当前位置:文档之家› 精细化工中的催化加氢新技术

精细化工中的催化加氢新技术

精细化工中的催化加氢新技术
精细化工中的催化加氢新技术

精细化工行业产业链分析

精细化工行业产业链分析 一、精细化工定义及特点 一、精细化工定义 精细化工,是生产精细化学品工业的通称。 精细化工具有品种多,更新换代快;产量小,大多以间歇方式生产;具有功能性或最终使用性:许多为复配性产品,配方等技术决定产品性能;产品质量要求高;商品性强,多数以商品名销售;技术密集高,要求不断进行新产品的技术开发和应用技术的研究,重视技术服务;设备投资较小;附加价值率高等特点。 二、精细化工特点 (一)行业周期性较强 我国精细化工行业是受经济波动以及政策影响较大、周期性较强的行业,行业的周期性与经济增长的周期性保持较大的相关性,2008年以来,精细化工行业经历了2008年金融危机的大风大浪以及09年国家政策的扶持,2010年开始恢复其正常的发展态势,需求逐渐恢复、行业的景气程度缓慢回升,虽然2012年我国经济开始步入结构性调整,求质量、轻速度,精细化工行业在保持周期性的同时,行业发展步伐以及表现仍然要优于整个经济的表现。 (二)发展依赖科技创新 《石油和化学工业“十二五”发展指南》首次提出把培育壮大战略性新兴产业列为主要任务,争取到“十二五”末期形成一批以战略性新兴产业为主导的增长点,把精细和专用化学品率提高到45%以上。与此相关,化工新材料、高端专用化学品、生物质能源、生物化工和生物基高分子材料、新型煤化工等都被《指南》列入了发展方向。精细化工行业具备较高的技术壁垒,要求企业具有较强的新技术开发能力、技术升级能力和技术储备。企业核心技术及持续的研发能力是保证其高速成长的源泉。传统型精细化工产品向高新型精细化工产品转型的关键的桥梁就是技术,所以说科技创新是精细化工行业的重要生产力。 (三)“资源环境压力”和“市场需求潜力”使行业发展面临两难选择 中投顾问在《2016-2020年中国精细化工行业投资分析及前景预测报告》中指出,精细化工化学工业大多数是传统的“高能耗、高污染”行业,截至2012年,化工行业排放废水、废气、固体废弃物数量分别占全国工业“三废”排放总量的16%、7%和5%,位居第1、4、5位,和国外比,我国精细化工行业单位产品能耗水平明显偏高,而排放物处理率明显偏低,行业快速发展势必会带来资源环境问题。例如,我国农药实际使用药效只有35%,其余的65%均以污染源的形式排放到环境中。 市场需求潜力要求行业加快发展。近年来,发达国家大规模向外转移重化工业,造成相关产品的供求出现局部紧张,为我国发展精细化工行业带来机遇,日益增长的内需也为精细

催化加氢总结

催化加氢学习知识总结 一、概述 催化加氢是石油馏分在氢气的存在下催化加工过程的通称。 ?炼油厂的加氢过程主要有两大类: ◆加氢处理(加氢精制) ◆加氢裂化 ?加氢精制/ 加氢处理 ◆产品精制 ◆原料预处理 ◆润滑油加氢 ◆临氢降凝 ?加氢裂化 ◆馏分油加氢裂化 ◆重(渣)油加氢裂化 ?根据其主要目的或精制深度的不同有: ◆加氢脱硫(HDS) ◆加氢脱氮(HDN) ◆加氢脱金属(HDM) 加氢精制原理流程图 1-加热炉;2-反应器;3-分离器; 4-稳定塔;5-循环压缩机 ◆加氢裂化:在较高的反应压力下,较重的原料在氢压及催化剂存在下进行裂解和加 氢反应,使之成为较轻的燃料或制取乙烯的原料。可分为: ●馏分油加氢裂化 ●渣油加氢裂化 加氢精制与加氢裂化的不同点:在于其反应条件比较缓和,因而原料中的平均分子量和分子的碳骨架结构变化很小。 二、催化加氢的意义

1、具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2、产品收率高、质量好 普通的加氢反应副反应很少,因此产品的质量很高。 3、反应条件温和; 4、设备通用性 三、国内外几家主要公司的馏分油加氢裂化催化剂 四、加氢过程的主要影响因素 1 反应压力 反应压力的影响往往是通过氢分压来体现的,系统的氢分压取决于操作压力、氢油比、循环氢纯度和原料的汽化率等 ①汽油加氢精制 ?氢分压在2.5MPa~3.5PMa后,汽油加氢精制反应的深度不受热力学控制,而是取 决于反应速度和反应时间。 ?在气相条件下进行,提高反应压力使汽油的反应时间延长,压力对它的反应速度影 响很小,因此加氢精制深度提高。 ?如果压力不变,通过氢油比来提高氢分压,则精制深度下降。 ②柴油加氢精制 ?在精制条件下,可以是气相也可是气液混相。 ?处于气相时,提高反应压力使汽油的反应时间延长,因此加氢精制深度提高。 ?但在有液相存在时,提高压力将会使精制效果变差。氢通过液膜向催化剂表面扩散

精细化工企业汇总

华北地区 德固萨-赫斯太平洋有限公司 中化进出口总公司投资部 石家庄市化学试剂经销公司 中国昊华化工(集团)总公司 北京华盾塑料公司 北京高盟化工有限公司 天津利恒化工有限公司 北京市天润化工有限公司 张家口市宣化化工厂 北京实力克技术有限公司 河北省诚信有限责任公司(元氏县化工总厂) 张家口百特化工有限公司 保定市宝硕集团化工分公司 万德(天津)国际贸易有限公司 内蒙古阿拉善左旗腾格里化工有限责任公司 内蒙古伊科精细化学品有限公司 石家庄焦化集团有限责任公司技术开发中心 北京市海淀会友精细化工厂 北京派恩化学制品有限公司 河南濮阳市豫濮精细助剂科技有限公司 石家庄炼化永恒金属有限公司 天津市凯威化工有限公司 中化物产股份有限公司 北京舒伯伟化工仪器有限责任公司 天津港保税区国臣国际贸易有限公司 河北沧州大化新星工贸有限责任公司 JFE化工株式会社 河北华旭化工有限公司 东北地区 营口市石油化工研究所实验厂抚顺华丰化学有限公司锦州石油化工公司规化处 沈阳市宏城工贸有限公司化工厂黑龙江大学化工中试基地大庆石油管理局技术开发实业公司辽宁康博士制药有限公司盘锦市计划委员会大连金菊化工厂 哈尔滨时代科技发展有限公司辽宁锦华化工有限公司抚顺石化公司石化四厂 长春市大地精细化工有限责任公司吉化集团公司规划计划部吉林图们市兴华经济贸易有限公司抚顺石油化工公司石化三厂吉林医药设计院有限公司大连保税区业建贸易有限公司 盘锦辽河油田金环实业有限责任公司大庆市生产力促进中心抚顺投资策划中心 盘锦辽河油田金环实业有限责任公司

华东地区 杭州南郊化学厂温州市泰昌化工有限公司浙江建德建业有机化工有限公司 浙江省金华县双宏化工有限公司无锡市惠山农药厂金坛市盛丰化工有限公司 常州化工厂有限公司山东省新波化工有限公司(恒台县化工厂) 山东华润博信油脂化学有限公司 山东东营胜利电化有限责任公司科莱恩化工(中国)有限公司宜兴市新宇化学品厂 江苏昆山超微粉碎机厂宜兴市菲达化工厂上海石化股份有限公司科技开发公司 江苏宿迁禾友化肥有限公司南通市东昌化工实业公司无锡华野精细化工有限公司 赛拉尼斯远东有限公司上海代表处安徽安发酿造有限公司南京化工厂 滕州吉田香料有限公司铜陵化工集团有机化工公司上海利辛化工有限公司 山东金岭集团公司青岛扶桑精制加工有限公司安徽省望江县生物化工厂 巨化集团公司经济技术发展委员会浙江黄岩永安化工厂扬州晨化科技集团有限公司 江苏常州康瑞化工有限公司江苏昆山化学原料厂青岛化工研究院进出口部(青岛和兴公司) 杭州龙山化工有限公司江苏永联集团公司精细化工厂(江阴农药厂)青岛化工学院应用化学研究所(颐中实业公司) 滁州市化肥厂青岛帝科精细化学有限公司淄博福琛精细化工有限公司 山东省胜利油田钻井泥浆助剂厂福建连城合成氨厂山东新泰市利明塑料助剂有限公司 江苏省泰兴经济开发区管理委员会山东莱芜市宏鲁精细化工有限公司江苏北方氯碱集团有限公司 黄山市曙光化工有限公司恒华(苏州)化学品有限公司浙江艳棱股份有限公司 上海中化河北进出口公司山东中舜科技发展有限公司南通凯美特贸易有限公司 江苏国际经济技术合作公司化工进出口分公司靖江市强力干燥设备厂万达集团股份有限公司 浙江兄弟实业发展公司浙江江山化工股份有限公司连云港泰乐化学工业有限公司 青岛三力化工技术有限公司浙江丽水有邦化工有限公司寿光富康制药有限公司 南京恒信达化工有限公司上海经纬化工有限公司曲阜圣邦化工有限公司 上海博纳科技发展有限公司常州新华化学制品有限公司中化宁波进出口有限公司 中国石化上海石油化工研究院厦门中坤化学有限公司浙江嘉善三方玻璃钢有限责任公司 江苏省江都市仁达精细化学厂江苏泰州石油化工总厂上海立得催化剂有限公司 福建省永安智胜化工有限公司丹阳中超化工有限公司寿光市海洋化工有限公司 江西武藏野生物化工有限公司山东天力干燥设备有限公司青岛恒科精细化工有限公司 烟台信谊化工有限公司无锡市永成机械制造有限公司福建省邵武市永飞化工有限公司 上海华彩精细化工有限公司浙江利民化工有限公司杭州电化集团有限公司 浙江吉利达化工有限公司山东齐鲁增塑剂股份有限公司苏州百氏高化工有限公司 山东泰山染料股份有限公司常州武进庙桥合成化工有限公司常州市常成能源设备有限公司 青岛凯美得工贸有限公司如皋市恒祥化工有限公司《精细化工原料及中间体》编辑部 中南地区 湖北荆州市汉科新技术公司广东开平市德力精细化工公司河南濮阳市豫濮精细助剂科技有限公司揭阳市路源股份有限公司湖北富驰化工医药股份有限公司湖北楚星工贸集团有限公司河南赊店生化有限公

加氢裂化装置掺炼催化柴油技术工业应用实践

加氢裂化装置掺炼催化柴油技术工业应用实践 发表时间:2019-09-01T18:59:57.400Z 来源:《防护工程》2019年12期作者:薛晓阳 [导读] 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。 中国石油哈尔滨石化公司 150030 摘要:随着社会日益发展的需要和原油的日益劣质化、重质化,以及环境的污染,国家对干净、清洁的能源燃料越来越重视,而蜡油加氢裂化技术是原油深度加工生产清洁燃料的重要方式,所以在未来加氢裂化技术将会越来越普遍和推广。本文就以美国UOP公司的 Unicraking两段加氢裂化工艺技术为例进行实践论证。 关键词:加氢裂化;?催化柴油;?产品质量; 1 装置概况 为了适应全厂生产的灵活性,本装置设计为全循环和60%转化率两种工况。设计加工来自国外的减压蜡油,经过加氢脱硫、加氢脱氮、加氢裂化等反应,生产优质的轻、重石脑油、航煤和柴油产品,加氢尾油作为催化裂化装置原料。本装置反应的部分流程如下: 图1 装置反应部分流程 2?催化剂分布及原料性质 2.1 催化剂分布 本装置一段反应器共六个床层,其中第一床层到第四床层为加氢精制床层,催化剂型号分别为CT-30、KF-542、KG-5、HYT-8109、HYT-8119、KF-848 (再生) 、HYT-6219,第五床层和第六床层为加氢裂化床层,催化剂型号为HC-115LT (再生) ,反应器底部后精制剂型号为KF-851 (再生) 。 表1 原料油性质分析对比表 2.2 原料性质及特点 本装置自开工正常运转一段时间后,为了维持全厂物料平衡和实现效益最大化,开始在原料油中掺入催化柴油,并逐步增加至60 t/h。如表1所示为在总进料量330 t/h不变的情况下,原料中未掺入以及掺入20 t/h、40 t/h及60 t/h数量催化柴油组成的滤后原料油的主要性质参数。在整个掺炼观察期间,装置正常运行,各产品质量合格。 通过表1原料油性质分析对比表可以看出随着催化柴油掺炼比例的提高,混合原料油的密度逐渐增大,氮含量、硫含量所占比例都有相应的升高,这与催化柴油高硫、高氮性质特点相吻合,但由于本装置氮含量设计要求不大于867 mg/kg,所以为保证本装置催化剂失活速率在正常范围内,建议在装置运行前期,当混合原料油中氮含量大于867mg/kg时,操作人员应密切关注原料油性质及反应器床层温度变化。随掺炼比例的增加,初馏点温度呈现下降趋势和350℃馏出量所占体积分数逐渐增大的情况来看,催柴中含有一定比例的小分子轻组分;根据混合原料终馏点温度的逐渐上升和500℃馏出量所占体积分数下降的情况,得出催化柴油中同时含有大量的单环和多环芳烃,使得混合后

精细化工公司职业卫生管理制度汇编

山东同创精细化工股份有限公司 职业卫生管理制度汇编 编制人:孙光凡 审核人:刘明田 审批人:李庆勇 二〇一三年五月一日

目录 职业危害防治责任制度 (3) 职业卫生危害警示与告知制度 (15) 职业健康宣传教育培训制度 (19) 职业危害申报制度 (21) 劳动防护用品管理制度 (22) 职业危害日常监测管理制度 (24) 职业健康监护档案管理制度........ (28) 职业危害防护设施维护检修制度 (29) 职业危害事故处置与报告制度 (32) 职业危害因素防治规章制度 (34) 建设项目职业卫生“三同时”管理制度 (35) 职业危害应急救援与管理制度 (37) 法律、法规、规章规定的其他职业病防治制度 (41)

职业病危害防治责任制度 第一章总则 第一条目的 为贯彻执行国家有关职业病防治的法律、法规、政策和标准,加强对职业病防治工作的管理,提高职业病防治的水平,切实保障劳动者在劳动过程中的职业健康与安全,实现公司所确定的职业健康安全目标,促进企业的经济发展,根据《中华人民共和国职业病防治法》第五条的规定,特制定本制度。 第二条适用范围 本公司各单位 第三条术语\定义 1、职业病:是指企业的劳动者在职业活动中,因接触粉尘,放射性物质和其他有毒、有害物质等因素而引起的疾病。 2、职业病危害:是指对从事职业活动的劳动者可能导致职业病的各种危害,职业病危害因素包括:职业活动中存在的各种有害化学、物理、生物因素以及在过程中产生的其他职业有害因素。 3、职业禁忌症:是指企业员工从事特定职业、接触特定职业病危害,在从事作业过程中诱发可能导致对他人生命健康构成危害的疾病,及个人特殊生理和病理状态。 4、有害作业:是指在生产环境和过程中存在的可能影响健康的因素(包括物理因素、化学因素、生物因素等)。 第二章组织机构 第四条组织机构与责任 设立职业健康管理工作领导小组,总经理全面负责职业危害防治工

精细化工

[转]精细化工复习题2012 1 精细化工产品在日本分36类,在中国分11类; 2 .食品酸味剂中用量最大的是柠檬酸; 3胶黏剂常用的基料(或黏料)有天然聚合物、合成聚合物、无机化合物; 4 表面改性剂特点:无机改性,有机改性,复合改性; 5表面活性剂从结构上看均为两亲分子,即同时具有亲水的极性基团和亲油非极性基团; 6 黏合剂定义:填充于两个物件之间将其连接在一起并有足够强度的一类物质,简称胶. 7黏合剂分类:按主体材料分无机和有机,按黏接强度分为结构型和非结构型,按固定方式分为室温和高温型,按外观分为液态和固态。 8 环氧树脂胶黏剂,俗称万能胶; 9 环氧树脂性能指标:环氧值,环氧当量; 10 乳白胶的化学名:聚醋酸乙烯黏合剂,产品在我国合成胶中占第二位; 11 俗称快干胶和瞬干胶的化学名:α-氰基丙稀酸脂胶粘剂; 12 聚乙烯醇1799型水解度99.7-100℅,1788型水解度87-89℅; 13 涂料在我国化工产品产量排前三位; 14 涂料命名原则:颜色+成膜物质+基本名称; 15 涂料的型号命名原则:成膜物质+基本名称+序号; 16 干性油的碘量﹥140,半干性油碘量125-140,不干性油碘量﹤125; 17 涂料由成膜物质,颜色及填料,助剂和溶剂组成; 18 表面活性剂的分子会产生凝聚而生成胶束,开始出现这种变化的极限浓度称为临界胶束浓 度,简称CMC; CMC越小,则表面活性剂形成胶涑的浓度越低 19亲水亲油平衡值HLB,是表面活性剂的亲水亲油性好坏的指标,0~40, HLB值越大,亲水性越强, HLB值在2-6时为W/O型,表示亲水型,

20. HLB在12-18时,为O/W型表示水包油型 21. 控制HLB值,则离子型表面活性剂,根据亲油基的增减和亲水基种类的变化; 22. 表面活性剂分子中,亲水基在分子中间的润湿性强,亲水基在末端的,去污力强; 23. 阴离子表面活性剂 AES 脂肪醇聚氧乙烯醚硫酸盐 SAS 仲烷基磺酸盐 24. 拉开粉化学名:二异丁基萘磺酸钠 25. 浊点是衡量非离子型表面活性剂的亲水性 26. 非离子表面活性剂的主要品种AEO,化学名脂肪醇聚氧乙烯醚 27. 咪唑啉型是两性表面活性剂中产品和商品种类最多,应用最广 28. 洗涤剂按用途分为家用型和工业型 29. 根据洗涤去污能力不同,可分为轻垢型和重垢型 30. 洗涤剂是按一定的配方配制的专用化学品,其目的是提高洗涤力 31. 洗涤助剂可分为无机助剂和有机助剂 32. 直链烷基苯磺酸钠(LAS)的工业生产过程主要包括:正构烷基苯的生产,烷基苯的磺化, 烷基苯磺酸中和 33. 正构烷烃提取方法有尿素络合法和分子筛法 34. 阳离子表面活性剂的亲水基的引入方法:直接连结和间接连接 35. 对于碳氢链亲油基,直链易于生物降解; 36. 目前增塑剂中用量最大的是邻苯二甲酸酯(丁酯DBP 辛酯DOP) 37.烷基苯磺酸钠其结构简式为其中烷基苯基为亲油基,磺酸基为亲水基。 38.两性表面活性剂的亲水部分至少含有一个阳离子基与一个阴离子基,理论上它在酸性介质中表现为阳离子,在碱性介质中表现为阴离子,在中性介质中表现为两性离子 39.食品抗氧化剂按溶解性不同可分为水溶性、油溶性两类。40.磷酸是构成可乐风味不可缺少的酸味剂。41. 油脂制皂时,油脂预处理的过程包括脱胶、脱酸、脱色、脱臭四个处理工序,。42.无机胶黏剂按化学组分可分为硅酸盐、磷酸盐、硫酸盐、硼酸盐、氧化物等。 43、热熔胶是以热塑性树脂为基体的无溶剂胶黏剂,是一种在热熔状态下进行涂布,冷却后固

适应用户需求的催化柴油加氢改质技术

适应用户需求的催化柴油加氢改质技术 摘要:针对国内炼油企业在柴油质量升级中所面临的问题,抚顺石油化工研究院开发了系列催化柴油加氢改质技术。工艺研究和工业应用结果表明抚顺石油化工研究院所开发的系列技术各具特点,用户可以根据自身不同的需求选择适宜的相关技术,生产满足清洁燃料标准的高品质油品。 关键词:催化柴油加氢清洁燃料 前言 催化裂化(FCC)技术是重油轻质化的主要工艺手段之一,在世界各国的炼油企业中都占有比较重要的地位。而催化裂化工艺技术的主要特点是对进料中的链烷烃和环烷烃进行裂解,对芳烃基本不具备破环的能力,因此在催化裂化柴油中通常富集了大量稠环芳烃。催化裂化柴油的硫含量和芳烃含量高,发动机点火性能差,属于劣质的柴油调和组分,在国外主要用于调和燃料油、非车用柴油和加热油等。而在我国,由于石油资源的紧缺,催化柴油还主要是加氢精制或加氢改质后用于调和柴油产品,统计资料表明中国石化所属炼油企业所生产的催化柴油中的85%用于普通柴油的生产。 近年来,随着国内所加工原油质量的日益重质化,催化裂化所加工的原料也日趋重质化和劣质化,加之许多企业为了达到改善汽油质量或增产丙烯的目的,对催化裂化装置进行了改造或提高了催化裂化装置的操作苛刻度,导致催化裂化柴油的质量更加恶化。目前,国内炼油企业所生产的催化柴油的芳烃含量通常会达到45%~80%,十六烷值在20~35左右,随着环保法规的日趋严格,企业所面对的产品质量升级压力日益增加。 中国石化是中国最大的一体化能源化工公司之一,也是国内最大的石油、石化产品生产商和供应商,为全社会提供高品质的清洁油品是中国石化所承担的重要任务和责任。抚顺石油化工研究院作为中国石化直属科研单位,多年来在加氢催化剂和工艺技术开发上开拓创新,研发了系列可以满足炼油企业实际生产需求的加氢催化剂和工艺技术,为企业产品质量升级提供助力。 1 催化柴油加工难点 对于炼油企业而言,柴油馏分主要是由常减压、催化裂化、延迟焦化和加氢裂化4 类装置生产的。如表1中国石化炼油事业部装置数据集统计数据显示,2008年催化柴油在中国石化所生产柴油构成中所占比例为17.8%。虽然从中国石化整体上看催化柴油所占比例并不大,但由于各炼油企业的规模、原油性质以及装置构成等方面的不同,这个比例在不同企业的差别较大,有的企业催柴所占比例超过了30%。目前,在中国石化所属企业催化柴油主要用于:加氢后作为普通柴油的调和组份,这种用途目前最为广泛,据统计有85%或更多的催化柴油用于普通柴油的生产;用于船舶燃料生产,需求量相对较小,市场流动性强,主要集中在沿海和沿江地区;作为工业燃料销售,用于陶瓷厂或者发电厂,主要集中于广东和浙江2 省,消耗量低于1.0 Mt/a。 表1 中国石化2008年柴油馏分构成及主要性质 产量/(Mt·a-1) 构成比例,(wt)% 十六烷值总芳烃,(wt)%

精细化工简介及其发展研究

精细化工简介及其发展研究 厦门大学化学化工学院化学系张大乐 20420092201337 【概述】精细化工是当今化学工业中最具活力的新兴领域之一,是新材料的重要组成部分。精细化工产品种类多、附加值高、用途广、产业关联度大,直接服务于国民经济的诸多行业和高新技术产业的各个领域。大力发展精细化工己成为世界各国调整化学工业结构、提升一化学工业产业能级和扩大经济效益的战略重点。 【关键词】精细化工范文分类产品现状前景 一、精细化工简介 (一)概念 精细化工,是生产精细化学品工业的通称。具有品种多,更新换代快;产量小,大多以间歇方式生产;具有功能性或最终使用性:许多为复配性产品,配方等技术决定产品性能;产品质量要求高;商品性强,多数以商品名销售;技术密集高,要求不断进行新产品的技术开发和应用技术的研究,重视技术服务;设备投资较小;附加价值率高等特点。 (二)精细化工包括的范围及产品的分类 精细化工包括的范围各国也不甚一致,大体可归纳为:医药、农药、合成染料、有机颜料、涂料、香料与香精、化妆品与盥洗卫生品、肥皂与合成洗涤剂、表面活性剂、印刷油墨及其助剂、粘接剂、感光材料、磁性材料、催化剂、试剂、水处理剂与高分子絮凝剂、造纸助剂、皮革助剂、合成材料助剂、纺织印染剂及整理剂、食品添加剂、饲料添加剂、动物用药、油田化学品、石油添加剂及炼制助剂、水泥添加剂、矿物浮选剂、铸造用化学品、金属表面处理剂、合成润滑油与润滑油添加剂、汽车用化学品、芳香除臭剂、工业防菌防霉剂、电子化学品及材料、功能性高分子材料、生物化工制品等40多个行业和门类。随着国民经济的发展,精细化学品的开发和应用领域将不断开拓,新的门类将不断增加。精细化学品这个名词,沿用已久,原指产量小、纯度高、价格贵的化工产品,如医药、染料、涂料等。但是,这个含义还没有充分揭示精细化学品的本质。近年来,各国专家对精细化学品的定义有了一些新的见解,欧美一些国家把产量小、按不同化学结构进行生产和销售的化学物质,称为精细化学品(fine chemicals);把产量小、经过加工配制、具有专门功能或最终使用性能的产品,称为专用化学品(specialty chemicals)。中国、日本等则把这两类产品统称为精细化学品。 精细化工产品的范围十分广泛,如何对精细化工产品进行分类,目前国内外也存在着不同的观点。通常是按照结构分类。由于同一类结构的产品,功能可以完全不同,应用对象也不同,因而按结构分不便应用。也有按照大类属性分为精细无机化工产品、精细有机化工产品、精细高分子化工产品和精细生物化工产品四类。这种分类方法又显得粗糙。目前国内外较为统一的分类原则是以产品的功能来进行分类。据日本《精细化学品年鉴》报道,1985年将精细化学品分为35类,1990年扩大为36类。分别是:医药、农药、合成染料、有机颜料、涂料、粘合剂、香料、化妆品、表面活性剂、肥皂、洗涤剂、印刷油墨、有机橡胶助剂、照相感光材料、催化剂、试剂、高分子絮凝剂、石油添加剂、食品添加剂、兽药、饲料添加剂、、纸及纸浆用化学品、塑料添加剂、金属表面处理剂、芳香消臭剂、汽车用化学品、杀菌防霉剂、脂肪酸、稀土化学品、精密陶瓷、功能性高分子、生化制品、酶、增塑剂、稳定剂、混凝土外加剂、健康食品、有机电子材料等。 (三)精细化学品的特点 精细化学品的品种繁多,有无机化合物、有机化合物、聚合物以及它们的复合物。生产技术上所具有的共同特点是: ①品种多、更新快,需要不断进行产品的技术开发和应用开发,所以研究开发费用很大,

3催化转移加氢及其在有机合成中的应用

有机化工与催化 收稿日期:2003212215 作者简介:郑纯智(1972-),男,博士研究生,讲师,主要从事催化及有机合成方面的研究。 催化转移加氢及其在有机合成中的应用 郑纯智,张继炎,王日杰 (天津大学化工学院工业催化科学与工程系,天津300072) 摘 要:催化转移加氢法是有机合成中常用的一种加氢方法,由于使用的氢源不是氢气,而是其他一些含有氢的多原子化学物质,使得其加氢过程与用氢气的加氢过程相比,具有安全性高、反应温度低、设备要求低和选择性高等优点。催化转移加氢法在均相有机合成中的应用十分广泛,尤其在不对称合成中应用更为广泛。此外,在多相催化加氢中也有十分广泛的用途,并对催化转移加氢法的特点及在有机合成中的主要用途进行了评述。关键词:催化转移加氢;氢解;氢给予体;有机合成 中图分类号:O643.38;TQ426.94 文献标识码:A 文章编号:100821143(2004)0320029207 C atalytic transfer hydrogenation and its application in organic synthesis ZH EN G Chun 2z hi ,ZHA N G Ji 2yan ,W A N G Ri 2jie (Department of Catalysis Science and Technology , Faculty of Chemical Engineering ,Tianjin University ,Tianjin 300072,China ) Abstract :Catalytic transfer hydrogenation is a method widely used in organic synthesis ,using other hydrogen 2containing multi 2atoms substance as the hydrogen sources instead of hydrogen.This method features high safety ,low reaction temperature ,low requirement on equipment and higher selectivity.It is widely adopted in both homogeneous organic synthesis ,especially in asymmetric synthesis ,and heterogeneous https://www.doczj.com/doc/b011128403.html,test advances in catalytic transfer hydrogenation were reviewed.K ey w ords :catalytic transfer hydrogenation ;hydrogenolysis ;hydrogen donor ;organic synthesis C LC number :O643.38;TQ426.94 Docum ent code :A A rticle I D :100821143(2004)0320029207 催化转移加氢(CTH )是有机合成中的一种有效还原手段。它采用含氢的多原子分子作氢源(称作氢给予体,如甲酸及其盐、肼、烃、醇等),反应中氢从氢给予体转移给反应底物(氢受体)。由于反应中不直接使用H 2,且多在常压下进行,反应温度较低,对设备要求也不高,因此,降低了反应的危险性。此外,CTH 反应中氢源的多样性又为提高反应的选择性提供了一种新途径。因此,无论在实验室还是工业生产中,CTH 法均具有广阔的应用前景。 Sivanandaiah K M 与其合作者早在20世纪30 年代就开始进行CTH 的研究,但由于早期研究不够成功,产率一般,因而未能得到重视。随着催化剂 负载量的增大和不同有效氢给予体的出现,情况发生了很大改变。现在此法已越来越受到人们的重视,并已有以工业化为目的的研究[1]。虽然国内有研究者事实上在反应中使用了CTH 法,但多数集中于均相催化剂的应用,而采用多相催化[2-4]的则较少,更无人对其近期的进展进行系统的报道。为此,本文对CTH 法的反应条件及应用范围等的近期研究进行评述等。 1 反应条件 在CTH 反应的研究中,几个关键的条件是:催化剂及其制备条件,氢给予体种类,反应温度, 2004年3月第12卷第3期 工业催化INDUSTRIAL CA TAL YSIS Mar.2004 Vol.12 No.3

精细化工论文

精细化工论文 国内外精细化工现状及发展趋势 摘要: 概述了国内外精细化工的发展趋势及技术创新,并提出了我国精细化工需要解决的主 要问题和今后的发展。 关键词:精细化工,发展创新,趋势。 Fine chemicalindustry at home and abroad currentsituation and development trend Kong ling wei Abstract: Overview of the fine chemical industry at home and abroad and the development trend of the technology innovation, and put forward China's fine chemical industry need to solve problems and future development. Key words: Fine chemical ,Development and innovation ,Trend. 引言: 化学工业的发展过程是人类利用自然资源逐步深人的过程,即由初级加工逐步向 深度加工发展,即由初级加工逐步向深度加工发展,由一般加工逐步向精细加工发展,由主要生产大批量通用的基础材料逐步向既生产基础材料又生产小批量多品种的专用产品发展的过程。精细化工是以高新技术为基础,以市场需求为导向,以产品具有特定功附加价值高、小批量、多品种、系列化为特点的化学工业。我国的精细化工行业已有较好的基础和一定的生产规模,大部分产品已基本能满足国内市场的需求,有的还有相当数量的出口。但是我国精细化工行业与国外同行业相比,还有很大的差距,还需要不断的开创新的工业技术。 1 世界精细化工总体发展态势 世界精细化工总体发展态势综观近20多年来世界化工发展历程,各国、尤其是美国、欧洲、日本等化学工业发达国家及其著名的跨国化工公司,都十分重视发展精细化工,把精细化工作为调整化工产业结构、提高产品附加值、增强国际竞争力的有效举措,世界精细化工呈现快速发展态势,产业集中度进一步提高[1]。进入21世纪,世界精细化工发展的显著特征是:产业集群化,工艺清洁化、节能化,产品多样化、专用化、高性能化。受损细菌恢复的缺陷,故适用于实验室、生产现场和野外环境工作使用。 1.1 生产现状 国际石化工业以处于技术相对成熟的阶段,生产经营竞争激烈,导致利润明显下降。 国外大型炼化企业从两方面努力追求投资回报。一是致力于生产如千万吨的炼油装置、百万吨级装置规模大型化,乙烯装置、数十万吨级的基本原料装置,以追求规模效益,力求降低成本;二是利用其技术优势,集中力量,加快产品结构调整的步伐在石油化工高度发展的基础上,积极开展石油化工的。1深度加工及裂解产物(C4、C5、 C9、C10等)的综合利用,致力于中小吨位有机原料和精细化学品的生产,依靠技术保持效益。1997年全球化学工业的销售额约15000亿美元,1986年为300亿美元,年均增长率为6﹪。精细化学品产值为 450-500亿美元,比1986年的140亿美元增长近3倍,年均增长率为12%。专业化学品的发展也很快,已由1986年的900亿美元上升到1996年的约2400亿美元,年均增长率约10%。由此可见,精细和专用化学品的生产是国际化学工业发展的重点[2] 。 1.2 发展趋势 以大型石化装置为龙头发展精细化工,在精化工生产成本中,原料所占比例极低。大型石化企业可以对产品进行深加工,生产出下游产品,直接投向市场,另外,对副产品进行综合利

催化柴油MCI工艺技术

催化柴油MCI工艺技术 ?催化柴油MCI工艺技术应用概况 ?催化柴油MCI工艺的理论基础 ?催化柴油MCI技术对催化剂的要求 ?催化柴油MCI技术对不同原料的适应性 ?催化柴油MCI工业应用效果 催化柴油MCI工艺技术应用概况 我国目前的柴汽比较低,柴油数量满足不了市场的需求。柴油中的三分之一是催化裂化柴油。催化柴油中含有较多的杂原子化合物、烯烃和芳烃,颜色不好,安定性较差,尤其是十六烷值很低。随着重油催化裂化技术的发展和掺渣量的增加,催化柴油的质量问题变得更为突出。 当前国内外普遍采用的劣质催化柴油改质手段是加氢精制和加氢裂化。催化柴油加氢精制,是在中、低压的条件下,进行烯烃加氢饱和、脱硫、脱氮及芳烃部分饱和反应,可改善其颜色和安定性,而十六烷值提高幅度较小,尤其是加工劣质原料的催化装置,其催化柴油通过加氢精制远不能满足产品对十六烷值的要求。 近几年开发的劣质柴油中压加氢改质工艺,是中压下的一种加氢裂化过程,转化率一般为40%~60%,虽然其柴油产品的十六烷值较原料可提高10~20个单位,但柴油收率低,化学氢耗高,不适应国内市场的需求。因此,开发一种既能最大限度提高柴油十六烷值,又能得到较高的柴油收率的劣质催化柴油改质技术,是人们普遍关注的课题。 抚顺石油化工研究院新开发的一种提高催化柴油十六烷值的加氢改质工艺技术(Maximum Cetane number Improvement,简称MCI)。该技术在吉林化学工业公司炼油厂20万吨/年加氢装置应用成功后,先后有7家炼厂采用该技术。该技术不仅能大幅度提高催柴的十六烷值,同时还能获得较高的柴油收率,获得2001年度国家科技发明二等奖,具有显著的经济效益和社会效益,有可观推广应用前景。 催化柴油MCI工艺的理论基础 众所周知,石油产品的烃类族组成直接影响产品的性质。十六烷值是柴油燃烧性能的重要指标。柴油馏分中,链烷烃的十六烷值最高,环烷烃次之,芳香烃的十六烷值最低。同类烃中,同碳数异构程度低的烃类化

-----中国精细化工的现状和发展前景

-----中国精细化工的现状和发展前景

中国精细化工的现状和发展前景摘要:阐述了中国传统精细化工和新领域精细化工的现状,对今后的发展进行了预测。 关键词:精细化工;现状;发展;预测 Abstract:Expounding the present condition of the traditional and new field fine chemical industry as well as prospect of the development of the fine chemical industry from now on in China. Key words:fine chemical industry;present condintion;development; forecast 一、中国精细化工的定义 中国和日本把产量小、组成明确,可按规格说明书进行小批量生产和小包装销售的化学品,以及产量小,经过加工配制,具有专门功能,既按其规格说明书,又根据其使用效果进行小批量生产和小包装销售的化学品,统称为精细化学品。而欧美一些国家把前者称为精细化学品,把后者称为专用化学品。精细化学品起到“工业味精”、“工业催化剂”、和其他特殊功能的作用。 中国把生产精细化学品的工业称为精细化学工业,简称精细化工。精细化工生产过程与一般化工(通用化工)生产不同,它是由化学合成(或从天然物质中分离、提取)、精制加工和商品化等三个部分组成,大多以灵活性较大的多功能装置和间歇方式进行小批量生产,化学合成多数采用液相反应、流程长、精制复杂、需要精密的工程技术;从制剂到商品化需要一个复杂的加工过程,主要是迎合市场要求而进行复配,外加的复配物愈多,产品的性能也愈复杂。因此,精细化工技术密集程度高、保密性和商品性强、市场竞争激烈。必须要根据市场变化的需要及时更新产品,做到多品种生产,使产品质量稳定,还要符合各种法规,做好应用和技术服务,才能培育和争取市场、扩大销路,才能体现出投资省、利润率和附加价值率高的特点。 1987年,原化学工业部对中国的精细化品颁布了一个暂行规定,将中国的精细化学品分为农药、染料、涂料(包括油漆和油墨)、颜料、试剂和高纯物、信息用化学品(包括感光材料和磁性记录材料)、食品和饲料添加剂、粘合剂、

催化加氢技术及催化剂讲解

催化加氢技术及催化剂 作者: buffaloli (站内联系TA) 发布: 2009-03-03 一、意义 1.具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2.产品收率高、质量好,普通的加氢反应副反应很少,因此产品的质量很高。 3.反应条件温和; 4.设备通用性 二、催化加氢的内容 1.加氢催化剂 Ni系催化剂 骨架Ni (1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。 (2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱

的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 (3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3>NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。 (4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。 (5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。 其它镍系催化剂 从1897年Sabatier将乙烯和氢气通到还原镍使之生成乙烷开

精细化工是什么

精细化工是综合性较强的技术密集型工业。首先,生产过程中工艺流程长、单元反应多、原料复杂、中间过程控制要求严格,而且应用涉及多领域、多学科的理论知识和专业技能,其中包括多步合成,分离技术,分析测试、性能筛选、复配技术、剂型研制、商品化加工、应用开发和技术服务等。 精细化工是当今化学工业中最具活力的新兴领域之一,是新材料的重要组成部分。精细化工产品种类多、附加值高、用途广、产业关联度大,直接服务于国民经济的诸多行业和高新技术产业的各个领域。大力发展精细化工己成为世界各国调整化学工业结构、提升一化学工业产业能级和扩大经济效益的战略重点。国家适时出台相关政策,构建产学研相结合的新型技术创新组织--国家精细化工产业技术创新战略联盟,以此来促进国家精细化工产业结构优化升级和提升行业整体竞争力。精细化工率(精细化工产值占化工总产值的比例)的高低己经成为衡量一个国家或地区化学工业发达程度和化工科技水平高低的重要标志。 1986年3月6日,化工部为了统一精细化工产品的口径,加快调整产品结构,发展精细化工,特对精细化工产品的分类暂作如下规定,今后计划、规划、统计等口径都以此为准。 内容 精细化工产品包括以下11个产品类别:

1.农药;2.染料;3.涂料(包括油漆和油墨);4.颜料;5.试剂和高纯物;6.信息用化学品(包括感光材料、磁性材料等能接受电滋波的化学品);7.食品和饲料添加剂;8,粘合剂;9.催化剂和各种助剂;10. 化工系统生产的化学药品(原料药)和日用化学品。 11. 高分子聚合物中的功能高分子材料(包括功能膜、偏光材料等)。 其中,催化剂和各种助剂,包括以下内容: ⑴催化剂:炼油用催化剂、石油化工用催化剂、有机化工用催化剂、合成氨用催化剂、硫酸用催化剂、环保用催化剂、其他催化剂。 ⑵印染助剂:柔软剂、匀染剂、分散剂、抗静电剂、纤维用阻燃剂等。 ⑶塑料助剂:增塑剂、稳定剂、发泡剂、塑料用阻燃剂等。 ⑷橡胶助剂:促进剂、防老剂、塑解剂、再生胶活化剂等。 ⑸水处理剂:水质稳定剂、缓蚀剂、软水剂、杀菌灭藻剂、絮凝剂等。 ⑹纤维抽丝用油剂:涤纶长丝用油剂、涤纶短丝用油剂、锦纶用油剂、睛纶用油剂、丙纶用油剂、维纶用油剂、玻璃丝用油剂等。 ⑺有机抽提剂:吡咯烷酮系列、腊肪烃系列、乙腈系列、糠醛系列等,

加氢裂化柴油回炼技术探讨

龙源期刊网 https://www.doczj.com/doc/b011128403.html, 加氢裂化柴油回炼技术探讨 作者:臧晖 来源:《科学大众》2019年第12期 摘; ;要:文章在分析加氢裂化柴油回炼技术的基础上,进行了小型回炼实验。实验结果表明,通过对比加氢柴油、加氢蜡油的单独反应情况,在运用混合原料进行实验后,低价值产物产率会下降,总液体收率会有所增加。分别选择了两种工况进行工业生产验证,实践证明该技术路线是可行的。 关键词:加氢裂化柴油;加氢;回炼技术 加氢裂化工艺技术对原料油适应性强,具有可大量生产优质中间馏分油产品、液体产品收率高并且灵活调整产品结构等优点,是炼油企业提高柴汽比的最有效的重油加工技术和清洁生产技术。因此,加氢裂化及加氢精制工艺和技术越来越受到世界各大石油公司的重视,加氢装置的建设和技术的开发得以更快地发展。近年来,我国加氢裂化及加氢精制技术的开发和应用得到快速发展,在低利润、高竞争性的炼油行业中,如何提高产品收率成为工艺流程研究的重点,这就需要应用新技术进行柴油的回炼,可使炼油企业在减少投入和操作成本的情况下,改善产品结构,提高目的产品收率。 1; ; 加氢回炼技术原理 一般情况下,催化柴油的转化有两种方式,一种是催化裂化,另一种是加氢裂化。无论是采用哪种技术,其技术开发点都是以催化柴油组成特点为基础的。其技术路线可分为4种:第一种是加氢精制。要么直接加工催化柴油,要么在直馏柴油中加入10%左右的催化柴油,这样就可有效增加十六烷值单元。第二种是加氢改质。主要就是指运用加氢裂化剂、加氢精制剂,实现烯烃、芳烃等的饱和加氢,以此达到增加十六烷值单元的目的。比如催化柴油深度加强处理技术、提高催化柴油十六烷值的加氢改质工艺技术就是以此为原理的。第三种是利用加氢装置掺入部分催化柴油,并进行回炼,主要就是实现柴油的深度转化。第四种是加氢-催化裂化组合技术,即在加氢装置的基础上,进行柴油加氢或蜡油加氢,然后将其与精制蜡油进行混合,作为装置原料,接下来利用加氢装置进行催化柴油的转化。在具体选择中,企业必须要根据实际生产流程、柴油质量升级要求、柴油组成等,选择性价比较高的技术路线。 另外,还需注意加氢柴油黏度低、沸点低,正有利于加氢柴油、高黏度新鲜原料的混合原料黏度。比如对比常压渣油、加氢柴油的密度和蒸馏曲线,并利用软件模拟混合不同比例加氢柴油,且基准温度为180 ℃,210 ℃的原料黏度。可以明显地发现在混合加氢柴油后,混合原料黏度会下降,且随着温度的降低,其黏度下降数值越大。这主要就是因为混合原料运动黏度可以改变原料油的性质,使其能经受住高温的催化。

相关主题
文本预览
相关文档 最新文档