当前位置:文档之家› 赵树嫄微积分-第二章

赵树嫄微积分-第二章

第二章微积分0

> 第二章微积分运算 微积分是数学学习的重点和难点之一, 而微积分运算是Maple最为拿手的计算之一, 任何解析函数, Maple都可以求出它的导数来, 任何理论上可以计算的积分, Maple都可以毫不费力的将它计算出来. > > 随着作为数学符号计算平台的Maple的不断开发和研究, 越来越多的应用程序也 在不断地出现。 函数的极限和连续 1.1 函数和表达式的极限 在Maple中, 利用函数limit计算函数和表达式的极限. 如果要仅仅聋子耳朵,仅仅写出数学表达式, 则用惰性函数Limit. 若a可为任意实数或无穷大时, 求极限命令格式为: limit(f,x=a); 求时的命令格式为limit(f, x=a, right); 求时的命令格式为limit(f, x=a, left); 请看下述例子: > Limit((1+1/x)^x,x=infinity)=limit((1+1/x)^x,x=infinity); >

> > > > >

对于多重极限计算, 也用limit. 命令格式为: limit(f, points, dir); 其中, points是由一系列方程定义的极限点, dir(可选项)代表方向: left(左)、right(右)等. 例如: > limit(a*x*y-b/(x*y),{x=1,y=1}); > > restart: > plot3d(sin(x+y), x=-1..1, y=-1..1); > plot3d(x^2*(1+x)-y^2*(1-y)/(x^2+y^2),x=-1..1,y=-1..1); >

微积分2期末复习提纲答案

2015年6月微积分2期末复习提纲 1、 本学期期末考试考察的知识点如下: 第六章隐函数的偏导数求解P194例9-10,条件极值应用题(例10)求解,约占12% 第七章二重积分(二重积分的概念,比较大小P209课后习题,直角坐标系下的交换积分次序P212例题3&P213习题1(7),直角坐标与极坐标系下的二重积分计算)约占26%; 第八章无穷级数(无穷级数的概念,几何级数,P-级数,正项级数的比较判别法和比值判别法,任意项级数的敛散性,幂级数的收敛半径及收敛域,求幂级数的和函数,间接 展开以 1 ,,ln(1)1x e x x +-为主)约占35%; 第九章微分方程(微分方程及其解的概念,一阶分离变量,齐次和一阶线性微分方程求解(通解和特解),二阶常系数齐次,非齐次微分方程的通解(三角型的不要求)。约占27%. 2、样题供参考(难度、题型) 一、填空题:(14小题) 1、若D :224x y y +≤,则 D d σ=??4π。(表示求解积分区域D 的面积——圆) ● 或D :9122≤+≤y x ,则 ??=D dxdy 8π。(表示求解积分区域D 的面积——圆环) ● 或2 2 :4D x y y +≤,将 dxdy y D ??化为极坐标系下的累次积分4sin 20 sin d r dr π θ θθ? ? . (判断θ的范围作为上下限,判断r 的范围作为上下限,y 用rsin θ代入) 7.3极坐标系下二重积分的计算 2、交换积分次序 1 1 (,)y dy f x y dx = ? ?1 (,)x dx f x y dy ? ?。 (依题得:010<

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

数学建模-微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用

微积分2习题答案

一、填空题 1.设)(x P 是x 的多项式,且26)(lim 23=-∞→x x x P x ,3) (lim 0=→x x P x ,则=)(x P 2.=-++∞ →))(arcsin(lim 2 x x x x 6 π x x x 3262 3++↑ 3.=?? ? ??-∞ →3 21lim x x x 32 -e 4.设A x x ax x x =-+--→1 4 lim 31,则有=a ,=A 4,-2 5.设x x x x x f sin 2sin )(+=,则=∞→)(lim x f x 2 6.=?+→2 32031 sin sin lim x x x x x 31 7.函数) 2)(1(1+-+=x x x y 的间断点是 1=x 8.为使函数()x x x f tan 1 ?=在点0=x 处连续,应补充定义()=0f 1 9.设函数?????=≠-=00)1(3 x K x x y x 在0=x 处连续,则参数=K 3-e 10.函数???>+≤+=0 10 )(x e x a x x f x 在点0=x 处连续,则=a 2 二、单项选择题 1.设0>n x ,且n n x ∞→lim 存在,则n n x ∞ →lim ② ①0> ②0≥ ③0= ④0< 2.极限=-→1 11 lim x e x ③ ①∞ ②1 ③不存在 ④0 3.=++∞→- →x x x x x x 1 sin lim ) 1(lim 10 ④ ①e ; ②1e -; ③1e +; ④1 1e -+ 4.()() 213 ++-= x x x y 的连续区间是__________________ ② ①()()()+∞----∞-,11,22, ②[)+∞,3 ③()()+∞--∞-,22, ④()()+∞--∞-,11, 5.函数1 2 111 11+----=x x x x y 的不连续点有 ③ ①2个 ②3个 ③4个 ④4个以上 6.下列函数中,.当0→x 时,与无穷小量x 相比是高阶无穷小量的是___________;是等价无穷小量的是__________________ ①,② ①x cos 1- ②2 x x + ③x ④x 2sin

微积分公式与定积分计算练习

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ()() n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ()()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

《微积分》《高等数学》第二章测试题

《微积分》第二章测试题 1. 【导数的概念】已知()23f '=,求()() 22lim h f h f h h →+-- 解()() ()() ()()()0 0222222lim lim 226h h f h f h f h f f h f f h h h →→+--+---??'=+== ?-?? 2. 设函数cos ln x y x e a -=++,求 d y d x 解 sin x dy x e dx -=-- 3. 设函数arctan x y e =,求 d y d x 解 d y d x () arctan arctan 1 1 1221x x e e x x x x =? ? = ++ 4. 设函数2 sin cos 2y x x =,求 d y d x , x dy dx = 解()2 2 2 2 4 sin cos 2sin 12sin sin 2sin y x x x x x x ==-=- ()()3 2 2 2sin cos 8sin cos 2sin cos 14sin sin 214sin dy x x x x x x x x x dx =-=-=-, 0x dy dx == 5. 【函数的微分,记得加dx 】设函数2 sin 2x y x = ,求dy 解2 4 3 3 2cos 22sin 22cos 22sin 22cos 22sin 2,dy x x x x x x x x x x dy dx dx x x x ---== ∴= 6. 【高阶导数】设函数11 y x = -,求 n n d y dx 解 () () () () () () () 2 3 1 2 3 4 1 23 ! 11, 21, 3!1,, 1n n n n dy d y d y d y n x x x x dx dx dx dx x ----+' = -=--=-=--=-- 7.【隐函数求导】 设函数()y y x =由方程2 sin 20xy y -=确定,求 d y d x 解 等式两边同时对x 求导2 22sin 20,y xyy y y ''+-=则 () 2 2 2 2sin 222221dy y y y y dx y xy xy xy x y '== = = ---

微积分公式大全

导数公式: 基本积分表: 三角函数的有理式积分: 2222 212sin cos 1121u u x du x x u tg dx u u u -==== +++, , ,  22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=?'=-?'='=+' = 2 2 2 (arcsin )(arccos )1 (arctan )11 (arc cot )11 ()x x x x x x thx ch '= '='= +'=- +' = 2 22 2sec tan cos csc cot sin sec tan sec csc cot csc ln ln(x x dx xdx x C x dx xdx x C x x xdx x C x xdx x C a a dx C a shxdx chx C chxdx shx C x C ==+==-+?=+?=-+=+=+=+=+????????? 222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x C xdx x x C xdx x x C dx x C a x a a dx x a C x a a x a dx a x C a x a a x x C a =-+=+=++=-+=++-=+-++=+--=+???????? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学第二章练习及答案

第二章 一、选择题. 1. 函数1y x =+在0x =处 ( ) A 、无定义 B 、不连续 C 、可导 D 、连续但不可导 2. 设函数221,0(), 0x x f x x x +

7. (arctan 2)d x =________,[]ln(sin 2)d x =__________. 8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________. 三、判断题. 1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( ) 2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ?的改变量. ( ) 3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( ) 4. 极值点一定是驻点. ( ) 5. 函数y x =在点0x =处连续且可导. ( ) 四、计算题. 1.求函数y =. 2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '. 4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y '' 五、求下列极限. (1)sin lim sin x x x x x →∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →??- ?-? ?, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x x x e →+∞+. 六、应用题. 1. 求函数32 ()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?

微积分习题解答(第二章)

微积分习题解答(第二章) 1写出下列数列的一般项,并通过观察指出其中收敛数列的极限值。 ()()11120, ,0, ,0, ,2 4 6 1 112n n u n ??= +-?? 解:一般项 该数列收敛,其极限为零。 () () 1111 3,,,,261220 11n u n n = + 解:一般项 该数列收敛,其极限为零。 ()2 510172642, ,,,,2345 1n n u n += 解:一般项 该数列发散。 3.利用定义证明下列极限;

()n n n n n -11lim 0 60-110661 ln ln 6 1ln 1,ln 6-106-1lim 0 6n n n N n N εε ε εε→∞ →∞ ?? = ? ?? >???? -=< ? ? ???? > ? ???=+>?? ???? ??-< ?????∴= ??? 证明:对于任给,要使 只要 取正整数当时 总有不等式 成立 ( )2 23lim 010111,0lim n n n N n N εε ε εε→∞ →∞ =>-= <> ?? = +>???? -<∴=证明:对于任给,要使 只要 取正整数 当时 总有不等式 成立 4.试判断下列论点断是否正确。

()() ()1, ,lim 1111 1lim 01 n n n n n u A u A n n n n →∞ →∞ -=?--= +=≠-如果越大越接近零则有 错误 例如 随着越大,而越加接近零,但 ()() {}1130lim 0N =N n >N 10lim n n n n n n n u A u A u u u A ε εεε→∞ →∞ >-=∠>-=<∴=如果对于任给,在数列中除有限项外,都满足不等式<, 则有 正确 设N 为题中的‘有限项’中的最大下标,由题意 对于任给,只要取正整数+1,当时, 总有不等式 满足 ()() {}5s in s in n n n u n u n u ?==≤有界数列必定收敛 错误 例如 显然1,但发散 6.利用定义证明下列极限: ()() ()()()()1 1 1lim 312 0312311,3 312lim 312 x x x x x x x x εε ε δδε →→-=>-- =-<= <-<-- <-=证明:对于任意给定的,要使 只需取,则当0时总有 成立,于是,由极限定义可知

微积分习题集带参考答案(2)

微积分习题集带参考答案 一、填空题(每小题4分,本题共20分) ⒈函数x x x f -++=4) 2ln(1 )(的定义域是]4,1()1,2(-?--. ⒉若24sin lim 0=→kx x x ,则=k 2 . ⒊曲线x y e =在点)1,0(处的切线方程是1+=x y . ⒋ =+?e 1 2 d )1ln(d d x x x 0 . ⒌微分方程1)0(,=='y y y 的特解为x y e =. 6函数24)2(2 -+=+x x x f ,则=)(x f 62 -x . 7.当→x 0时,x x x f 1 sin )(=为无穷小量. 8.若y = x (x – 1)(x – 2)(x – 3),则y '(1) = 2-. 9. =+-? -x x x d )135(1 1 32. 10.微分方程1)0(,=='y y y 的特解为x y e =. 11.函数x x x f 2)1(2 +=+,则=)(x f 12 -x . 1⒉=∞ →x x x 1 sin lim 1 . 1⒊曲线x y =在点)1,1(处的切线方程是2 121+= x y . 1⒋若 ?+=c x x x f 2sin d )(,则=')(x f in2x 4s -. 1⒌微分方程x y xy y cos 4)(7) 5(3 =+''的阶数为 5 . 16.函数74)2(2 ++=+x x x f ,则=)(x f 32 +x . 17.若函数???=≠+=0, ,2)(2x k x x x f ,在0=x 处连续,则=k 2 . 18.函数2 )1(2+=x y 的单调增加区间是).1[∞+-. 19. = ? ∞ -dx e x 0 22 1 . 20.微分方程x y xy y sin 4)(5) 4(3 =+''的阶数为 4 . 21.设函数54)2(2 ++=+x x x f ,则=)(x f 12 +x . 22.设函数????? =-≠+=0, 10 ,2sin )(x x k x x x f 在x = 0处连续,则k =1-.

第二章数学模型与定解问题

第二章数学模型与定解问题 2.1典型方程 三类基本的二阶偏微分方程是: (1)波动方程 0)(2 =++-zz yy xx tt u u u a u (2)热传导方程 0)(=++-zz yy xx t u u u k u (3)拉普拉斯方程 0=++zz yy xx u u u 许多数学物理问题都可归结为解偏微分方程的问题,特别是可归结为解上面所列举的三个偏微分方程的问题.我们将开始研究这些方程,首先仔细考察表示这些物理问题的数学模型. 2.2弦的振动 在数学物理中最重要的问题之一是拉紧的弦的振动问题.由于它较简单, 且经常出现在许多数学物理的分支中,所以在偏微分方程理论中把它作为一个典型的例子. 让我们考察一长为 l 的两端固定的拉紧的弦.我们的问题是要确定弦的运动方程,用它来描述在给定初始扰动后任一时刻t 的弦的位移u(x,t). 为了能.得出一个较简单的方程,我们作下面的一些假设: (1)弦是柔软与有弹性的,即它不能抵抗弯矩,因此在任何时刻弦的张力总是沿着弦的切线方向; (2)弦的每一段都不伸长,因此根据胡克(Hooke)定律,张力是常数; (3)弦的重量与其张力相比很小; (4)弦的偏移与其长度相比很小; (5)位移后的弦在任一点上的斜率与1相比很小; (6)弦只有横振动. 我们考察弦上一微小元素.设T 是如图2.1所示的两端点上的张力.作用在弦的这一微小元素上的垂直方向的力是: αβsin sin T T - 图(Figure )2.1

根据牛顿第二运动定律,合力等于质量乘以加速度.因此 tt su T T ?=-ραβsin sin (2.2.1) 其中ρ是弦的密度,s ?是这一小段位移后的弦的弧长.因为位移后的弦的斜率很小,所以有 x s ?≈? 因为角α和β都很小,所以 ααtan sin ≈, ββtan sin ≈ 于是等式(2.2.1)变成 tt u T x ?=-ραβtan tan (2.2.2) 但是,由微积分学我们知道,在时刻t 有 x x u )(tan ≈α 及 x x x u ?+≈)(tan β 于是等式(2.2.2)可以写成 tt x x x x x u t u u x ρ =-??+])()([1 令x ?趋于零取极限,得 xx tt u a u 2 = (2.2.3) 其中ρ T a = 2 。方程(2.2.3)称为一维波动方程. 如果在弦的每单位长度上有外力F 作用着,方程(2.2.3)具有下列形式: f u a u xx tt +=2 (2.2.4) Where ρ F f = ,而外力可以是压力、重力、阻力以及其他力等 2.3膜的振动 膜振动方程在数学物理的许多问题中出现.在我们导出膜振动方程前,像在弦振动的情形中一样,我们作下列一些简化的假设: (1) 膜是柔软与有弹性的,即它不能抵抗弯矩,因此在任何时刻它的张力 总是在膜的切平面内; (2) 膜的每一块元素都没有伸张变形, 因此根据胡克定律, 张力是常数;

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

微积分模型

第一篇 微积分模型 在微积分部分的应用实例中,通过对应用问题建模主要培养应用极限、连续、相对变化率、微元、无穷级数、最优化和微分与差分方程等思想解决实际应用问题的能力。 函数的性质包括分段性质、单调性、奇偶性等,由函数的基本性质可以产生对函数进行分类的方法。与函数基本特性相关的应用实例有:市话费是降了还是升了,外币兑换与股票交易中的涨跌停板,库存问题与库存曲线,“另类”的常量函数,蠓虫分类的初等数学模型,核军备竞赛问题等。 数列与函数的极限和函数连续性质是处理变量变化过程的工具,应用重要极限计算连续复利利率的计算,应用函数的连续性和介值定理解决特殊的应用问题。与极限和连续等内容相关的应用实例有:从科赫雪花谈起,复利、连续复利与贴现,出售相同产品的公司为什么喜欢扎堆,椅子为什么能放稳等。 导数、微分是函数的相对变化的极限过程,函数的特性和极值理论可以解决经济管理中的实际应用问题,导数、微分在经济管理中的应用反映为边际、弹性等。相关的应用实例有:影子为什么那么长,边际是什么?弹性是什么?商家应该怎样制定自己的价格策略?不同消费群体的需求弹性问题,机械与人工的调配问题,易拉罐的形状,这批酒什么时候出售最好,该不该接受供货商的优惠条件,作者与出版商的利益冲突等。 微元分析是微积分中一种重要的分析方法,特别是函数的连续求和归结为该函数的积分。与积分和微元分析内容相关的应用实例有:洛伦兹曲线与基尼系数,均匀货币流的总价值与投资回收期的计算,下雪时间的确定,第二宇宙速度是怎样计算出来的等。 离散变量的求和可以用无穷级数来表达,无穷级数的求和是一个极限过程。与无穷级数内容相关的应用实例有:最大货币供应量的计算,政府支出的乘数效应,运用现值计算进行投资项目的评估,谈谈龟兔赛跑悖论 等。 如果影响研究问题的主要因素有两个或者两个以上,则要用多元函数的微积分学来处理,涉及到多元函数偏导数、偏边际、偏弹性和交叉弹性、条件极值等内容。相关的应用实例有:空调销售量的预测,相互关联商品的需求分析,衣物怎样漂洗最干净,拉格朗日乘数与影子价格等。 变量的变化过程可以用微分方程或差分方程来描述,通过对微分方程或差分方程的建立与求解,可以研究变量的形态和变化规律。与微分方程和差分方程相关的应用实例有:人口模型,单种群动物模型,相对封闭环境中的传染病模型,江河污染物的降解系数,怎样计算固定资产的折旧,放射性元素衰变模型,市场上的商品价格是怎样波动的,再谈下雪时间的确定,溶液浓度模型,饲养物的最佳销售时机,信贷消费中每月还款金额的确定,资源的合理开发与利用,从诺贝尔奖谈起,蛛网模型,梵塔问题,平面内直线交点的个数,菲波那契数列的通项公式等。 1

数学建模微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用 2 )(21rT c T c T c += (4.2) 模型求解 求T ,使)(T c 取最小值。 由 0=dT dc ,得 2 12 1 2,2c r c Q rc c T = = (4.3)

微积分基本公式

微积分公式

tan -1 x = x-33x +55x -7 7 x +…+)12()1(12+-+n x n n + … (1+x)r =1+r x+!2)1(-r r x 2+! 3)2)(1(--r r r x 3 +… -1

微积分(经管类第四版)习题1-6答案

习题1-6 1(1)错.无穷小是趋向于0,非常小是趋向于负无穷 (2)对 (3)对 (4)错.,趋向于无穷大,则,设x x g x f x x g x x f ===)() (1)(1)(2 (5)错.,趋向于无穷小,则,设0)()()()(=+-==x g x f x x g x x f 2(1)无穷小 (2)无穷小 (3)无穷大 3,所以对任意给定的0,0-1 sin >≤εx x x 时为无穷小为,即故时,就有则当,,要取要使01sin 01sin lim 0-1sin 00-1sin 0→==<<<=<→x x x y x x x x x x x x εδεδε 4(1)3)23(lim 23lim =+=+∞→∞→x x x x x (2)2)2(lim 24lim 02 0=+=--→→x x x x x (3)∞→→→→x x x x cos -110cos -11cos 0,,时,当 5存在极限,1lim lim 0 /1==∞→∞→e e x x x

不存在极限,+∞==∞ →→e e x x x 0/10lim lim 6是有界函数,则假设x x y cos = (),所以函数不是无穷大此时的情况,时,存在当内无界, 在故函数所以假设不成立, ,,使得显然不存在,00cos -cos cos cos ==∞→∞+∞=≤≤∴≤≤y x x x x y M x M M x x x x M x x 7是有界量,时,)(0x g x x → 是无穷大 即,则,时,恒有使得当,内无限增大,则存在在假设是无穷大,时,时,恒有使得当,内有界,则存在在假设)()(0)()(.)(000)()(.)(000)(222202*********x g x f M M x g x f M x f x x M x x x g x f x x M x g x x M x x x g ±=±≥±≥<-<><-<→≤<-<><-<δδδδ 8,内无限增大,则存在在假设’00)(0><-

微积分2第十章答案

第十章 无穷级数习题解答 练习 10.1 1. 写出下列级数的一般项: (1) 1 (1) n +- ; (2) 1 1 21 (1)n n n a +-+-; (3) 2 1 n n +; (4) 2 1 n n -+. 2. 用定义判断下列级数的敛散性: (1) 当n 为奇数时, 前n 项和为1; 当为偶数时, 前n 项和为0, 故此级数发散. (2) 前n 项和为ln n , 其极限为+∞, 故此级数发散. (3) 此级数为公比是 1 5 的等比级数, 故此级数收敛. (4) 当1x <时, 此级数为公比是x -的等比级数, 故级数收敛; 当1x ≥时, 此级数为公比是x -的等比级数, 故级数发散. (5) 前n 项和为 11(1)221n -+, 其极限为12 , 故此级数收敛. 练习 10.2 1. 根据级数收敛的性质判断下列级数的敛散性: (1) 此级数通项的极限为10≠, 故此级数发散. (2) 此级数通项的极限为不存在, 故此级数发散 (3) 此级数通项的极限为10≠, 故此级数发散 (4) 此级数通项的极限为10≠, 故此级数发散 (5) 此级数是两个收敛级数的差, 故此级数收敛 (6) 此级数是一个有限数和一个收敛级数的和, 故此级数收敛 (7) 此级数是一个发散级数和一个收敛级数的和, 故此级数发散 2. 若级数 1 n n u ∞ =∑ 收敛, 指出下列哪些级数是一定收敛的, 哪些级数是发散的? 哪些不能确 定? (1) 此级数是两个收敛级数的差, 故此级数收敛 (2) 此级数是由收敛级数删掉有限项后得到, 故此级数收敛 (3) 此级数通项的极限为∞, 故此级数发散 (4) 不一定 (5) 不一定 练习 10.3 1. 用比较判别法判别下列级数的敛散性: (1) 此级数的通项小于 1()2 n , 后者对应的级数收敛, 故此级数收敛 (2) 此级数的通项小于 2 1 n , 后者对应的级数收敛, 故此级数收敛

微积分公式与定积分计算练习

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵ 1 x x μμμ-= ⑶ ()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1ln x x '= ⑿ () 1 log ln x a x a '= ⒀ ( )arcsin x '= ⒁ ( )arccos x '= ⒂ ()2 1arctan 1x x '= + ⒃ ()2 1arccot 1x x '=- +⒄()1x '= ⒅ '= 二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±? ??? (2)()() ()() n n cu x cu x =? ??? (3) ()() ()() n n n u ax b a u ax b +=+???? (4) ()()() () ()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) () () ! n n x n = (2) () () n ax b n ax b e a e ++=?

(3)() () ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π? ?+=++??? ? ?? ? ?(5) ()() cos cos 2n n ax b a ax b n π? ?+=++??? ? ?? ? ? (6) () () () 1 1! 1n n n n a n ax b ax b +??? =- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0 d c = ⑵ ()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷ ()cos sin d x xdx =- ⑸ ()2tan sec d x xdx = ⑹ ()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻ ()csc csc cot d x x xdx =-? ⑼ ()x x d e e dx = ⑽ ()ln x x d a a adx = ⑾ ()1 ln d x dx x = ⑿ ()1 log ln x a d dx x a = ⒀ ( )arcsin d x = ⒁ ( )arccos d x = ⒂ ()21arctan 1d x dx x = + ⒃()2 1 arccot 1d x dx x =-+ 六、微分运算法则 ⑴ ()d u v du dv ±=± ⑵ ()d cu cdu =

相关主题
文本预览
相关文档 最新文档