当前位置:文档之家› 齿轮开裂失效分析

齿轮开裂失效分析

齿轮开裂失效分析
齿轮开裂失效分析

齿轮开裂失效分析

徐涛元

(成都市新筑路桥机械股份有限公司,成都610041)

摘要:采用断口分析、化学成分分析、低倍检验、金相检验和硬度测试等方法对某批经渗碳、淬火热处理及磨齿加工后放置一段时间发生开裂的齿轮的失效原因进行分析。结果表明:齿轮渗碳层碳化物级别过高,加上淬火后齿轮齿部应力集中,磨齿时又产生磨削裂纹,齿轮在放置期间由于应力导致裂纹扩展而开裂。

关键词:齿轮;开裂;碳化物;磨削;应力集中

中图分类号:THl32.411文献标志码:A文章编号:1001-4012(2009)05-0315-03

CrackingFailureAnalysisofGear

XUTao-yuan

(ChengduXinzhuRoad&BridgeMachineryCo.Lt也,Chengdu610041,China)Abstract:Somegearsoccurredcrackingaftercarburizing,quenchingandgeargrindh口g.Thecrackingreasonwasanalyzedbymeansoffractureanalysis,chemicalcompositionanalysis,macrostructuretest,hardnesstest,metallographictestandSOon.Theresultsshowedthatthecarbonizationlevelwassohighaftercarburizmg,therewerelotsofcentralizedstressontheteethofgearafterquenching,andthegrindingcracksappearedwhentheteethwereg血ded,finallyduetocrackduringdepositedinthedepository.

Keywords:gearlcracking;carbonization;grinding;stresscentralization

某齿轮厂一批编号为ZLYJ375-108的齿轮,材

料为20CrMnTi钢,经渗碳(930℃气体渗碳)、淬火

(840℃油淬)热处理并磨齿后放置一段时间,发现其

中有一个齿轮发生贯穿性开裂,敲断后的齿轮如图

1所示,断口表面宏观形貌如图2所示;该批齿轮中

另外还有4个齿轮在加工完键槽后,在键槽附近发

现裂纹。为找出齿轮开裂的原因,笔者对该开裂的

齿轮进行了理化检验和分析。

1理化检验

1.1断口分析

齿轮断口为脆性断口,见图2,断裂源为齿部开始的一条线源;在扫描电镜下观察可见边缘硬化区为冰糖状沿晶断裂(图3);其余位置断口为河流状

收稿日期:2007-12-26

作者简介:徐涛元(1980一),男,助理工程师,工学学士。

图1开裂的齿轮

Fig.1Thecrackinggear

花样的解理断口(图4)。

1.2化学成分分析

开裂齿轮的化学成分如表1所示,可见符合标准[1]的要求。

1.3低倍检验

取断面附近的横向截面一段,经过精磨后,用体积分数为36%~38%的盐酸溶液进行热酸蚀后,未

?315?

万方数据

嬲獬

t:埕型筮篮=貔毽盆理笙鲞垂!宣笙茎銎叁塾坌堑

图2齿轮断口表面宏观形貌

Fig.2Macro-appearanceofgearfracturesurface

图3齿轮断口表层硬化区形貌

Fig.3Surfacelayerhardeningarea

appearanceoffracturegear

图4齿轮断口表面形貌

Fig.4Surfaceappearanceoffracturegear

表1开裂齿轮的化学成分(质量分数)Tab.1Chemicalcompositionofcrackinggear(wt)%参数CSiMnCrTiPS标准值oZ;_ojj:了oj?:了1j?:了oZ:_≤o.oto≤。.。10

图5表层淬硬区磨削裂纹

Fig.5Grindingcrackofsurfacelayer

hardeningarea

图6非金属夹杂物100X

Fig.6Non-metallicinclusion

L5硬度检验

齿轮硬度值如表2所示,可见符合技术要求‘1|。

表2齿轮硬度值

Tab.2HardnessofgearHRC

1.6断口处显微组织检验

从齿部断口取样,经过抛磨以后,用4%硝酸酒精溶液侵蚀后组织如图7~9所示。可见渗碳淬硬层组织为针状马氏体+少量残余奥氏体十大量块状、棱角状碳化物,级别相当于QC/T262—1999《汽车齿轮金相检验》中规定的6~7级;齿轮基体组织为回火低碳马氏体[2]。

竺竺竺!!?‘!!!!}‘?!!!:?P}?!!!:2分析与讨论

发现裂纹、白点和折叠等低倍缺陷,只在渗碳淬硬层发现许多垂直表面且相互平行的磨削裂纹,如图5所示。

1.4非金属夹杂物检验

在断口位置取样,经过磨抛后检验其非金属夹杂物为A类0.5级,如图6所示。

?3】6?

从低倍检验、化学成分分析和非金属夹杂物检验结果可见,齿轮材质正常。

从断口检验结果可见断口基本为解理断口,只有表层淬硬区为冰糖状沿晶断裂;宏观断口裂纹源为从齿部表面开始的线源;在金相检验中也未发现

断续锯齿状的二次裂纹;而从低倍检验结果发现淬万方数据

图7渗碳淬硬表层的显微组织500X图8渗碳淬硬层的显微组织500X图9齿轮心部的显微组织500X

Fig.7Microstructureofcarburizing

Fig.8

MicrostructureofcarburizingFig.9Microstructureof

andquenchingsurfacelayerandquenchinglayergearcOre

硬区存在大量磨削裂纹,而磨削裂纹的微观形貌特征即为冰糖状沿晶断裂。在断口的齿部微观组织中发现表层淬硬区存在大量的网状碳化物,碳化物级别为6~7级,超过标准≤5级的要求,使得齿轮表面脆性加大,裂纹敏感性增强;在紧接着的磨齿加工中的磨削外力作用下形成磨削裂纹;另外由于齿轮齿顶处在淬火过程中属于高应力区,极易形成应力集中,一旦在此处出现微裂纹,将迅速成为一个裂纹源,应力也将在这里集中,随着应力的不断释放,裂纹也同时由微裂纹转变为深裂纹、裂缝,最终导致整个齿轮的开裂。由此证明该齿轮断裂是由磨削引起的。3结论与建议

齿轮发生开裂的原因是渗碳层碳化物级别过高,淬火后齿轮齿部存在应力集中,磨齿时又产生磨削裂纹,导致齿轮在放置期间由于应力释放而开裂。

热处理过程中必须注意表面碳化物的处理,淬火后及时消除应力,并且在磨齿加工中严格控制磨削工艺参数,防止磨削裂纹的出现。

参考文献:

E1]GB/T3077--1999合金结构钢[S].

I-2-]任颂赞,张静江,陈质如,等.钢铁金相图谱[M].上海:上海科学技术文献出版社,2003.

(上接第314页)

图9人工新断口的形貌

Fig.9Appearanceofartificialfracture

的气道壁在铸造后不进行机加工,如存在疏松缺陷,则在循环载荷作用下将在缺陷处产生裂纹,最后导致疲劳断裂LlJ。

力学性能试验结果表明,伸长率不但未达到技术要求范围,而且远远低于技术要求范围。热处理过程中出现的过烧现象,是伸长率大大降低的主要原因。另外,气缸盖使用后的伸长率比未使用的有所降低,因此工作过程和工作环境对伸长率也有一定的影响。

断口分析表明,气缸盖开裂呈疲劳特征。因为气缸盖在运作中承受的主要应力为拉一拉应力,同时气缸盖的工作温度较高,在断面上看到高温影响的痕迹,因此热应力也是促使开裂的应力因素之一。

3结论

气缸盖进气道处的铸造组织不均匀和组织疏松,热处理过程中出现了过烧现象,使材料的疲劳强度和疲劳寿命大幅度降低,再加上高温的影响,最终导致其疲劳开裂。

参考文献:

Eli吴连生.失效分析技术l-M].重庆.四川科学技术出版社,1985.

?317?万方数据

齿轮断裂原因分析

齿轮轴断齿原因分析 概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 C Si Mn S P Cr Mo Al 大0.39 0.31 0.52 0.002 0.06 1.5 0.17 0.85 小0.15 0.25 0.55 0.016 0.013 0.75 0.15 从成份上看,大有材料为38CrMoAl,小的材料为20CrMnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示)

3、金相组织分析 (1)大的金相组织 100X 40X 0.30m m

200X 齿轮表面的渗氮层厚:0.30mm,渗层组织不均匀,渗层硬度801HV1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌 200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。

(2)小的金相组织 200X 40X 渗层深1.5mm 齿轮渗碳层厚1.5mm,有效硬化层厚0.8mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,

往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。 小的渗碳淬火后心部组织为粗大(?)的板条马氏体组织,综合性能比较好,(为热处理过程中温度失控?),渗碳后表面的碳含量很高,在淬火过程中由于应力过大(是有可能)产生裂纹或微裂纹。出现在粗针马氏体针叶上,与马氏体的惯析面成一定的角度,且相互平行。这种淬火后出现的小裂纹在没有及时回火的情况下,就没法弥补,使疲劳强度和使用寿命降低。表面的这些微小的细裂纹的缺陷的存在致使齿轮在使用的过程中受到拉应力的作用而导致断裂。 5、结论 大:预处理组织不合格导致后序的氮化处理过程中组织应力的作用而产生的裂纹是崩齿的主要原因。

齿轮失效分析研究

齿轮失效分析研究 系统地分析齿轮失效的各种因素,结合故障树,以轮齿折断为例,找出故障的原因,对设备管理、现场分析及设计方案不完善而引起的故障分析有很大的意义。 标签:齿轮失效故障树故障分析 1 概述 圆柱齿轮传动由于具有传动比精确、结构紧凑、效率高及寿命长的优点,被广泛应用于各种工业部门,因而圆柱齿轮传动也成为各类机械中重要的零件之一。然而齿轮的失效却是造成机器故障的重要因素之一,会直接影响到整个机器的工作状态。 2 齿轮的失效分析 齿轮的失效形式由多种因素综合造成,且随着齿轮材料、热处理、运转状况等因素的不同而不同,其失效的主要形式有:①齿面耗损,包括磨料磨损、腐蚀磨损、胶合等;②齿面疲劳,包括点蚀、初期点蚀、剥落、表层压碎等;③齿面塑性变形,包括压痕、轮齿锤击塑变、呈波纹折皱等;④轮齿折断及裂纹等。 引起齿轮的失效的因素有许多种,可以从以下几个方面来分析: 设计因素:设计品质对产品的品质有着决定性的作 用。某雷达产品的天线俯仰机构中,小齿轮与轴通过键联结,由电机带动与大齿轮啮合,从而完成丝杆的伸缩运动。由于设计时小齿轮键槽开在齿根方向,齿根部强度薄弱,在受到短时过载的冲载荷作用时,轮齿承受的应力超过其极限应力,从而导致轮齿过载折断。找出原因后,经过重新设计计算,用轴齿轮代替原来的小齿轮,取消键联结方式,保证了齿根部的结构强度要求。 材质因素:齿轮的材料应根据其用途及工作条件来选择:速度较高的齿轮传动,齿面易产生点蚀,应选用高硬度材料;有冲击载荷的齿轮传动,轮齿易折断,应选用韧性较好的材料;低速重载的齿轮传动,轮齿既易折断又易磨损,应选用机械强度大,经热处理后齿面硬度高的材料。 制造工艺因素:在齿轮加工过程中,由于机床、刀具、夹具和齿坯在制造、安装和调整时不可避免地存在一些误差,从而形成了齿轮的运动误差、平稳性误差和齿面误差,使齿轮的传动精确度降低。一对齿轮在相互滚碾冲击作用下,接触应力过高,传动啮合不良,易造成齿面塑性变形。根据齿轮材料,制定合理的加工、淬火等工艺规程,并严格控制工艺过程,可以有效地避免淬火裂纹及磨削裂纹的出现。

齿轮的失效原因及修复方法

第6期(总第151期) 2008年12月机械工程与自动化 M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o 16 D ec 1 文章编号:167226413(2008)0620189202 齿轮的失效原因及修复方法 陈宝红 (阳泉煤业集团职工教育培训中心,山西 阳泉 045008) 摘要:分析了在实际应用中齿轮失效的原因及预防措施,并阐述了齿轮断齿后可用堆焊方法进行修复。关键词:齿轮;失效;修复 中图分类号:TH 132141 文献标识码:A 收稿日期:2008204223;修回日期:2008207211 作者简介:陈宝红(19712),女,山西阳泉人,工程师,本科。 0 引言 在实际应用中齿轮的失效将直接影响着机械传动,从而影响整个生产过程。齿轮的失效主要发生在轮齿部分(轮缘),主要形式有轮齿折断、齿面点蚀、齿面磨损、齿面胶合和塑性变形等。而在实际使用过程中,这些失效均可通过有效的措施得到预防,且轮齿折断、齿面点蚀、齿面磨损等可通过适当的修复使齿轮得以重新使用。从而既能保证设备的正常运行,又可为企业节省大量的费用,具有显著的经济效益。1 齿轮失效形式的分析及预防措施 分析齿轮的失效,首先要清楚轮齿的啮合工作情况(见图1),当主动齿轮受到转矩作用回转时将受到法向压力F n 和摩擦力F m (F m =f F n ,f 为摩擦系数)的作用。在力F n 的作用下,主动齿轮工作面将产生接触应力ΡH ,齿根将产生弯曲应力ΡF 。齿轮啮合时才受力,离开啮合位置时不受力,所以F n 引起的应力ΡH 和ΡF 都是变化的。轮齿失效的主要原因是受交变应力的影响,轮齿的折断与弯曲应力ΡF 的大小有关,齿面点蚀与接触应力ΡH 的大小有关,齿面的磨损和胶合与齿面间的摩擦力F m 有关。以下就针对齿轮的失效形式进行分析并提出相应的预防措施。 111 轮齿折断的原因及预防措施 轮齿折断一般发生在轮齿根部,究其原因是轮齿受载后齿根弯曲应力ΡF 最大, 且易产生应力集中。预防措施是在使用中要尽量避免齿轮严重过载或受冲击作用。 112 齿面点蚀的原因及预防措施 轮齿在节圆附近因交变应力而受到很大的油压,从而产生接触疲劳。其预防措施是加强润滑,提高润 滑油的黏度,降低齿面的表面粗糙度。 齿面点蚀是润滑良好的闭式齿轮传动常见的失效形式,对于开式齿轮传动,由于齿面磨损很快,很少出现点蚀。 图1 轮齿啮合工作情况 113 齿面磨损的原因及预防措施 砂粒、金属屑等外界硬微粒进入啮合面造成了齿面磨损,它是开式齿轮传动失效的主要形式。预防措施是加强润滑,最好选用具有过滤的流动润滑,注意勤换润滑油;对于开式齿轮最好加齿轮外罩。114 齿面胶合的原因及预防措施 高速重载、散热不良、滑动速度大、齿面粘连后撕脱是齿面胶合的主要原因。预防措施是使用抗胶合能力强的润滑油。 2 齿轮失效后的修复方法 在实际使用过程中,最常见的齿轮失效形式是齿面磨损和轮齿折断,这两种失效形式都可用手工电弧堆焊的方法进行修复。根据轮齿的使用要求,应使齿

齿轮失效分析论文

毕业论文题目:齿轮的失效分析 姓名:杨新源 学号:2010053105 专业:矿山机电 班级:10-03 指导教师:刘霞 2011年9月20日

目录 目录 (2) 引言 (3) 一、齿轮传动的特点、类型 (3) 二、齿轮传动的基本要求 (4) 三、齿轮的失效形式以及解决措施 (4) (一)轮齿断齿 (4) (二)齿面磨损 (5) (三)齿面点蚀 (6) (四)齿面胶合 (7) (五)齿面塑性变形 (7) 四、常规齿轮损伤和失效的主要原因探究 (7) 五、齿轮的常用材料的基本要求 (8) 六、齿轮的常用材料及热处理 (9) 七、小结 (10) 致谢 (11) 参考文献 (12)

摘要:在现代社会工业发展中,齿轮是传动件中应用最广的重要工具,齿轮的类型很多,工况条件较为复杂。因此失效形式及影响因素也较多。尽管如此,从齿轮的基本特征特征产生原因和对策等方面都有其基本规律。并且齿轮失效常发生在轮齿部分,因此运用基本规律对具体齿轮的损伤作用具体分析,便不难查。这对机械传动齿轮质量,延长机械设备的使用寿命,具有非常重要的参考价值. 关键词:磨损失效分析齿轮损伤材料热处理

引言 在机械工程中,齿轮传动应用甚为广泛,齿轮传动是机械传动中一种重要的传动方式,并且往往处于极为重要的部位,因此齿轮的损伤和失效倍受人们的关注。齿轮的失效可分为轮体失效和轮齿失效两大类。由于轮体失效在一般情况下很少出现,因此齿轮的失效通常是指轮齿失效。所谓轮齿失效,就是齿轮在运转过程中,由于某种原因,使轮齿在尺寸、形状或材料性能上发生改变而导致整体设备不能正常工作。 要知道齿轮的失效形式,我们就应该先了解齿轮的传动类型、齿轮的特点、工作环境、只有清楚的知道了它的工作原理,才能更好的分析出它的失效形式 一、齿轮传动的特点、类型 齿轮的传动是目前最重要也是应用最广泛的一种传动形式。与其他机械传动相比。齿轮传动具有以下特点 优点:效率高,传动比稳定,工作可靠,寿命长,结构紧凑;适用的功率和速度范围广;可实现空间任意两轴间的传动。 缺点:制造成本高,安装精度要求高,当齿轮精度低,且速度较大时噪声大;不宜用于中心距较大的传动。 齿轮的传动类型: (一)按照齿轮的传动比是否恒定,可将齿轮传动分为 1.非圆齿轮传动,(传动比变化) 2.圆形齿轮传动(传动比恒定)两大类,

齿轮断裂原因分析

概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 从成份上看,大有材料为38 Cr Mo Al ,小的材料为20 Cr MnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示) 3、金相组织分析 (1)大的金相组织 100X 40X 200X 齿轮表面的渗氮层厚:0.30mm ,渗层硬度801HV 1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌

200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。 (2)小的金相组织 200X 40X 齿轮渗碳层厚1.5 mm,有效硬化层厚0.8 mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。

齿轮疲劳点蚀的特征及案例分析

齿轮疲劳点蚀的特征及相应案例分析 1 疲劳点蚀的定义及特征 点蚀又称接触疲劳磨损,是润滑良好的闭式传动的常见失效形式之一。齿轮在啮合过程中,相互接触的齿面受到周期性变化的接触应力的作用。若齿面接触应力超出材料的接触疲劳极限时,在载荷的多次重复作用下,齿面会产生细微的疲劳裂纹;封闭在裂纹中的润滑油的挤压作用使裂纹扩大,最后导致表层小片状剥落而形成麻点,这种疲劳磨损现象,齿轮传动中称为点蚀。节线靠近齿根的部位最先产生点蚀。润滑油的粘度对点蚀的扩展影响很大,点蚀将影响传动的平稳性并产生冲击、振动和噪音,引起传动失效。 点蚀又分为收敛性点蚀和扩展性点蚀。收敛性点蚀指新齿轮在短期工作后出现点蚀痕迹,继续工作后不再发展或反而消失的点蚀现象。收敛性点蚀只发生在软齿面上,一般对齿轮工作影响不大。扩展性点蚀指随着工作时间的延长而继续扩展的点蚀现象,常在软齿面轮齿经跑合后,接触应力高于接触疲劳极限时发生。硬齿面齿轮由于材料的脆性,凹坑边缘不易被碾平,而是继续碎裂成为大凹坑,所以只发生扩展性点蚀。严重的扩展性点蚀能使齿轮在很短的时间内报废[1]。 2 疲劳点蚀的实例 某重型车辆侧减速器主动齿轮发生了早期失效,失效齿轮与行星转向机相连,将全车动力传递到行动部分,是全车受载最大的齿轮,始终在大载荷、高转速、多冲击的复杂苛刻环境下工作。齿设计上采用整编为齿轮,传动比为5.9,润滑方式为油池飞溅润滑。实效齿轮材料为18Cr2Ni4W A钢。采用渗碳+淬火+低温回火热处理工艺。 失效齿轮发生严重的接触疲劳失效,使用寿命未达到规定时间。采用断口分析、金相分析、硬度测试及有限元接触应力分析等方法对齿轮进行失效分析,查找该齿轮实效的原因(由于篇幅有限以及结合自身知识面,仅列举出端口分析和金相分析两项结果)。 2.1 断口分析 通过对失效齿轮宏观观察发现.在啮合受力齿面的节线附近靠近齿根一侧,沿齿宽方向分布许多

(完整版)齿轮传动习题(含答案)

齿轮传动 一、选择题 7-1.对于软齿面的闭式齿轮传动,其主要失效形式为________。 A .轮齿疲劳折断 B .齿面磨损 C .齿面疲劳点蚀 D .齿面胶合 7-2.一般开式齿轮传动的主要失效形式是________。 A .轮齿疲劳折断 B .齿面磨损 C .齿面疲劳点蚀 D .齿面胶合 7-3.高速重载齿轮传动,当润滑不良时,最可能出现的失效形式为________。 A .轮齿疲劳折断 B .齿面磨损 C .齿面疲劳点蚀 D .齿面胶合 7-4.齿轮的齿面疲劳点蚀经常发生在________。 A .靠近齿顶处 B .靠近齿根处 C .节线附近的齿顶一侧 D .节线附近的齿根一侧 7-5.一对45钢调质齿轮,过早的发生了齿面点蚀,更换时可用________的齿轮代替。 A .40Cr 调质 B .适当增大模数m C .45钢齿面高频淬火 D .铸钢ZG310-570 7-6.设计一对软齿面减速齿轮传动,从等强度要求出发,选择硬度时应使________。 A .大、小齿轮的硬度相等 B .小齿轮硬度高于大齿轮硬度 C .大齿轮硬度高于小齿轮硬度 D .小齿轮用硬齿面,大齿轮用软齿面 7-7.一对齿轮传动,小轮材为40Cr ;大轮材料为45钢,则它们的接触应力________。 A .1H σ=2H σ B. 1H σ<2H σ C .1H σ>2H σ D .1H σ≤2H σ 7-8.其他条件不变,将齿轮传动的载荷增为原来的4倍,其齿面接触应力________。 A .不变 B .增为原应力的2倍 C .增为原应力的4倍 D .增为原应力的16倍 7-9.一对标准直齿圆柱齿轮,z l = 21,z 2 = 63,则这对齿轮的弯曲应力________。 A. 1F σ>2F σ B. 1F σ<2F σ C. 1F σ =2F σ D. 1F σ≤2F σ 7-10.对于开式齿轮传动,在工程设计中,一般________。 A .先按接触强度设计,再校核弯曲强度 B .只需按接触强度设计 C .先按弯曲强度设计,再校核接触强度 D .只需按弯曲强度设计。 7-7.设计闭式软齿面直齿轮传动时,选择小齿轮齿数z 1的原则是________。

齿轮失效分析

《零件失效分析》课程应用研究进展报告 题目:齿轮失效分析—齿面点蚀 姓名: 魏亚雄学号:0903014113 学院(系):材料科学与工程学院 专业: 金属材料工程 叶云 指导教师: 评阅人: 2012年11月28日

齿轮失效分析——齿面点蚀 材料科学与工程学院金属材料工程09030141班 指导教师:叶云 一、目录 1.前言 (3) 2.齿轮传动的失效形式 (3) 3.齿面点蚀机理分析 (3) 4.影响齿面点蚀的因素 (4) 5.预防 (5) 6.结语 (5) 二、摘要 本文首先对中国现在齿轮的应用现状做了简要叙述,通过对齿轮失效形式的分类,简要对齿面磨粒磨损、齿面点蚀、齿面胶合、塑性变形和轮齿折断进行了定义。通过对齿轮齿面点蚀机理和齿面点蚀影响因素做了详细分析,并对齿轮失效的预防做了简述,对现实具有很重要的指导意义。

三、正文 1.前言 齿轮传动是现代机械传动中广泛采用的主要运动形式之一。做为最常见的机械传动零件,它优点很多应用广泛。但是,齿轮传动也存在其固有的缺点:不能缓和冲击作用。[1]当制造、安装和使用过程中出现不当情况往往会引起较大的振动、噪声,甚至发生断裂等失效故障,据统计,在各种机械故障中,齿轮失效占总数的60%以上。[2]因此,为了保证机器安全正常地运转,有必要详细分析齿轮失效原因。采取相应的措施。保证齿轮在预定寿命内正常工作。 2.齿轮传动失效形式 影响齿轮失效的原因很多。如设计选材、材料添加剂、毛坯加工工艺及齿轮的安装、调整、润滑和故障诊断、维护使用环节的各种失误都有可能导致齿轮失效。以下是齿轮失效的基本类别和特征。 齿轮失效一般发生在齿面,很少发生在其它部位。按照齿轮在工作中发生的故障的基本形式可以把齿轮失效划分为齿面磨损和轮齿折断两大类。齿面磨损是指齿轮在啮合工程中由于表面材料不断摩擦而消耗的过程,按照损伤的机理可以把齿轮损伤划分为齿面磨粒磨损、齿面点蚀、齿面胶合和塑性变形。[3] 2.1齿面磨粒磨损 齿面磨粒磨损常发生于开式齿轮齿轮传动中,由于如沙石、金属铁屑及外界其它物质进入啮合区并在齿轮副的啮合挤压作用下沿齿轮运动方向移动,因此磨痕走向一般并行于运动方向,整个齿面均匀磨损,沿滑动方向,磨痕呈重叠特征。 2.2齿面点蚀 齿面点蚀常出现在润滑比较良好的闭式软齿面传动中,一般在靠近齿根部位出现点状小坑。 2.3齿面胶合 胶合是互相啮合的齿面发生严重的粘着磨损损伤。 2.4 塑性变形 齿面塑性变形主要出现在低速重载,频繁启动和过载的场合。当齿面的工作应力超过材料的屈服极限时,齿面产生塑性流动,从而引起主动轮齿面节线处产生凹槽,从动轮出现凸脊。 2.5轮齿折断 由于齿面受到冲击载荷或者短时间过载。突然折断,尤其见于脆性材料齿轮。轮齿折断会造成传动失效。 3. 齿面点蚀机理分析 3.1 裂纹的形成机理[4] 柔性传动装置大齿轮齿面产生点蚀的部位在节圆附近的下齿面上,这是因为在齿轮节圆附近啮合时,基本上只有一对齿轮在啮合,齿面接触应力较大;而且此时接触点之间相对速度很小,油膜也不易形成,润滑情况不好。所以齿轮齿面处于过高的交变接触应力多次反复

齿轮传动的失效分析)

一般来说,齿轮传动的失效主要发生在轮齿上。轮齿部分的失效形式分为两大类:轮齿折断,齿面失效。 1. 轮齿折断 折断失效通常有轮齿的弯曲疲劳折断、过载折断和随机折断。 ?疲劳折断:工作时轮齿反复受载,使得齿根处产生疲劳裂纹,并逐步扩展以至轮齿折断的失效。疲劳裂纹多起源于齿根受拉的一侧。 ?过载折断:齿轮受到突然过载,或经严重磨损后齿厚减薄时,轮齿会发生过载折断。 ?随机折断:通常是指由于轮齿缺陷、点蚀或其它应力集中源在轮齿某部位形成过高应力集中而引起轮齿折断。断裂部位随缺陷或过高有害残余应力的位置而定,与齿根圆角半径无关。 ?轮齿折断的形式有整体折断和局部折断。整体折断多发生于直齿轮,局部折断多发生于斜齿和人字齿轮,齿宽较大的直齿轮和由于安装、制造因素使得局部受载过大的直齿轮,也可能发生局部折断。疲劳折断的断口较光滑,过载折断的断口则较粗糙。 ?增大齿根过渡圆角半径,减小齿面粗糙度,对齿根进行喷丸或碾压强化处理消除该处的加工刀痕,选用韧性较好的材料,采用合理的变位等,均有助于提高轮齿的抗折断能力。 ?通常,轮齿疲劳折断是闭式硬齿面齿轮传动的主要失效形式。 2. 齿面失效齿面失效常见的失效形式有:点蚀、胶合、齿面磨损和齿面塑性变形。 (1) 点蚀

齿轮在啮合过程中,相互接触的齿面受到周期性变化的接触应力的作用。若齿面接触应力超出材料的接触疲劳极限时,在载荷的多次重复作用下,齿面会产生细微的疲劳裂纹;封闭在裂纹中的润滑油的挤压作用使裂纹扩大,最后导致表层小片状剥落而形成麻点,这种疲劳磨损现象,齿轮传动中称为点蚀(图9.3-13)。节线靠近齿根的部位最先产生点蚀。润滑油的粘度对点蚀的扩展影响很大,点蚀将影响传动的平稳性并产生冲击、振动和噪音,引起传动失效。 ?点蚀又分为收敛性点蚀和扩展性点蚀。收敛性点蚀指新齿轮在短期工作后出现点蚀痕迹,继续工作后不再发展或反而消失的点蚀现象。收敛性点蚀只发生在软齿面上,一般对齿轮工作影响不大。扩展性点蚀指随着工作时间的延长而继续扩展的点蚀现象,常在软齿面轮齿经跑合后,接触应力高于接触疲劳极限时发生。硬齿面齿轮由于材料的脆性,凹坑边缘不易被碾平,而是继续碎裂成为大凹坑,所以只发生扩展性点蚀。严重的扩展性点蚀能使齿轮在很短的时间内报废。 ?提高齿面硬度和降低表面粗糙度,在许可的范围内增大相互啮合齿轮的综合曲率半径,采用粘度较高的润滑油等,有助于提高齿轮的抗点蚀能力。 (2) 齿面胶合 齿面胶合是指在重载或高速传动时,齿面局部金属焊接继而又因相对滑动,其齿面的金属从其表面被撕落,轮齿表面沿滑动方向出现粗糙沟痕的现象。

常见齿轮失效形式

FAILURE PROBABILITY OF GEAR TEETH WEAR Milosav Ognjanovic University of Belgrade Faculty of Mechanical Engineering ABSTRACT In extreme gear service conditions some of the tooth damages such as pitting are not the main type of teeth flank failure any more. The hypothesis concerning infinite fatigue endurance of teeth flanks is without support now. Abrasive wear and squeeze at local points of contact eliminate and/or stop pitting from developing. Three types of surface damages (abrasive wear, squeezing and pitting) occur simultaneously and contribute to each other. In that way, teeth flank failure accelerates and gets more intensive and progressive. Infinite flank endurance does not exist. Besides this, the process of simultaneous (progressive) teeth flank damage is stochastic. Statistical approach to failure intensity evaluation is the only possibility. For certain wear limits of teeth flanks, experimental results are presented by statistical parameters. Those statistical models and statistical parameters are suitable for the development of reliability models of gear and gear drives. Introduction Intensive research in the area of the gear damage resistance is resulted with standard DIN 3990 part 5. This standard defines gear testing procedure and endurance limits for different kinds of materials and gear heat and mechanical treatments. Research in this direction is continued [1], [4], but many questions in that very complex area are still without answer. Gear calculation according to the mentioned standard is based on teeth pitting resistance. Fatigue of surface layer (pitting) is the most suitable for the load capacity calculation. In the service conditions and in the testing using FZG gear tester (DIN 51 354), it is not possible to extract fatigue (pitting) damages separately from the others surface damages (sliding wear, surface squeezing, etc.). Besides this, the processes like sliding wear (scoring and scuffing) and surface squeezing obstruct a pitting process. In these conditions, the gear teeth failure process can be slowed down (weakened) or accelerated. For this interaction, it is necessary to research and separately test a pitting process, for example, by using the ZF roller test rig [5] or perform especially those tests which can extract separate (not mixed) types of teeth failure [6]. Detailed research of teeth sliding wear is presented in the paper [2]. The wear depth of the teeth flanks is calculated by using a developed mathematical model. Complex teeth surface failure is not possible to be defined in a deterministic way. Interaction of individual damage processes is not the same for different stress levels, for different materials, heat and mechanical treatment or lubrication. This interaction is stochastic and can be presented by statistical models and parameters. In this paper, a suggestion in that sense is presented. It is not possible to define complex teeth surface failure in a deterministic way. Types of Teeth Wear and Wear Components Separation The gear load capacity is limited by different kinds of teeth flanks wear: pitting, abrasive and adhesive wear (scoring and scuffing) and squeezing. These flank damages are parallel or complementary. For pitting development, it is necessary to start the crack and grow it up along with increrased high stress cycles number. In the meantime, by sliding or squeezing it is possible to eliminate cracks in the very initial period and slow down the pitting process (especially micro pitting). Each of the mentioned damages can be disturbed or supported by some of the others. Pitting is the damage which corresponds to the gears with surface hardened teeth, at surface stress close to surface endurance limit. Sliding wear (scoring) is characteristic for the gears with non-hardened teeth and with high surface stress. The process of sliding wear is not limited by surface endurance limit. There is no stress level which cannot make surface damage along unlimited stress cycles number (teeth mesh revolution). Scuffing is damage characteristic for highly loaded gears with a very high speed of rotation. Squeezing of gear teeth flanks can arise with not hardened materials caused by a very high flank stress level, especially at a low speed of rotation. More details for each of the mentioned types of teeth flank wear are as follows. The mentioned types of teeth flank wear will be considered in detail.

齿轮的失效分析

齿轮的失效分析 【摘要】齿轮传动是靠轮齿的啮合传动来传递运动和动力的,轮齿失效是齿轮常见的主要失效形式。由于齿轮传动装置有开式、闭式,齿面有软齿面、硬齿面,齿轮转速有高有低,载荷有轻重之分,所以设计应用中会出现各种不同的失效形式。分析研究失效形式有助于建立齿轮设计的准则,提出防止和减轻失效的措施。 【关键词】失效形式齿轮传动失效原因 齿轮的失效形式很多,它们不大可能同时发生,却又相互联系,相互影响。例如轮齿表面产生点蚀后,实际接触面积减少将导致磨损的加剧,而过大的磨损又会导致轮齿的折断。 1、齿轮失效的原因主要有以下三点: 1.早期点蚀的原因主要是由于齿面接触不良及超负荷运转,引起齿面接触应力增大。早期点蚀的发生时间较早,几天或十几天就发生大块的剥落,发展得很快,直径大且深。所以在使用中一般不应进行超负荷运转,尤其是初期运转时,负荷应从小到大逐渐增加,待齿面接触情况达到要求时,再满负荷运转。 2.后期点蚀的原因有3点:第一,接触精度不好,如对角接触、接触面有偏齿或顶齿根等现象。凡属接触不好的发生点蚀比较早,也比较严重。第二,大、小齿轮表面硬度差偏小,材料的饱和性能及抗疲劳性能差,亦易引起点蚀。第三,润滑油过稀易产生和助长点蚀的

发生和发展,因黏度小的润滑油无助于消减作用在齿面上的动力载荷和摩擦力,所以采用黏度较大的润滑油为宜。 3.擦伤与胶合。当润滑油过稀时,由于两齿轮间的压力和相对滑动,容易导致润滑油被挤出或啮合温度升高,使两齿面的金属表面直接接触而互相胶住,这时材料硬的齿面就会把软的齿面擦伤,或将一部分金属黏走,使软齿面上形成许多沿滑动方向的沟纹。齿面发生胶合后,两齿面都变得很粗糙,从而加剧了齿面的磨损。 2、齿轮失效的几种形式 齿轮传动就装置形式来说,有开式、半开式及闭式之分;就使用情况来说有低速、高速及轻载、重载之别;就齿轮材料的性能及热处理工艺的不同,轮齿有较脆(如经整体淬火、齿面硬度较高的钢齿轮或铸铁齿轮)或较韧(如经调质、常化的优质钢材及合金钢齿轮),齿面有较硬(轮齿工作面的硬度大于350HBS或38HRC,并称为硬齿面齿轮)或较软(轮齿工作面的硬度小于或等于350HBS或38HRC,并称为软齿面齿轮)的差别等。由于上述条件的不同,齿轮传动也就出现了不同的失效形式。一般地说,齿轮传动的失效主要是轮齿的失效,而轮齿的失效形式又是多种多样的,这里只就较为常见的轮齿折断和工作面磨损、点蚀,胶合及塑性变形等略作介绍,其余的轮齿失效形式请参看有关标准。至于齿轮的其它部分(如齿圈、轮辐、轮毂等),除了对齿轮的质量大小需加严格限制外,通常只需按经验设计,所定的尺寸对强度及刚度均较富裕,实践中也极少失效。 1、轮齿折断

齿轮常见失效原因及其维修方法分析

齿轮常见失效原因及其维修方法分析 在我国的机械行业中,作为机械设备中的必要零件,齿轮的生产精度以及生产质量直接决定着机械设备的使用性能。但是在实际的使用过程中,机械设备出现故障很多原因就是设备中的齿轮出现了失效问题。文章主要针对齿轮的时效常见问题以及相应的维修方法给予详细的分析以及阐述,希望通过文章的阐述以及分析能够帮助机械设备中的齿轮找出问题出现的原因,及时给予维修;同时也希望通过文章的阐述能够为我国的齿轮生产及制作的发展及创新贡献力量。 标签:齿轮失效;机械设备;维修方法 在机械设备的传动部分,齿轮通常是作为一种变速传动零部件。因此在我国的机械设备中,齿轮是一种不可替代的传动零部件。伴随着现阶段我国机械设备对于齿轮的应用范围越来越大,齿轮制作以及发展也是非常的迅速。但是在实际的设备运行过程中,齿轮往往会由于一系列的原因出现失效问题。根据相关部门的统计,机械设备的故障中有近一半是由于齿轮失效造成的。基于上述的情况,我们要对齿轮失效的原因给予详细的分析和处理,选择最优化的维修方法进行齿轮失效维修,保障机械设备的正常运行。 1 机械设备中的齿轮失效主要原因 关于机械设备中的齿轮失效主要原因的阐述以及分析,文章主要从三个方面进行分析以及阐述。第一个方面是齿轮折断造成的齿轮失效。第二个方面是齿轮齿面出现损坏造成的齿轮失效。第三个方面是其他问题造成的齿面失效。下面进行详细的论述以及分析。 1.1 齿轮折断造成的齿轮失效 在实际的应用过程中,齿轮失效中的齿轮折断根据不同的齿轮形式有不同的折断原因。全齿轮折断通常情况下出现在直齿轮的轮齿处;局部齿轮折断通常出现在斜齿轮以及锥齿轮的轮齿处。下面作具体的分析。 1.1.1 在齿轮运行过程中会因为过载出现齿轮折断 由于过载导致的齿轮折断,在齿轮的折断区域会出现放射状的放射区域或者是人字的放射区域。在通常情况下齿面断裂的放射方向和断裂的方向是平行的。断面放射中心就是贝壳纹裂的断面断口。齿轮出现过载折断的主要原因是齿轮在较短的时间内承载的外界压力远远大于齿轮本身的最大压力,过大的压力造成了齿轮强度变低,出现折断的问题。同时导致齿轮出现折断的原因还有很多,例如齿轮的加工精度不符合要求;齿轮的齿面表面太粗糙和齿轮的加工材质本身存在缺陷等。 1.1.2 在齿轮运行过程中会因为疲劳出现齿轮折断

齿轮失效分析实例

齿轮失效分析实例 齿轮是传递运动和动力的一种机械零件。齿轮的类型以及特点不仅可决定齿轮的运转特性,并且也决定了它是否会过早地失效。 齿轮失效的类型可划分为四种: (1)磨损失效,是指轮齿接触表面的材料损耗; (2)表面疲劳失效,是指接触表面或表面下应力超过材料疲劳极限所引起的材料失效。进一步又可分为初始点蚀、毁坏性点蚀和剥落。 (3)塑性变形失效,是指在重载荷作用下表面金属屈服所造成的表面变形。它又可进一步分为压塌和飞边变形、波纹变形和沟条变形。 (4)折断失效,是指整个轮齿或轮齿相当大的一部分发生断裂。可以进一步分为疲劳折断、磨损折断、过载折断、淬火或磨削裂纹引起的折断等。 本章主要介绍变速箱齿轮及被动齿轮的失效分析实例,供读者参考。 变速箱齿轮失效分析 1.45号钢齿坯裂纹分析 45号钢齿坯,由φ80mm圆钢落料后直接粗车成外径为φ78mm的柱体形状。其化学成分为:C:0.49%,Mn: 0.68%,Cr<0.2%。热处理工艺过程:在X—45箱式电炉中加热,到温度(820℃)装炉,装炉量109只,保温时间为一小时(工件达到温度后计算时间),工件用盐水冷却(冷却液不循环),水温20~30℃。回火温度为520~530℃(零件淬火后隔天回火)。经车削后,发现零件内孔平面和内孔上有较多裂纹,如图1和2所示。 图1 OPI 图象说明: 零件实物经SM-3R型渗透剂着色探伤后宏观形貌。经肉眼与放大镜观察,在齿坯内孔平面与内孔中有距离大致相等的5~6处较长的裂纹,裂纹均由内孔之平面与孔交界处为起始分别向内孔壁与平面扩展;内孔平面上和内孔交界处加工纹路明显且尖锐。

图象说明: 内孔平面试样作金相观察,有 数条裂纹交叉分布,其内充满氧化皮 夹杂。其微观裂纹长度不等,分别为 0.63mm,0.29mm,0.23mm及0.19等。 图2 OMI 200× 2.汽车变速箱齿轮失效 失效齿轮为载重汽车变速箱一挡齿轮,由渗碳钢制造,在进行台架试验时,未达到设计要求就发生断齿现象。 根据断口的形貌可断定该齿轮的断裂为高应力作用下引起的快速断裂。主动齿轮心部断口基本为韧窝,被动齿轮具有准解理断裂形貌,说明主动齿轮韧性较好,但强度较低。显微硬度证实了主动齿轮硬度较被动齿轮低。两只齿轮渗碳层中均有网状渗碳体析出,这将使表层韧性较低,致使在运转过程经受不了启动冲击应力的作用。本次断裂事故是由主动齿轮先断裂,进而引起被动齿轮崩齿,故在被动齿轮上还能看到碰伤的痕迹。因此,可以认为齿轮失效的原因为渗碳工艺控制不当(热处理不当)而引起断齿。 变速箱一挡齿轮发生断齿后的宏观实物如图3所示。主动齿轮及被动齿轮断齿后的宏观断口形貌见图4所示。 图象说明: 变速箱齿轮发生断齿后的宏观 实物形貌。 图3 OPI

齿轮的失效形式有哪些

齿轮的失效形式有哪些 1. 齿轮的失效形式有哪些, a齿面点蚀 b齿面磨损c齿面折断d齿面胶合e塑形变型 2. 齿面胶合的失效机理如何,避免齿面胶合的措施有哪些, 齿面胶合是由于齿面未能有效地形成润滑油膜,导致齿面金属直接接触,并在随后的相对滑动中,相互粘连的金属沿着相对滑动方向相互撕扯而出现一条条划痕。措施:采用正变位齿轮,减小模数,降低齿高以减小滑动速度,提高齿面硬度,降低齿面粗糙度值,采用抗胶合能力强的齿轮材料,在润滑油中加入抗胶合能力强的极压添加剂等 3. 齿面点蚀的机理如何, 齿轮工作时,在循环接触应力,齿面摩擦力及润滑的反复作用下,在齿面或其他表层内会产生微小的裂纹。这些微裂纹继续扩展,相互连接,形成小片并脱落,在齿面上出现细碎的凹坑或麻点,从而造成痴齿面损伤,称为疲劳点蚀。 4. 减小齿面磨损的措施有哪些, 采用闭式齿轮传动,提高齿面硬度,降低齿面粗糙度值,注意保持润滑油清洁等。 5. 如何提高齿轮的抗折断能力, a采用正变位齿轮,增大齿根的强度 b使齿根过渡曲线更为平缓及消除加工刀痕,减小齿根应力集中 c增大轴及支承的刚件,使齿轮接触线的受载较为均匀 d采用合适的热处理方法,使齿芯材料具有足够的韧性 e采用喷丸,滚压等工艺措施对齿根表层进行强化处理。 6. 齿轮常用的材料及热处理方法有哪些, 锻钢,铸铁,非金属材料。调制,淬火,渗碳,渗氮 7. 软齿面闭式齿轮传动的设计模式如何, 通常保证接齿面触疲劳强度为主。

8硬齿面闭式齿轮传动的设计模式如何, 通常保证齿根弯曲疲劳强度为主。 9.开式齿轮传动的设计模式如何, 根据保证齿面抗磨损及齿根抗折断能力两准则进行计算 10.对齿轮性能的基本要求是什么, 齿面要硬,齿芯要韧 11.为了降低载荷沿接触线分布不均匀得程度,可以用怎么样的办法, 可以采用增大轴,轴承及支座的刚度,对称地配置轴承,以及适当地 限制齿轮的宽度,同时应尽可能避免齿轮作悬臂布置。 12.斜齿轮的螺旋角通常取多少, 8?-20? 13.人字齿的螺旋角一般是多少, 15?-40 蜗杆 1. 蜗杆传动的优缺点, 优点:传动比大,结构紧凑,传动平稳,噪声小。 缺点:传动效率低,蜗轮齿圈用青铜制造,成本高。 2. 蜗杆传动的正确啮合条件如何, 蜗杆的轴面模数,压力角应与蜗轮的端面模数,压力角相等。 3. 闭式蜗杆为什么要进行热平衡计算,有哪些措施, 蜗杆的传动效率低,所以工作时发热量大。在闭式传动中,如果产生的热量不能及时散逸,将因油温不断升高而使润滑油稀释,从而增大摩擦损失,甚至发生胶合。所以,必须根据单位时间内的发热量等于同时间内的散热量进行热平衡计算,以保证油温稳定地处于规定的范围内。加散热片以增大散热面积,在蜗杆轴端加装风扇以加速空气的流通。在传动箱内装循环冷却管路。文案编辑词条

齿轮的失效分析

潞安职业技术学院毕业论文 齿轮的失效分析 作者:李再蕾 摘要:齿轮传动是目前最重要也是应用最广泛的一种传动形式。由于齿轮在传动过程 中受到各种因素导致齿轮失效,如轮齿折断、齿面疲劳点蚀、胶合、磨损、塑性变形等。 齿轮失效直接影响着机械效能的发挥,亟待解决,本文分析了机械传动齿轮的失效形式 及失效的原因,并列举了实例进行了实例分析。采用化学成分分析、金相检验、硬度测 试等方法,对断裂齿轮进行失效分析,结果表明,失效的齿轮硬度达不到要求、设计图 样和加工工艺不符、金相组织不符合要求、存在偏载和重载现象等,这些都是导致齿轮 失效的直接原因,本文对此提出了相应的解决措施,并指出了齿轮今后的发展方向。 关键词:齿轮失效分析原因措施 第 1 页

潞安职业技术学院毕业论文引言 机械产品的失效分析是一门新的跨学科的综合性技术,在一些国家中已将它作为一门新的独立学科加以研究和发展。这是因为尽管人们所掌握的机械设计、材料、工艺、管理等的知识不断地丰富与深化,所运用的技术手段不断地更新与完善,但机械产品的失效事故仍经常发生,一些重大的失效事件往往会导致生命和财产的巨大损失。所以必须系统地研究机件的失效类型、鉴别失效类型的技术、预测及监控失效的方法,改进与预防失效的措施等。这方面的知识不仅对专业失效分析工作者是不可缺少的,而且对于设计工程师、材料和工艺工程师以及生产管理人员,也是十分必要的。只有对产品一切可能的失效形式、其发生的条件、控制与预防等有深刻的理解,才可以在创造优质产品方面获得成功。这里主要研究的是齿轮的失效分析。 齿轮是机动车辆、农业、矿山、石油机械和机床等多种机械产品必不可少的基础零件,应用范围极广,需用量也大。齿轮在各种机械中要求可靠且精确地传递动力,应具有高的疲劳强度、耐磨性能和加工精度,因而要求较高的制造技术。 目前我国已具有相当大的齿轮生产能力,基本上已能够满足各类机械产品的要求,但在实际使用中普遍反映使用寿命较低。这主要是由于我国的齿轮制造技术与国际先进水平相比差距较大,在齿轮设计、用材、制造以及使用等方面都还存在不少问题。如果对这些问题不作系统的分析研究,找出问题所在,从而提出相应的改进措施,齿轮产品质量就难以得到提高。 通过齿轮的失效分析,可揭示齿轮的失效形式、失效原因、失效机理。通过失效分析可较准确地揭露齿轮在设计、材质、制造工艺、装配和使用等方面而存在的不足之处。将这些信息反馈到有关部门,有助于改进齿轮质量,延长齿轮的服役寿命。 1 齿轮的损伤和失效形式 在机械工程中,齿轮传动应用甚为广泛,并且往往处于极为重要的部位,因此齿轮的损伤和失效倍受人们的关注。齿轮的失效可分为轮体失效和轮齿失效两大类。由于轮体失效在一般情况下很少出现,因此齿轮的失效通常是指轮齿失效。所谓轮齿失效,就是齿轮在运转过程中,由于某种原因,使轮齿在尺寸、形状或材料性能上发生改变而不能正常完成规定的任务。齿轮在运转中,轮齿有多种损 第 2 页

相关主题
文本预览
相关文档 最新文档