

① 1,25-(OH)2-D3是最主要的影响因素,能促进小肠黏膜细胞合成钙结合蛋白,从而促进钙的吸收。因此,要多吃含VitD 的食物或水果。若患者的肝肾功能异常,则需直接补充1,25-(OH)2-D3。

② 肠道pH 值:钙盐在酸性环境下容易溶解,在碱性环境下容易沉淀。因此,食物中凡能增加肠道酸性的物质如乳酸和柠檬酸等都有助于钙的吸收。胃酸分泌对钙的吸收有促进作用,胃酸缺乏时,钙的吸收率下降。因此,饮食有常可以保证钙的有效吸收。

③ 食物成分:食物中过多的碱性磷酸盐和草酸等可以与钙结合成难溶性钙盐,从而影响钙的吸收。因此,低磷膳食可以促进钙的吸收。

④血液钙磷浓度:当血液钙磷浓度升高时,钙磷吸收率下降。

增多 3、细胞内液向胞外转移 4、醛

固酮:重者可增多,促进钠水重吸收 5、中枢神经系统功能障碍 脑细胞脱水→脑体积显著缩小,颅骨与脑皮质间血管张力↑→

静脉破裂 →脑出血、蛛网膜下腔出血→死亡 6、脱水热:高渗性脱水的小儿,由于体温调节中枢细胞脱水使体温的调节功能降低,而皮肤散热又少,从而易引起发热

失,血容量减少 (2)细胞外液向细

胞内转移 (3)渴感不明显,病人不主动饮水 (4)早期ADH 分泌减少 2、脱水貌明显: 组织间液↓ →皮肤弹性减退,眼窝凹陷,婴儿囟门凹陷 3、尿钠含量: 经肾失钠:尿钠↑ 肾外失钠:RAA 系统激活→醛固酮↑→ 尿钠↓

⑤从钙的排泄特点来看,“多吃多排,少吃少排,不吃也排”,每天应进食足量的含钙食物。

19、底物和温度对酶促反应的影响特点是?

答:(1)酶促反应速度受多种因素的影响,首先在酶浓度一定的情况下,酶促反应的速度与底物浓度之间的关系符合米氏方程,即在底物浓度较低时,酶促反应的速度随着底物浓度的增加而呈直线上升,当底物浓度很高时,酶都被底物所饱和,此时酶促反应的速度不再增加,达到了最大反应速度,此时再增加底物浓度,反应速度不再增加;

(2)温度对酶促反应速度的影响:在一定范围内,随着温度的升高,反应速度升高,当达到最适温度后,随着温度的升高,反应速度会下降,其原因是酶蛋白在温度超过一定范围后会变性,使酶的活性降低。

《生物化学》考研复习重点大题

中国农业大学研究生入学考试复习资料 《生物化学》重点大题 1.简述Chargaff 定律的主要内容。 答案:(1)不同物种生物的DNA 碱基组成不同,而同一生物不同组织、器官的DNA 碱基组成相同。(2)在一个生物个体中,DNA 的碱基组成并不随年龄、营养状况和环境变化而改变。 (3)几乎所有生物的DNA 中,嘌呤碱基的总分子数等于嘧啶碱基的总分子数,腺嘌呤(A)和胸腺嘧啶(T) 的分子数量相等,鸟嘌呤(G)和胞嘧啶(C)的分子数量相等,即A+G=T+C。这些重要的结论统称 为Chargaff 定律或碱基当量定律。 2.简述DNA 右手双螺旋结构模型的主要内容。 答案:DNA 右手双螺旋结构模型的主要特点如下: (1)DNA 双螺旋由两条反向平行的多核苷酸链构成,一条链的走向为5′→3′,另一条链的走向为3′→5′;两条链绕同一中心轴一圈一圈上升,呈右手双螺旋。 (2)由脱氧核糖和磷酸构成的骨架位于螺旋外侧,而碱基位于螺旋内侧。 (3)两条链间A 与T 或C 与G 配对形成碱基对平面,碱基对平面与螺旋的虚拟中心轴垂直。 (4)双螺旋每旋转一圈上升的垂直高度为3.4nm(即34?),需要10 个碱基对,螺旋直径是2.0nm。(5)双螺旋表面有两条深浅不同的凹沟,分别称为大沟和小沟。 3.简述DNA 的三级结构。 答案:在原核生物中,共价闭合的环状双螺旋DNA 分子,可再次旋转形成超螺旋,而且天然DNA 中多为负超螺旋。真核生物线粒体、叶绿体DNA 也是环形分子,能形成超螺旋结构。真核细胞核内染色体是DNA 高级结构的主要表现形式,由组蛋白H2A、H2B、H3、H4 各两分子形成组蛋白八聚体,DNA 双螺旋缠绕其上构成核小体,核小体再经多步旋转折叠形成棒状染色体,存在于细胞核中。 4.简述tRNA 的二级结构与功能的关系。 答案:已知的tRNA 都呈现三叶草形的二级结构,基本特征如下:(1)氨基酸臂,由7bp 组成,3′末端有-CCA-OH 结构,与氨基酸在此缩合成氨基酰-tRNA,起到转运氨基酸的作用;(2)二氢尿嘧啶环(DHU、I 环或D 环),由8~12 个核苷酸组成,以含有5,6-二氢尿嘧啶为特征;(3)反密码环,其环中部的三个碱基可与mRNA 的三联体密码子互补配对,在蛋白质合成过程中可把正确的氨基酸引入合成位点;(4)额外环,也叫可变环,通常由3~21 个核苷酸组成;(5)TψC 环,由7 个核苷酸组成环,和tRNA 与核糖体的结合有关。 5.简述真核生物mRNA 3′端polyA 尾巴的作用。 答案:真核生物mRNA 的3′端有一段多聚腺苷酸(即polyA)尾巴,长约20~300 个腺苷酸。该尾巴与mRNA 由细胞核向细胞质的移动有关,也与mRNA 的半衰期有关;研究发现,polyA 的长短与mRNA 寿命呈正相关,刚合成的mRNA 寿命较长,“老”的mRNA 寿命较短。 6.简述分子杂交的概念及应用。 答案:把不同来源的DNA(RNA)链放在同一溶液中进行热变性处理,退火时,它们之间某些序列互补的区域可以通过氢键重新形成局部的DNA-DNA 或DNA-RNA 双链,这一过程称为分子杂交,生成的双链称杂合双链。DNA 与DNA 的杂交叫做Southern 杂交,DNA 与RNA 杂交叫做Northern 杂交。 核酸杂交已被广泛应用于遗传病的产前诊断、致癌病原体的检测、癌基因的检测和诊断、亲子鉴定和动

生物化学复习重点

第二章 蛋白质 1、凯氏定氮法:蛋白质含量=总含氮量-无机含氮量)×6.25 例如:100%的蛋白质中含N 量为16%,则含N 量8%的蛋白质含量为50% 100% /xg=16% /1g x=6.25g 2、根据R 基的化学结构,可将氨基酸分为脂肪族氨基酸、芳香族氨基酸、杂环氨基酸和杂环亚氨基酸。 按照R 基的极性,可分为非极性R 基氨基酸、不带电荷的极性R 基氨基酸、极性带负电荷(1)一般物理性质 无色晶体,熔点极高(200℃以上),不同味道;水中溶解度差别较大(极性和非极性),不溶于有机溶剂。氨基酸是两性电解质。 氨基酸等电点的确定: 酸碱确定,根据pK 值(该基团在此pH 一半解离)计算: 等电点等于两性离子两侧pK 值的算术平均数。

(2)化学性质 ①与水合茚三酮的反应:Pro产生黄色物质,其它为蓝紫色。在570nm(蓝紫色)或440nm (黄色)定量测定(几μg)。 ②与甲醛的反应:氨基酸的甲醛滴定法 ③与2,4-二硝基氟苯(DNFB)的反应:形成黄色的DNP-氨基酸,用来鉴定多肽或蛋白质的N 端氨基酸,又称Sanger法。或使用5-二甲氨基萘磺酰氯(DNS-Cl,又称丹磺酰氯)也可测定蛋白质N端氨基酸。 ④与异硫氰酸苯酯(PITC)的反应:多肽链N端氨基酸的α-氨基也可与PITC反应,生成PTC-蛋白质,用来测定N端的氨基酸。 4、肽的结构 线性肽链,书写时规定N端放在左边,C端放在右边,用连字符将氨基酸的三字符号从N 端到C端连接起来,如Ser-Gly-Tyr-Ala-Leu。命名时从N端开始,连续读出氨基酸残基的名称,除C端氨基酸外,其他氨基酸残基的名称均将“酸”改为“酰”,如丝氨酰甘氨酰酪氨酰丙氨酰亮氨酸。若只知道氨基酸的组成而不清楚氨基酸序列时,可将氨基酸组成写在括号中,并以逗号隔开,如(Ala,Cys2,Gly),表明此肽有一个Ala、两个Cys和一个Gly 组成,但氨基酸序列不清楚。 由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一个平面,称作肽平面或酰胺平面。 5、、蛋白质的结构 (一)蛋白质的一级结构(化学结构) 一级结构中包含的共价键主要指肽键和二硫键。 (二)蛋白质的二级结构 (1)α-螺旋(如毛发) 结构要点:螺旋的每圈有3.6个氨基酸,螺旋间距离为0.54nm,每个残基沿轴旋转100°。(2)β-折叠结构(如蚕丝) (3)β-转角 (4)β-凸起 (5)无规卷曲 (三)蛋白质的三级结构(如肌红蛋白) (四)蛋白质的司机结构(如血红蛋白) 6、蛋白质分子中氨基酸序列的测定 氨基酸组成的分析: ?酸水解:破坏Trp,使Gln变成Glu, Asn变成Asp ?碱水解:Trp保持完整,其余氨基酸均受到破坏。 N-末端残基的鉴定:

浙江工业大学生物化学期末复习知识重点

1.糖异生和糖酵解的生理学意义: 糖酵解和糖异生的代谢协调控制,在满足机体对能量的需求和维持血糖恒定方面具有重要的生理意义。 2.简述蛋白质二级结构定义及主要类别。 定义:指多肽主链有一定周期性的,由氢键维持的局部空间结构。 主要类别:α-螺旋,β-折叠,β-转角,β-凸起,无规卷曲 3.简述腺苷酸的合成途径. IMP在腺苷琥珀酸合成酶与腺苷琥珀酸裂解酶的连续作用下,消耗1分子GTP,以天冬氨酸的氨基取代C-6的氧而生成AMP。 4.何为必需脂肪酸和非必需脂肪酸?哺乳动物体内所需的必需脂肪酸有哪些? 必需脂肪酸:自身不能合成必须由膳食提供的脂肪酸常见脂肪酸有亚油酸、亚麻酸非必须脂肪酸:自身能够合成机单不饱和脂肪酸 5.简述酶作为生物催化剂与一般化学催化剂的共性及其个性? 共性:能显著的提高化学反应速率,是化学反应很快达到平衡 个性:酶对反应的平衡常数没有影响,而且酶具有高效性和专一性 6.简述TCA循环的在代谢途径中的重要意义。 1、TCA循环不仅是给生物体的能量,而且它还是糖类、脂质、蛋白质三大物质转化的枢纽 2、三羧酸循环所产生的各种重要的中间产物,对其他化合物的生物合成具有重要意义。 3、三羧酸循环课供应多种化合物的碳骨架,以供细胞合成之用。 7.何为必需氨基酸和非必需氨基酸?哺乳动物体内所需的必需氨基酸有哪些? 必需氨基酸:自身不能合成,必须由膳食提供的氨基酸。(苏氨酸、赖氨酸、甲硫氨酸、色氨酸、苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸) 8.简述蛋白质一级、二级、三级和四级结构。 一级:指多肽链中的氨基酸序列,氨基酸序列的多样性决定了蛋白质空间结构和功能的多样性。 二级:指多肽主链有一定周期性的,由氢键维持的局部空间结构。 三级:球状蛋白的多肽链在二级结构、超二级结构和结构域等结构层次的基础上,组装而成的完整的结构单元。 四级:指分子中亚基的种类、数量以及相互关系。 9.脂肪酸氧化和合成途径的主要差别? β-氧化:细胞内定位(发生在线粒体)、脂酰基载体(辅酶A)、电子受体/供体(FAD、NAD+)、羟脂酰辅酶A构型(L型)、生成和提供C2单位的形式(乙酰辅酶A)、酰基转运的形式(脂酰肉碱) 脂肪酸的合成:细胞内定位(发生在细胞溶胶中)、脂酰基载体(酰基载体蛋白(ACP))、电子受体/供体(NADPH)、羟脂酰辅酶A构型(D型)、生成和提供C2单位的形式(丙二酸单酰辅酶A)、酰基转运的形式(柠檬酸) 10.酮体是如何产生和氧化的?为什么肝中产生酮体要在肝外组织才能被利用? 生成:脂肪酸β-氧化所生成的乙酰辅酶A在肝中氧化不完全,二分子乙酰辅酶A可以缩合成乙酰乙酰辅酶A:乙酰辅酶A再与一分子乙酰辅酶A缩合成β-羟-β-甲戊二酸单酰辅酶A(HMG-CoA),后者分裂成乙酰乙酸;乙酰乙酸在肝线粒体中可还原生成β-羟丁酸,乙酰乙酸还可以脱羧生成丙酮。 氧化:乙酰乙酸和β-羟丁酸进入血液循环后送至肝外组织,β-羟丁酸首先氧化成乙酰乙酸,然后乙酰乙酸在β-酮脂酰辅酶A转移酶或乙酰乙酸硫激酶的作用下,生成乙酰乙酸内缺乏β-酮脂酰辅酶A转移酶和乙酰乙酸硫激酶,所以肝中产生酮体要在肝外组织才能被

生物化学复习资料

什么是蛋白质的变性作用?引起蛋白质变性的因素有哪些?有何临床意义?在某些理化因素作用下, 使蛋白质严格的空间结构破坏,引起蛋白质理化性质改变和生物学活性丧失的现象称为蛋白质变性。引起蛋白质变性的因素有:物理因素,如紫外线照射、加热煮沸等;化学因素,如强酸、强碱、重金属盐、有机溶剂等。临床上常常利用加热或某些化学士及使病原微生物的蛋白质变性,从而达到消毒的目的,在分离、纯化或保存活性蛋白质制剂时,应采取防止蛋白质变性的措施。 比较蛋白质的沉淀与变性 蛋白质的变性与沉淀的区别是:变性强调构象破坏,活性丧失,但不一定沉淀;沉淀强调胶体溶液稳定因素破坏,构象不一定改变,活性也不一定丧失,所以不一定变性。 试述维生素B1的缺乏可患脚气病的可能机理 在体内Vit B1 转化成TPP,TPP 是α-酮酸氧化脱羧酶系的辅酶之一,该酶系是糖代谢过程的关键酶。维生素B1 缺乏则TPP 减少,必然α-酮酸氧化脱羧酶系活性下降,有关代谢反应受抑制,导致ATP 产生减少,同时α-酮酸如丙酮酸堆积,使神经细胞、心肌细胞供能不足、功能障碍,出现手足麻木、肌肉萎缩、心力衰竭、下肢水肿、神经功能退化等症状,被通称为“脚气病”。 简述体内、外物质氧化的共性和区别 共性①耗氧量相同。②终产物相同。③释放的能量相同。

区别:体外燃烧是有机物的C 和H 在高温下直接与O2 化合生成CO2 和H2O,并以光和热的形式瞬间放能;而生物氧化过程中能量逐步释放并可用于生成高能化合物,供生命活动利用。 简述生物体内二氧化碳和水的生成方式 ⑴CO2 的生成:体内CO2 的生成,都是由有机酸在酶的作用下经脱羧反应而生成的。根据释放CO2 的羧基在有机酸分子中的位置不同,将脱羧反应分为: α-单纯脱羧、α-氧化脱羧、β-单纯脱羧、β-氧化脱羧四种方式。 ⑵水的生成:生物氧化中的H2O 极大部分是由代谢物脱下的成对氢原子(2H),经一系列中间传递体(酶和辅酶)逐步传递,最终与氧结合产生的。 试述体内两条重要呼吸链的排练顺序,并分别各举两种代谢物氧化脱氢 NADH 氧化呼吸链:顺序:NADH→FMN/(Fe-S)→CoQ→Cytb→c1→c→aa3 如异柠檬酸、苹果酸等物质氧化脱氢,生成的NADH+H+均分别进入NADH 氧化呼吸链进一步氧化,生成2.5 分子ATP。 琥珀酸氧化呼吸链:FAD·2H/(Fe-S)→CoQ→Cytb→c1→c→aa3 如琥珀酸、脂酰CoA 等物质氧化脱氢,生成的FAD·2H 均分别进入琥珀酸氧化呼吸链进一步氧化,生成1.5 分子ATP。 试述生物体内ATP的生成方式 生物体内生成ATP 的方式有两种:底物水平磷酸化和氧化磷酸化。

生物化学考试重点总结

生化总结 1。蛋白质的pI:在某一pH溶液中,蛋白质解离为正离子和解离为负离子的过程和趋势相等,处于兼性离子状态,该溶液的pH值称蛋白质的pI。 2。模体:在蛋白质分子中,二个或二个以上具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间现象,具有特殊的生物学功能。 3。蛋白质的变性:在某些理化因素的作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物学活性丧失的现象。 4。试述蛋白质的二级结构及其结构特点。 (1)蛋白质的二级结构指蛋白质多肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。主要包括,α-螺旋、β-折叠、β-转角、无规则卷曲四种类型,以氢键维持二级结构的稳定性。 (2)α-螺旋结构特点:a、单链、右手螺旋;b、氨基酸残基侧链位于螺旋的外侧;c、每一个螺旋由3.6个氨基酸残基组成,螺距0.54nm;d、每个残基的-NH和前面相隔三个残基的-CO之间形成氢键;e、氢键方向与螺距长轴平行,链内氢键是α-螺旋的主要因素。 (3)β-折叠结构特点:a、肽键平面充分伸展,折叠成锯齿状;b、氨基酸侧链交替位于锯齿状结构的上下方;c、维系依靠肽键间的氢键,氢键方向与肽链长轴垂直;d、肽键的N末端在同一侧---顺向平行,反之为反向平行。 (4)β-转角结构特点:a、肽链出现180转回折的“U”结构;b、通常由四个氨基酸残基构成,第二个氨基酸残基常为脯氨酸,由第1个氨基酸的C=O与第4个氨基酸残基的N-H形成氢键维持其稳定性。 (5)无规则卷曲:肽链中没有确定的结构。 5。蛋白质的理化性质有:两性解离;蛋白质的胶体性质;蛋白质的变性;蛋白质的紫外吸收性质;蛋白质的显色反应。 6。核小体(nucleosome):是真核生物染色质的基本组成单位,有DNA和5种组蛋白共同组成。A、B、和共同构成了核小体的核心组蛋白,长度约150bp的DNA双链在组蛋白八聚体上盘绕1.75圈形成核小体的核心颗粒,核心颗粒之间通过组蛋白和DNA连接形成的串珠状结构称核小体。 7。解链温度/融解温度(melting temperature,Tm):在DNA解链过程中,紫外吸光度的变化达到最大变化值的一半时所对应的温度称为DNA的解链温度,或称熔融温度(Tm值)。 8。DNA变性(DNA denaturation):在某些理化因素(温度、pH、离子强度)的作用下,DNA双链间互补碱基对之间的氢键断裂,使双链DNA解离为单链,从而导致DNA理化性质改变和生物学活性丧失,称为DNA的变性作用。9。试述细胞内主要的RNA类型及其主要功能。 (1)核糖体RNA(rRNA),功能:是细胞内含量最多的RNA,它与核蛋白体蛋白共同构成核糖体,为mRNA,tRNA 及多种蛋白质因子提供相互结合的位点和相互作用的空间环境,是细胞合成蛋白质的场所。 (2)信使RNA(mRNA),功能:转录核内DNA遗传信息的碱基排列顺序,并携带至细胞质,指导蛋白质合成。是蛋白质合成模板。成熟mRNA的前体是核内不均一RNA(hnRNA),经剪切和编辑就成为mRNA。 (3)转运RNA(tRNA),功能:在蛋白质合成过程中作为各种氨基酸的载体,将氨基酸转呈给mRNA。转运氨基酸。 (4)不均一核RNA(hnRNA),功能:成熟mRNA的前体。 (5)小核RNA(SnRNA),功能:参与hnRNA的剪接、转运。 (6)小核仁RNA(SnoRNA),功能:rRNA的加工和修饰。 (7)小胞质RNA(ScRNA/7Sh-RNA),功能:蛋白质内质网定位合成的信号识别体的组成成分。 10。试述Watson-Crick的DNA双螺旋结构模型的要点。 (1)DNA是一反向平行、右手螺旋的双链结构。两条链在空间上的走向呈反向平行,一条链的5’→3’方向从上向下,而另一条链的5’→3’是从下向上;脱氧核糖基和磷酸基骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触,A与T通过两个氢键配对,C与G通过三个氢键配对,碱基平面与中心轴相垂直。 (2)DNA是一右手螺旋结构。螺旋每旋转一周包含了10.5碱基对,每个碱基的旋转角度为36。DNA双螺旋结构的直径为2.37nm,螺距为3.54nm,每个碱基平面之间的距离为0.34nm。DNA双螺旋分子存在一个大沟和小沟。(3)DNA双螺旋结构稳定的维系横向靠两条链之间互补碱基的氢键,纵向则靠碱基平面间的碱基堆积力维持。11。酶的活性中心:酶分子的必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异地结合并将底物转化为产物,这一区域称为酶的活性中心。 12。同工酶:是指催化相同的化学反应,而酶的分子结构、理化性质乃至免疫学性质不同的一组酶。 13。何为酶的Km值?简述Km和Vm意义。

2020年考研专业课西医综合大纲解析:生物化学

2020年考研专业课西医综合大纲解析:生物化学 一、生物化学考查目标 西医综合生物化学的考试范围为人民卫生出版社第七版生物化学 教材。要求学生系统掌握本学科中的基本理论、基本知识和基本技能,能够使用所学的基本理论、基本知识和基本技能综合分析、判断和解 决相关理论问题和实际问题。 二、生物化学考点解析 这节我们来解析一下生物化学。今年生物化学未发生任何改变。 生物化学对于很多考生来说都是比较难的学科,需要掌握和记忆的东 西很多,在此我想提醒大家在复习生化时一定要抓重点,切忌把时间 都放在一些较难较偏的知识点上,以免耽误时间。 下面我们就按大纲分的四绝大部分实行详细的解析。 生物化学 第一部分生物大分子的结构和功能 重点内容:氨基酸的分类,几种特殊的氨基酸,蛋白质的分子结构 及理化性质,核酸的组成,DNA双螺旋结构,酶的基本概念,米式方程,辅酶成分。熟记20种氨基酸,尽可能记住英文缩写代号,因考试时常 以代号直接出现。蛋白质的分子结构常考各级结构的表现形式及其维 系键。蛋白质的理化性质及蛋白质的提纯,通常利用蛋白质的理化性 质采取不破坏蛋白质结构的物理方法来提纯蛋白质。注意氨基酸及蛋 白质理化性质的鉴别。核酸的基本单位是核苷酸,多个核苷酸组成核酸,核苷酸之间的连接键为3',5'-磷酸二酯键。DNA双螺旋结构,在DNA双链结构中两条碱基严格按A=T(2个氢键)、G三C(3个氢键)配对 存有,各种RNA的特点。另外还要注意到一些核酸解题上常用的概念。酶首先要注意的是一些基本概念,如:核酶、脱氧核酶、酶活性中心、同工酶、异构酶等。米式方程式考试重点,V=Vmax[S]/Km+[S],这个方

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

生化复习要点

绪论 1 生物化学的定义,研究内容。 2 了解生物化学与药学之间的关系。 3 了解生物化学的发展历史。 第1章糖的化学 1 重要概念: 糖,单糖,寡糖,多糖,同聚多糖,均一多糖,杂聚多糖,不均一多糖,黏多糖,结合糖,糖蛋白与蛋白聚糖,糖脂与脂多糖,透明质酸, 2 了解知道平时接触到的一些糖类在化学上属于哪类糖? 3 糖的主要生物学作用。 4 掌握糖类的化学通式, 5 了解下面的常见糖类分别是什么类糖?果糖,蔗糖,葡萄糖,麦芽糖,乳糖,半乳糖,棉子糖,核糖,脱氧核糖,赤藓酮糖,赤藓糖,木酮糖,甘油醛,二羟丙酮,淀粉,糖原,纤维素,琼脂等。 6 了解多糖的几种分类方法。 7 淀粉是由α-D-葡萄糖组成的,连接的化学键是α-1,4-糖苷键,直链与支链淀粉的区别是什么? 8 糖原是由α-D-葡萄糖组成的,连接的化学键是α-1,4-糖苷键、α-1,6-糖苷键,与淀粉有什么不同和相同之处? 9 纤维素是由β-D-葡萄糖组成的,连接的化学键是β-1,4-糖苷键。

10 几丁质是由N-乙酰氨基葡萄糖组成的,连接的化学键β-1,4-糖苷键。 11 常见的黏多糖有透明质酸、肝素、硫酸软骨素。 12 透明质酸是由D-葡萄糖醛酸、N-乙酰氨基葡萄糖交替组成的? 13 组成细菌细胞壁的多糖中最主要的是肽聚糖。 14 大致了解一下有药理活性的多糖有哪些?有没有正在使用的属于糖类的药物? 15 了解有哪些糖类以及衍生物等被用做药物使用。 第2章脂类 1 重要的概念:脂类,单纯脂类,复合脂类,衍生脂类,饱和脂肪酸,不饱和脂肪酸,必需脂肪酸, 2 掌握脂肪的化学结构式, 3 了解脂类的主要生物学功能。 4 熟悉表2-1和2-2中脂肪酸的类型,掌握各种脂肪酸的结构特点(含有几个碳原子和双键?俗名是什么?) 5 所谓的“脑黄金”的化学结构是什么? 6 磷脂分为甘油磷脂、鞘磷脂。 7 写出甘油磷脂结构式,在细胞内有什么作用?常见的甘油磷脂有暖磷脂、脑磷脂、磷脂酰丝氨酸、磷酸酰肌醇、缩醛磷脂、二磷脂酰甘油。 8 鞘磷脂由鞘氨醇、脂肪酸、磷酸、胆碱组成。其中含有的醇类是鞘氨醇。在细胞内的重要作用是什么?

生化考试复习题汇总及答案整理

核酸化学及研究方法 一、名词解释 1.正向遗传学:通过研究突变表型确定突变基因的经典遗传学方法。 2.核小体组蛋白修饰:组成核小体组蛋白,其多肽链的N末端游离于核小体之外,常被化学基团修饰,修饰类型包括:乙酰化、甲基化、磷酸化和泛素化,修饰之后会改变染色质的结构和活性。 3.位点特异性重组:位点特异性重组是遗传重组的一类。这类重组依赖于小范围同源序列的联会,重组只发生在同源短序列的范围之内,需要位点特异性的蛋白质分子参与催化。 4.转座机制:转座酶上两个不同亚基结合在转座子的特定序列上,两个亚基靠在一起形成有活性的二聚体,切下转座子,转座酶-转座子复合物结合到靶DNA上,通过转座酶的催化将转座子整合到新位点上。 5.基因敲除:利用DNA同源重组原理,用设计的外源同源DNA与受体细胞基因组中序列相同或相近的靶基因发生重组,从而将外源DNA整合到受体细胞的基因组中,产生精确的基因突变,完成基因敲除。 6.Sanger双脱氧终止法:核酸模板在核酸聚合酶、引物、四种单脱氧碱基存在的条件下复制或转录时,如果在四管反应系统中分别按比例引入四种双脱氧碱基,若双脱氧碱基掺入链端,该链便停止延长,若单脱氧碱基掺入链端,该链便可继续延伸。如此每管反应体系中便合成了以共同引物为5’端,以双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分四个泳道进行电泳,以分离长短不一的核酸片段(长度相邻者仅差一个碱基),根据片段3’的双脱氧碱基,便可依次阅读合成片段的碱基排列顺序。 7.荧光实时PCR技术原理 探针法:TaqMan探针是一小段可以与靶DNA序列中间部位结合的单链DNA,它的5’和3’端分别带有一个荧光基团,这两个荧光基团由于距离过近,相互发生淬灭,不产生绿色荧光。PCR反应开始后,靶DNA变性,产生单链DNA,TaqMan探针结合到与之配对的靶DNA序列上,之后被Taq DNA聚合酶切除降解,从而解除荧光淬灭,荧光基团在激发光下发出荧光,最后可根据荧光强度计算靶DNA的数量。染料法:荧光染料(如SYBR GreenⅠ)能与双链DNA发生非序列特异性结合,并激发出绿色荧光。PCR反应开始后,随着DNA的不断延伸,结合到DNA上的荧光染料也相应增加,被激发产生的荧光也相应增加,可根据荧光强度计算初始模板的数量。 8.双分子荧光互补(BiFC)技术原理 将荧光蛋白在某些特定的位点切开,形成不发荧光的N片段和C片段。这2个片段在细胞内共表达或体外混合时,不能自发地组装成完整的荧光蛋白,不能产生荧光。但是,当这2个荧光蛋白的片段分别连接到一组有相互作用的目标蛋白上,在细胞内共表达或体外混合这两个目标蛋白时,由于目标蛋白质的相互作用,荧光蛋白的2个片段在空间上互相靠近互补,重新构建成完整的具有活性的荧光蛋白分子,并在该荧光蛋白的激发光激发下,发射荧光。 简言之,如果目标蛋白质之间有相互作用,则在激发光的激发下,产生该荧光蛋白的荧光。反之,若目标蛋白质之间没有相互作用,则不能被激发产生荧光。 二.问答题: 1.怎样将一个基因克隆到pET32a载体上;原核表达后,怎样纯化该蛋白? 2.通过哪几种方法可以获得cDNA的全长?简述其原理。 (一)已知序列信息 1.同源序列法:根据基因家族各成员间保守氨基酸序列设计简并引物,利用简并引物进行RT-PCR扩增,得到该基因的部分cDNA序列,然后再利用RACE(cDNA末端快速扩增技术)获得cDNA全长。 2.功能克隆法:cDNA文库;基因组文库 (二)未知序列信息: 1.基于基因组DNA的克隆:是在鉴定已知基因的功能后,进而分离目标基因的一种方法。

历年生化考研西医综合试题重要知识点

★历年考研西医综合试题重要知识点(按照7版教材顺序): (一)生物大分子的结构和功能 Unit 1 ★属于亚氨基酸的是:脯氨酸(Pro)[蛋白质合成加工时被修饰成:羟脯氨酸] ★蛋白质中有不少半胱氨酸以胱氨酸形式存在。 ★必需氨基酸:甲硫氨酸(蛋氨酸Met)、亮氨酸(Leu)、缬氨酸(Val)、异亮氨酸(Ile)、苯丙氨酸(Phe)、赖氨酸(Lys)、色氨酸(Trp)、苏氨酸(Thr) ★含有两个氨基的氨基酸:赖氨酸(Lys)、精苷酸(Arg)“拣来精读” ★含有两个羧基的氨基酸:谷氨酸(Glu)、天冬氨酸(Asp)“三伏天” ★含硫氨基酸:胱氨酸、半胱氨酸(Cys)、蛋氨酸(Met) ★生酮氨基酸:亮氨酸(Leu)、赖氨酸(Lys)“同样来” ★生糖兼生酮氨基酸:异亮氨酸(Ile)、苯丙氨酸(Phe)、酪氨酸(Tyr)、色氨酸(Trp)、苏氨酸(Thr)“一本落色书” ★天然蛋白质中不存在的氨基酸:同型半胱氨酸 ★不出现于蛋白质中的氨基酸:瓜氨酸 ★含有共轭双键的氨基酸:色氨酸(Trp)[主要]、酪氨酸(Tyr) 紫外线最大吸收峰:280nm ★对稳定蛋白质构象通常不起作用的化学键是:酯键 ★维系蛋白质一级结构的化学键:肽键; 维系蛋白质二级结构(α-螺旋、β-折叠、β-转角和无规卷曲)的化学键:氢键 维系蛋白质三级结构(整条肽链中全部氨基酸残基的相对空间位置)的化学键:次级键(疏水键、盐健、氢键和Van der Waals力) 维系蛋白质四级结构的化学键:氢键和离子键 ★蛋白质的模序结构(模体:具有特殊功能的超二级结构)举例:锌指结构、亮氨酸拉链结构 ★当溶液中的pH与某种氨基酸的pI(等电点)一致时,该氨基酸在此溶液中的存在形式是:兼性离子 ★蛋白质的变性:蛋白质空间结构破坏,生物活性丧失,一级结构无改变。 变性之后:溶解度降低,黏度增加,结晶能力消失,易被蛋白酶水解,紫外线(280nm)吸收增强。 ★电泳的泳动速度取决于蛋白质的分子量、分子形状、所在溶液的pH值、所在溶液的离子强度:球状>杆状;带电多、分子量小>带电少、分子量大;离子强度低>离子强度高★凝胶过滤(分子筛层析)时:大分子蛋白质先洗脱下来 ★目前常用于测定多肽N末端氨基酸的试剂是:丹(磺)酰氯 Unit 2 ★RNA与DNA的彻底分解产物:核糖不同,部分碱基不同(嘌呤相同,嘧啶不同) ★黄嘌呤:核苷酸代谢的中间产物,既不存在于DNA中也不存在于RNA中。 ★在核酸中,核苷酸之间的连接方式是:3’,5’-磷酸二酯键 ★DNA双螺旋结构:反向平行;右手螺旋,螺距为3.54nm,每个螺旋有10.5个碱基对;骨架由脱氧核糖和磷酸组成,位于双螺旋结构的外侧,碱基位于内侧;碱基配对原则为C≡G,A=T,所以A+G/C+T=1 ★生物体内各种mRNA:长短不一,相差很大 ★hnRNA含有许多外显子和内含子,在mRNA成熟过程中,内含子被剪切掉,使得外显子连接在一起,形成成熟的mRNA。

生物化学期末重点总结

第二章 1、蛋白质构成:碳、氢、氧、氮,氮含量16% 2、蛋白质基本组成单位:氨基酸 3、氨基酸分类:中性非极性~(甘氨酸Gly,G)、中性极性~、酸性~(天门冬氨酸Asp,D、谷氨 酸Glu,E)、碱性~(赖氨酸Lys,K、精氨酸Arg,R、组氨酸His,H) 4、色氨酸、酪氨酸(280nm波长)、苯丙氨酸(260nm波长)三种芳香族氨基酸吸收紫外光 5、大多数蛋白质中均含有色氨酸和酪氨酸,故测定280nm波长的光吸收强度,课作为溶液中蛋白 质含量的快速测定方法 6、茚三酮反应:蓝紫色化合物,反应直接生成黄色产物 7、肽键:通过一个氨基酸分子的—NH2与另一分子氨基酸的—COOH脱去一分子水形成—CO— NH— 8、二级结构基本类型:α—螺旋、β—折叠、β—转角、无规则卷曲 9、三级结构:每一条多肽链内所有原子的空间排布 10、一个具有功能的蛋白质必须具有三级结构 11、稳定三级结构的重要因素:氢键、盐键、疏水键、范德华力等非共价键以及二硫键 12、四级结构:亚基以非共价键聚合成一定空间结构的聚合体 13、亚基:有些蛋白质是由两条或两条以上具有独立三级结构的多肽链组成,每条多肽链称~ 14、单独的亚基一般没有生物学功能,只有构成完整的四级结构才具有生物学功能 15、等电点:调节溶液pH值,使某一蛋白质分子所带的正负电荷相等,此时溶液的pH值即为~ 16、变性作用:某些理化因素可以破坏蛋白质分子中的副键,使其构像发生变化,引起蛋白质的理 化性质和生物学功能的改变(可逆性变性、不可逆性变性) 17、变性蛋白质是生物学活性丧失,在水中溶解度降低,粘度增加,更易被蛋白酶消化水解 18、变性物理因素:加热、高压、紫外线、X线和超声波 化学因素:强酸、强碱、重金属离子、胍和尿素 19、沉淀:用物理或化学方法破坏蛋白质溶液的两个稳定因素,即可将蛋白质从溶液中析出 20、沉淀:盐析:破坏蛋白质分子的水化膜,中和其所带电荷,仍保持其原有生物活性,不会是蛋 白质变性 有机溶剂沉淀:不会变性 重金属盐类沉淀:破坏蛋白质分子的盐键,与巯基结合,发生变性 生物碱试剂沉淀: 21、双缩脲反应:在碱性溶液中,含两个以上肽键的化合物都能与稀硫酸铜溶液反应呈紫色(氨基 酸、二肽不可以) 第三章 22、核苷:一分子碱基与一分子戊糖脱水以N—C糖苷键连成的化合物 23、核苷酸=核苷+磷酸 24、RNA分子含有四种单核苷酸:AMP、GMP、CMP、UMP 25、核苷酸作用:合成核酸、参与物质代谢、能量代谢和多种生命活动的调控 26、核苷酸存在于辅酶A、黄素腺嘌呤二核苷酸(F AD)、辅酶I(NAD+)和辅酶II(NADP+) 27、A TP是能量代谢的关键 28、UTP、CTP、GTP分别参与糖元、磷脂、蛋白质的合成 29、环一磷酸腺苷(Camp)和环一磷酸鸟苷(cGMP)在信号转导过程中发挥重要作用 30、DNA具有方向性,碱基序列按照规定从5’向3’书写(3’,5’-磷酸二酯键) 31、三维双螺旋结构内容:⑴DNA分子由两条反向平行的多核苷酸链围绕同一中心轴盘旋而成 ⑵亲水的脱氧核糖基与磷酸基位于外侧,疏水的碱基位于内侧 ⑶两条多核苷酸链以碱基之间形成的氢键相互连结 ⑷互补碱基之间横向的氢键和疏水碱基平面之间形成的纵向碱基堆积 力,维系这双螺旋结构的稳定 32、B-DNA、A-DNA右手螺旋结构,Z-NDA左手螺旋结构

生物化学复习重点

绪论 掌握:生物化学、生物大分子和分子生物学的概念。 【复习思考题】 1. 何谓生物化学? 2. 当代生物化学研究的主要内容有哪些 蛋白质的结构与功能 掌握:蛋白质元素组成及其特点;蛋白质基本组成单位--氨基酸的种类、基本结构及主要特点;蛋白质的分子结构;蛋白质结构与功能的关系;蛋白质的主要理化性质及其应用;蛋白质分离纯化的方法及其基本原理。 【复习思考题】 1. 名词解释:蛋白质一级结构、蛋白质二级结构、蛋白质三级结构、蛋白质四级结构、肽单元、模体、结构域、分子伴侣、协同效应、变构效应、蛋白质等电点、电泳、层析 2. 蛋白质变性的概念及本质是什么有何实际应用? 3. 蛋白质分离纯化常用的方法有哪些其原理是什么? 4. 举例说明蛋白质结构与功能的关系 核酸的结构与功能 掌握:核酸的分类、细胞分布,各类核酸的功能及生物学意义;核酸的化学组成;两类核酸(DNA与RNA)分子组成异同;核酸的一级结构及其主要化学键;DNA 右手双螺旋结构要点及碱基配对规律;mRNA一级结构特点;tRNA二级结构特点;核酸的主要理化性质(紫外吸收、变性、复性),核酸分子杂交概念。 第三章酶 掌握:酶的概念、化学本质及生物学功能;酶的活性中心和必需基团、同工酶;酶促反应特点;各种因素对酶促反应速度的影响、特点及其应用;酶调节的方式;酶的变构调节和共价修饰调节的概念。 第四章糖代谢 掌握:糖的主要生理功能;糖的无氧分解(酵解)、有氧氧化、糖原合成及分解、糖异生的基本反应过程、部位、关键酶(限速酶)、生理意义;磷酸戊糖途径的生理意义;血糖概念、正常值、血糖来源与去路、调节血糖浓度的主要激素。 【复习思考题】 1. 名词解释:.糖酵解、糖酵解途径、高血糖和糖尿病、乳酸循环、糖原、糖异生、三羧酸循环、活性葡萄糖、底物水平磷酸化。 2.说出磷酸戊糖途径的主要生理意义。 3.试述饥饿状态时,蛋白质分解代谢产生的丙氨酸转变为葡萄糖的途径。

大学期末复习试题资料整理生化期末复习资料

2016—2017学年度第一学期 食品科学与工程学院《生物化学》期末考试试卷 注意事项:1. 考生务必将自己姓名、学号、专业名称写在指定位置; 2. 密封线和装订线内不准答题。 一、名词解释 (共8小题,每小题2.5分,共20分,答案写在试题第8页) 1. 蛋白质的一级结构 2. 变构效应 3. 透析 4. 增色效应 5.糖酵解 6. 三羧酸循环 7.半保留复制 8. 激素水平代谢调节 二、填空题(共40空,每空0.5分,共20分) 1、蛋白质可受 酸 、 碱 、或 酶 的作用而水解,最后彻底水解为各种 氨基酸 的 混合物。 2、酶活性中心与底物相结合那些基因团称 结合基因 ,而起催化作用的那些基因团称 催化基因 。 3、核酸完全水解的产物是 磷酸 , 含氮碱基 和 戊糖 。 其中 含氮碱基 又可分为 嘌呤 碱和 嘧啶 碱。 4、大多数蛋白质中氮的含量较恒定,平均为__16_%,如测得1克样品含氮量为10mg,则蛋白质含量为 __6.25__%。

5、由于蛋白质分子中的酪氨酸、色氨酸和苯丙氨酸在分子结构中含有__共轭__双键,所以在波长__280nm__处有特征性吸收峰,该特点称为蛋白质的__紫外吸收__性质。 6、当非竞争性抑制剂存在时,酶促反应动力学参数如下Km__不变__,Vmax__降低__。 7、决定蛋白质的空间构象和生物学功能的是蛋白质的__一__级结构,该结构是指多肽链中__氨基酸残疾__的排列顺序。 8、最适温度__不是__酶的特征性常数,它与反应时间有关,当反应时间延长时,最适温度可以__降低__。 9、DNA分子中,两条链通过碱基间的__氢键__相连,碱基间的配对原则是A对__T__、__G__对__C__。 10、三羧酸循环过程中有_____4______次脱氢和_____2____次脱羧反应;该循环的三个限速酶是___柠檬酸合成酶___、____异柠檬酸脱氢酶____和___α—酮戊二酸脱氢酶____ 11、tRNA的三叶草型结构中,其中氨基酸臂的功能是__与氨基酸结合___,反密码环的功能是__识别并结合mRNA__。 12、DNA复制时,连续合成的链称为__前导链__链;不连续合成的链称为__后随链__链。 13、RNA的转录过程分为__起始___、___延长___和__终止__三个阶段。 14、糖异生的主要器官是线粒体。 三、单项选择题(共10小题,每小题1分,共10分) 1.下面好有两个羧基的氨基酸是( D ) A.精氨酸 B.甘氨酸 C.色氨酸 D.谷氨酸 2.下列叙述中不属于蛋白质一级结构内容的是( C ) A.多肽链中氨基酸残基的种类、数目、排列次序 B.多肽链中氨基酸残基的键链方式 C.多肽链中主肽链的空间走向,如a-螺旋 D.胰岛分子中A链与B链间含有两条二硫键,分别是A7-S-S-B7,A20-S-S-B19 3.下列辅因子中,不包含腺苷酸的辅因子是( C ) A.CoA B.NAD+ C.FMN D.维生素C

生物化学期末考试重点

等电点:在某PH的溶液中,氨基解离呈阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的P H称为该氨基酸的等电点 DNA变性:某些理化因素会导致氢键发生断裂,使双链DNA解离为单链,称为DNA变性 解链温度(Tm):在解链过程中,紫外吸收值得变化达到最大变化值的一半时所对应的温度 酶的活性中心:酶分子中一些必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合,并将底物转化为产物,这一区域称为酶的活性中心 同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质、免疫学性质不同的一组酶 诱导契合:在酶和底物相互接近时,其结构相互诱导、相互变性、相互适应,这一过程为酶底物结合的诱导契合 米氏常数(Km值):等于酶促反应速率为最大反应速率一半时的底物浓度 酶原的激活:酶的活性中心形成或暴露,酶原向酶的转化过程即为。。 有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化 三羧酸循环:是指乙酰CoA和草酰乙酸缩合生成含3个羧基的柠檬酸,再4次脱氢,2次脱羧,又生成草酰乙酸的循环反应过程 糖异生:从非糖化合物转化为葡萄糖或糖原的过程称为。。 脂肪动员:指储存在脂肪细胞中的甘油三酯,被酯酸逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织,氧化利用的过程 酮体:是脂酸在肝细胞线粒体中β-氧化途径中正常生成的中间产物:乙酰乙酸、β-羟丁酸、丙酮脂蛋白:血浆中脂类物质和载脂蛋白结合形成脂蛋白 呼吸链:线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过连锁的氧化还原将代谢物脱下的电子最终传递给氧生成水。这一系列酶和辅酶称为呼吸链或电子传递链 营养必需氨基酸:体内需要而又不能自身合成,必须由食物提供的氨基酸 一碳单位:指某些氨基酸在分解代谢过程中产生的含有一个碳原子的基因 半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模极,按碱基配对规律,合成与模极互补的子链、子代细胞的DNA。一股单链从亲代完整的接受过来,另一股单链则完全重新合成。两个子细胞的DNA都和亲代DNA碱基序列一致,这中复制方式称为半保留复制 生物转化:机体对内外源性的非营养物质进行代谢转变,使其水溶性提高,极性增强,易于通过胆汁或尿液排出体外,这一过程为生物转化 氧化磷酸化:代谢物脱氢进入呼吸链,彻底氧化成水的同时,ADP磷酸化生成ATP,称为氧化磷酸化 底物水平磷酸化:底物由于脱氢脱水作用,底物分子内部能量重新分布生成高能键,使ATP磷酸化生成ATP的过程 密码子:在mRNA的开放阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸。这种三联体形成的核苷酸行列称为密码子 盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出称为盐析 糖酵解:葡萄糖或糖原在组织中进行类似的发酵的降解反应过程,最终形成乳酸或丙酮酸,同时释放出部分能量,形成ATP供组织利用 蛋白质的一级结构:指在蛋白质分子从N-端至C-端的氨基酸排列顺序 蛋白质的二级结构:多肽链主链骨架原子的相对空间位置。 蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。 蛋白质的四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用 DNA的空间结构与功能

生化复习重点及试题酶

生化复习重点及试题(酶) 一、知识要点 在生物体的活细胞中每分每秒都进行着成千上万的大量生物化学反应,而这些反应却能有条不紊地进行且速度非常快,使细胞能同时进行各种降解代谢及合成代谢,以满足生命活动的需要。生物细胞之所以能在常温常压下以极高的速度和很大的专一性进行化学反应,这是由于生物细胞中存在着生物催化剂——酶。酶是生物体活细胞产生的具有特殊催化能力的蛋白质。 酶作为一种生物催化剂不同于一般的催化剂,它具有条件温和、催化效率高、高度专一性和酶活可调控性等催化特点。酶可分为氧化还原酶类、转移酶类、水解酶类、裂解酶类、异构酶类和合成酶类六大类。酶的专一性可分为相对专一性、绝对专一性和立体异构专一性,其中相对专一性又分为基团专一性和键专一性,立体异构专一性又分为旋光异构专一性、几何异构专一性和潜手性专一性。 影响酶促反应速度的因素有底物浓度(S)、酶液浓度(E)、反应温度(T)、反应pH值、激活剂(A)和抑制剂(I)等。其中底物浓度与酶反应速度之间有一个重要的关系为米氏方程,米氏常数(Km)是酶的特征性常数,它的物理意义是当酶反应速度达到最大反应速度一半时的底物浓度。竞争性抑制作用、非竞争性抑制作用和反竞争性抑制作用分别对Km值与Vmax的影响是各不相同的。 酶的活性中心有两个功能部位,即结合部位和催化部位。酶的催化机理包括过渡态学说、邻近和定向效应、锁钥学说、诱导楔合学说、酸碱催化和共价催化等,每个学说都有其各自的理论依据,其中过渡态学说或中间产物学说为大家所公认,诱导楔合学说也为对酶的研究做了大量贡献。 胰凝乳蛋白酶是胰脏中合成的一种蛋白水解酶,其活性中心由 Asp102、His57及Ser195构成一个电荷转接系统,即电荷中继网。其催化机理包括两个阶段,第一阶段为水解反应的酰化阶段,第二阶段为水解反应的脱酰阶段。 同工酶和变构酶是两种重要的酶。同工酶是指有机体内能催化相同的化学反应,但其酶蛋白本身的理化性质及生物学功能不完全相同的一组酶;变构酶是利用构象的改变来调节其催化活性的酶,是一个关键酶,催化限速步骤。 酶技术是近年来发展起来的,现在的基因工程、遗传工程、细胞工程、

相关主题
文本预览
相关文档 最新文档