当前位置:文档之家› 测量不确定度评定实例.doc

测量不确定度评定实例.doc

测量不确定度评定实例.doc
测量不确定度评定实例.doc

附录:测量不确定度评定实例

1.用电压表测量稳压电源的输入电压

1.1测量方法及测量的数学模型

用已经校准的电压表测量一台稳压电源的输出电压U。电压表的分辨力为0.01V。电压表校准的不确定度和表的分辨力引起的不确定度可以忽略不计。因此,多次直接测量,数据的平均值即为输出电压的最佳估计值。故测量的数学模型可以表示为:

U=U测(1.1)

1.2测量数据

进行了10次测量,测量数据及相关计算列于表1.1

表1.1 输出电压测量数据及相关计算

检查平均值和残差的计算是否有误,可将正残差与负残差分别相加,若两

个和的绝对值不相等,且两者之差大于末位的1/2,则可判定计算有误。本例中

183i i υυ∑+=∑-=,再复核计算,表明计算正确。

也可直接求残差的代数和看是否为零,或小于末位的半个单位来进行判断。 10次测量值的平均

200.56V 10

i

U U ∑=

=测 (1.2)

即为输出电压U 的最佳估计值。

1.3 根据贝塞尔公式计算测量列的实验标准差,即为单次测量值的实验标准差

()()0.477V i S U ==

(1.3)

S (U i )表征测量列中测量数据的分散性。假定测量值服从正态分布,就可以估计,大约有68.3%的测量值处在(200.56±0.48)V 区间内,95%的测量值处在(200.56±2×0.48)V 区间内,99.7%的测量值处在(200.56±3×0.48)V 区间内。残差绝对值大于3×0.48V 的测量值不应该出现(小概率事件)。如果出现,可判定为粗大误差。10次测量的每一个测量值的实验标准差均为0.48V 。

这10个测量值仅是测量值总体的一个样本。由此计算的标准差仅是这个样本的标准差,而不是总体标准差。总体标准差可表示为:

()i U n σ=→∞

(1.4)

这无法实际测得,只是理论上存在,又叫理论标准差。而样本标准差仅是理论标准差的有偏估计值。样本方差S 2(U i )才是总体理论方差σ2(U i )的无偏估计值,即最佳估计值。所以在统计分析中,多用方差作为数据分散性的度量。标准差是方差的正平方根,在实际工作中使用更为方便。

1.4 计算平均值的实验标准差

()(()

0.15V i S U S U =测

(1.5)

可以这样理解S (U 测)的含义:再进行若干组测量,每组n 个测量值均可求得一个平均值和相应的测量列的标准差。若测量条件不变,各组测量列的标准

差相互很接近。各组测量值的平均值不会完全一样,它们也构成一个数列。由这个数列也可用贝塞尔公式计算它的标准差。由统计理论可证明,平均值数列的标准差等于单个测量列标准差的1/n倍,即为(1.5)式。这表明,平均值数列的分散性比单一测量列的分散性小,即各平均值比测量列中的测量值相互之间更靠近。

v=n-a叫做自由度,它是求和的项数n,减去对和的限制数a。上例中,n=10,限制条件仅有残差之和为零,即Συi=0,故a=1,因而v=10-1=9。自由度越大,计算的样本标准差就越接近总体标准差,所得结果的可信度就越高。

1.5测量结果报告

平均值的实验标准差就是它的标准不确定度。本例中,这是唯一的不确定度来源。认为近似服从正态分布,测量结果可以表示为:

)=0.15V,(1.6)输出电压U=200.56V,u=S(U

或者U=200.56V±2×u

=200.56V±0.30V,p=95% (1.7)

0.30V即为扩展不确定度。

说明:测量值的分散是输出电压的随机变化和测量仪表读数随机起伏的综合反映。

2.用发光强度标准灯校准光照度计的示值

2.1校准方法

如图(2.1)所示,将光强标准灯和照度计的光度探测器安置在测光导轨上,并调整好它们的状态,设定两者之间的距离为l。则标准灯在接收面上产生的标准照度值为

E S=I / l2(2.1)

式中,I为标准灯的发光强度,I=268.8 cd,l=1.600 m,故有:

E S=268.8 cd/(1.600 m)2=105.0 lx(2.2)

由照度计测得的照度示值为E t

图2.1 发光强度标准灯校准光照度计示意图

2.2 数学模型

如上所述,校准的数学模型可以表示为

2t s t I E E E E l

?=-=-

(2.3)

式中,△E 为照度计的示值误差。

2.3 输入量的标准不确定度评定

(1) 由△E 分别对E t ,I 和l 求偏导数,即得相应的灵敏系数

()

()()12233112t

E c E E c I l E I c l l ???=

=???

????==-??????==?

??

?

(2.4)

由此可得:

()()()()()()1122233312t t u c u E u E u c u I u I l I u c u l u l l ?

==?

??

==???

==?

?

(2.5)

(2) E t 为照度计10次测量所得示值E ti 的平均值,即E t =ΣE ti /10。故用A 类方

法评定其标准不确定度。10次测量值及相关计算列于表示2.1

表2.1 测量数据一览表

根据贝塞尔公式,计算得实验标准差s (E ti )为

()lx 0.32lx ti s E =

=

=

(2.6)

则平均值的实验标准差s (E t )为

()lx 0.10lx t s E s E =

=

=

(2.7)

因此,A 类方法评定的标准不确定度为

u 1=s (E t )=0.10 lx

(2.8)

其自由度为

v =n -1=9

u 1反映了各种随机因素,如标准灯供电的随机起伏引起发光的随机起伏,灯丝本身的分子热运动产生的发光起伏,空气绕动使接收面上的照度发生随机起伏,可能出现的微小震动使接收面和灯丝面在平衡位置附近摆也使接收面上的的

照度产生随机起伏,以及若干没有认识到的随机因素影响的综合作用,使得接收面上的照度不是恒定的,因而照度测量值不重复。此外,照度计本身在各种随机因素影响下,其响应度也不是恒定不变的,也是测量值不重复性的原因。上面用统计方法求得的标准差或标准不确定度正是测量值不重复性的一个评定,它表征测量值的分散性。

(3) I 的不确定度有两部分,均用B 类方法评定其标准不确定度

a ) 检定证书上给出的光强值的扩展不确定度为1.0%,并注明包含因子k =3(近似服从正态分布)。由此可得光强值的相对标准不确定度为

()0.01

0.33%3

r i u I =

= 故

()268.8cd 0.00330.89cd i u I =?

(2.10)

所求得的u (I 1)本身的相对标准不确定度估计为25%,它大致相应于正态分布9次观测值的平均值的标准差的相对标准差。在确定标准灯光强值时,观测次数一般不少于9次,在没有更准确的资料时,就取

()

()

0.25i i u I u I ?=

(2.11)

故相应的自由度为

()()()2

182i i i u I v I u I -??

?==??

??

(2.12)

I 1的不确定度对△E 的不确定度贡献为

()()

1222

0.890.35lx 1.600i I u I cd

u l m =

==

(2.13)

b ) 供给标准灯的电流在数值上与检定时供给的电流完全一样。由于电测

系统的不确定度,在这两种情况下,供给灯的实际电流,一般说来不会完全相同。估计两者的最大差异可达0.03%,即电测系统的扩展不确定度为0.015%,置信水准为1。两者的差别从0到0.03%都以等概率出现,认为服从均匀分布,则电流值的相对标准不确定度为

()0.0087%

r u i =

=

(2.14)

由经验公式知道

6dI di I i =

(2.15)

故,由于灯电流的不确定度引起光强的相对标准不确定度为

()260.0087%0.052%r u I =?

()2268.8cd 0.000520.14cd u I =?

(2.16)

因而对△E 的不确定度的贡献为

()

222

2

0.14cd

0.14cd

0.055lx 2.561.600I u m m =

=

(2.17)

由于电流的置信限是准确知道的,可以认为求得的22I u 是准确的,故

()2v I →∞

如果标准灯工作和检定时使用同一电测系统,则这一项不确定度分量就不予考虑。

(4) 测量距离l 的标准不确定度也用B 类方法评定

根据对导轨长度标尺的校准和接收面,灯丝平面的调整资料,可以判定l 值可能变动的范围不会超过±1mm ,而且出现在区间中心的概率比出现在两端的概率要大得多,可以看作服从三角分布。因而测量l 的标准不确定度为

(

)0.41u l mm =

=

(2.18)

对照度计示值误差标准不确定度的贡献为:

()

333

2268.8cd

0.41100.054lx 1.600u m m -?=

??=

(2.19)

同样,可以认为u (l )是准确的,故

()v I →∞

(5) 合成标准不确定度

综上所述,将各不确定度分量和相关信息列于表2.2

表2.2 标准不确定度分量一览表

各不确定度分量彼此无关,故合成标准不确定度u c 为:

lx

lx 0.37lx

c u ===

(2.20)

有效自由度为:

444

4444

0.350.10.330.0520.0519810.0710

c eff

i i u v u v ==+++∞∞=≈∑

(2.21)

(6) 扩展不确定度和校准结果报告

取置信水准为0.95,由t 分布表示查得自由度为10对应的包含因子为t 95

(10)=2.23,故△E 的扩展不确定度为

U 95=0.37 lx ×2.23=0.83 lx

(2.22)

因而校准结果报告为: 示值误差

△E =99.51 lx ―105.00 lx =―5.49 lx

(2.23)

u c =0.37 lx

U 95=0.83 lx

v eff =10

修正值为

-△E =5.49 lx

(2.24)

说明:在评定不确定度时,为了简化,对一些次要因素如杂散光、工作面

不垂直测量轴线等没有考虑,在实际工作中,应根据具体情况,分别处理。

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

长度不确定度评定示例

用外径千分尺检验某主轴直径φ700 -0.019mm 的 测量不确定度评定报告 1.概述 1.1 测量依据:产品图纸(或生产工艺)编号□□□□# 1.2 环境条件:温度 (20±10)oC ; 相对湿度<70% RH 1.3 测量设备:一级50~75mm 外径千分尺,示值误差为±4μm。 1.4 被测对象:主轴的直径φ700-0.019mm ;材料为球墨铸铁α1= 10.4×10-6/℃ 1.5 测量方法:用外径千分尺直接测量 2.数学模型: 由于主轴直径值可在外径千分尺上直接读得,故: L=L S -L S (δα·Δt +αs ·δt) L — 被测主轴的直径。 L S — 外径千分尺对主轴直径的测量值。 δα—被测主轴线膨胀系数与外径千分尺线膨胀系数之差。 Δt — 被测主轴温度对参考温度20℃的偏差,本例为±10℃。 αs — 外径千分尺线膨胀系数,本例为11.5×10-6/℃。 δt — 被测主轴温度与外径千分尺温度之差,本例为±1℃。 3.灵敏系数 显然该数学模型是透明箱模型,必须逐一计算灵敏系数: 1)1(≈-?-=??=t s t S Ls f C δαδαL ; t S s L s f C δαα-=??==-70×1㎜℃=-7×104μm ℃; δα S t t L f C -=???=?=-70×1×10-6㎜/℃=-0.07μm/℃ δα δα??=/f C =-Ls Δt=-70×10㎜℃=-7×105μm ℃ t f C t δδ??=/ =-Ls αs=-70×11.5×10 -6 ㎜/℃=-0.805μm /℃ 4.计算各分量标准不确定度 4.1外径千分尺示值误差引入的分量u(L S ) 根据外径千分尺检定规程,示值误差e=±4μm , 在半宽为4μm 区间内,以等概率分布(均匀分布),则:u (L S ) =4/3=2.31μm u(L S )=|C LS |·u (L S )=1×2.31=2.31μm , 其相对不确定度 () () =?S S L u L u 0.1=1/10 , 自由度υ(Ls)=50 4.2被测主轴线膨胀系数不准确引入的分量u(αS ) 由于被测主轴线膨胀系数α1= 10.4×10-6/℃是给定的,是一个常数, 故 u(αS )= 0 , 自由度υ(αS )= ∞ 4.3测量环境偏离标准温度20℃引入的分量u(Δt) 测量环境偏离标准温度20℃的偏差为±10℃,在半宽为10℃范围内,以等概

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

测量不确定度案例分析

标准不确定度A类评定的实例 【案例】对一等活塞压力计的活塞有效面积检定中,在各种压力下,测得10次活塞有效面积与标准活塞面积之比l(由l的测量结果乘标准活塞面积就得到被检活塞的有效面积)如下: 0.250670 0.250673 0.250670 0.250671 0.250675 0.250671 0.250675 0.250670

0.250673 0.250670 问l 的测量结果及其A 类标准不确定度。 【案例分析】由于n =10, l 的测量结果为l ,计算如下 ∑===n i i .l n l 1250672 01 由贝塞尔公式求单次测量值的实验标准差

()612 100521-=?=--=∑.n l l )l (s n i i 由于测量结果以10次测量值的平均值给出,由测量重 复性导致的测量结果l 的A 类标准不确定度为 6 10630-=?=.)l (u n )l (s A 【案例】对某一几何量进行连续4次测量,得到测量 值:0.250mm 0.236mm 0.213mm 0.220mm ,

求单次测量值的实验标准差。 【案例分析】由于测量次数较少,用极差法求实验标 准差。 )()(i i x u C R x s == 式中, R ——重复测量中最大值与最小值之差; 极差系数c 及自由度ν可查表3-2

表3-2极差系数c及自由度ν 查表得c n=2.06

mm ../mm )..()x (u C R )x (s i i 018006221302500=-=== 2)测量过程的A 类标准不确定度评定 对一个测量过程或计量标准,如果采用核查标准进行长期核查,使测量过程处于统计控制状态,则该测量过程的实验标准偏差为合并样本标准偏差S P 。 若每次核查时测量次数n 相同,每次核查时的样本标

TEMUNGB化学分析中不确定度评定与表示方法规程

一、应用范围和领域 本规程给出了定量化学分析中评估和表述不确定度的详细指导。也适应于仪器校准中不确定度的评定,它是基于“ISO测量不确定度表述指南”〔〕中所采用的方法,适用于各种准确度和所有领域—从日常分析到基础研究、经验方法和合理方法。需要化学测量和仪器校准并可以使用本规程原理的一些常见领域有: (1)制造业中的质量控制和质量保证; (2)判定是否符合法定要求的测试; (3)使用公认方法的测试; (4)标准和设备的校准; (5)与标准物质研制和认证有关的测量活动; (6)研究和开发活动。 本规程未包括化学分析样品的取样和制样操作中不确定度评估。 本规程说明了应该如何使用从下列过程获得的数据进行测量不确定度评估: (1)实验室作为规定测量程序〔〕使用某种方法,对该方法所得分析结果的已识别来源的不确定度影响的评价; (2)实验室中规定的内部质量控制程序的结果; (3)为了确认分析方法而在一些有能力的实验室间进行的协同试验的结果; (4)用于评价实验室分析能力的水平测试项目的结果; (5)本系统内部比对样品的定值; (6)标准和设备的校准结果。 二、引用标准 2.1JJF 1059-1999《测量不确定度评定与表示》 2.2《化学分析中不确定度的评估指南》――中国实验室国家认可委员会 三、术语和定义 3.1不确定度(uncertainty) [测量]不确定度定义 表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。 注: 1此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 2测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,也可用标准差表征。称为A类评定。另一些分量,则可用基于经验或其他信息的假定概率分布计算。也可用标准差表征,称为B类评定。 3测量结果应理解为被测量之值的最佳估计,全部不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 4不确定度恒为正值。当由方差得出时,取其正平方根。

测量不确定度评定和分析

测量不确定度评定和分析 【摘要】测量不确定度是评定测量水平的指标,是判断测量结果的重要依据,特别是在中国已加入WTO的宏观经济背景下,开展测量不确定度的评定,对测量领域与国际接轨具有十分重要的现实意义。本文对测量不确定度的评定方法进行了探讨,并结合电力计量实际工作,以典型的电能计量标准装置为实例进行了测量不确定度的评定和分析。 【关键词】测量;不确定度;评定 1 表示测量不确定度的意义 测量是科学技术、国内外贸易及日常生活各个领域中不可缺少的一项工作。测量的目的是确定被测量的值或测量结果。测量结果的质量,往往会直接影响国家和企业的经济利益。此外,测量结果的质量还是科学实验成败的重要因素之一。测量结果有时还会影响到人身安全,测量结果和由测量结果得出的结论,还可能成为决策的重要依据。因此,当报告测量结果时,必须对其质量作出定量的说明,以确定测量结果的可信程度。测量不确定度就是对测量结果质量的定量表示,测量结果的可用性在很大程度上取决于其不确定度的大小。所以,测量结果必须附有不确定度的说明才有完整意义。 2 测量不确定度评定与表示的应用范围 我国国家计量技术规范《测量不确定度评定与表示》,规定的是测量中评定与表示不确定度的一种通用规则,它适用于各种准确度等级的测量,而不仅限于计量检定、校准和检测。其主要应用在以下领域: (1)建立国家计量基准、计量标准及其国际比对; (2)标准物质、标准参考数据; (3)测量方法、检定规程、校准规范等; (4)科学研究及工程领域的测量; (5)计量认证、计量确认、质量认证及实验室认可; (6)测量仪器的校准和检定; (7)生产过程的质量保证及产品的检验和测试; (8)贸易结算、医疗卫生、安全防护、环境监测及资源测量

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述化学分析是检验检疫工作中使用频率最高的实验方法之一。对化学分析中测量不确定度的评定已进行过广泛的论述。这里,用较为系统的观点对化学分析中测量不确定度评定的一般方法进行讨论,以便为实际工作提供参考。 在总的范围内,化学分析是相对于物理测量等其他测量方法而言的。而在测量的化学方法中,化学分析是相对于仪器分析而言的,这里所涉及的化学分析是指后一种情况。它包括了很多经典的分析方法,如重量法、容量法。同时,为了扩展化学分析方法的分析范围和提高分析水平,可能还包括了某些复杂的样品处理过程等方面。 在不确定度的评定中,化学分析中许多通用的要素的处理方法可以是一致的,本文大体归纳了这些要素,并将它们作为测量不确定度的分量分别考察,探讨各分量不确定度的评定方法及这些分量之间的相互关系。 1.化学分析中的通用分量及其不确定度的评定方法1.1 化学分析中的测量方法和被测量 重量法和容量法是化学分析中的两类基本方法,根据被测量的不同,会采用不同的分析原理或条件,如容量法中有滴定分析、气体容量分析等方法。 但是,化学分析方法具有共同的特点,其被测量都是样品中某特

定元素的含量或纯度。对于含量分析来说,其最终目的是得到该元素的含量值,一般采用直接测量和计算的结果;而纯度是将相关或规定的元素含量扣除后的结果。无论最终结果使用那种单位或形式表示,都可以表示为式1的形式: ()n 21X ,X ,X f Y Λ=, (1) 其中,X i 为对被测量Y 有影响的输入量。这些输入量可以是直接 测量得到的,也可以是从其他测量结果导入的。 1.2 化学分析中涉及的通用分量及其与被测量的关系 大多数情况下,化学分析方法中采用手工方法,对化学分析结果的不确定度产生影响的因素很多,大体可以分为质量、体积、样品因素和非样品因素等。质量因素和样品因素存在于所有化学分析中,而容量分析中必然涉及体积因素。由于测量原理的不完善及测量过程的不同,在化学分析中还可能存在非样品因素。 只要能够明确地给出被测量与对其不确定度有贡献的分量之间的关系(如式1),则这些分量怎样分组以及这些分量如何进一步分解为下一级分量并不影响不确定度的评定。因此,可以将这些通用分量与被测量的关系采用图1所示的因果图表示。

化学光谱分析测量不确定度评估报告(c元素)

德韧干巷汽车系统(上海)有限公司 DURA Ganxiang Automotive Systems(Shanghai)Co.,Ltd 测量不确定度评估报告 HHSB-TR- -2010 A/0 Evaluation of Uncertainty in Measurement Report No. 样品名称Specimen 20# 钢 样品编号 Specimen No 20120313 检测方法 Test method GB/T 4336-2002 检测设备 Test Equipment 全谱直读光谱仪 评估过程 Evaluation Process 1.数学模型的建立 SPECTRO TESTCCD 型直读光谱仪自动化程度高,数据采集和处理能力完善,屏幕直接显示待测数据,故其数学模型为: y=x y —测量值 x —仪器显示值 (对于直接测量c =x y ??/=x x / =1可以不计算灵敏系数,故在下列不确定度分量评定时未提及。 ) 2.不确定度来源的识别 本方法测定化学元素含量的不确定度主要来源于以下分量: a. 测量结果的重复性; b. 标准物质校准仪器的变动性; c. 标准物质标准值的不确定度; d. 仪器变动性、显示分辨力的不确定度分量。 3.碳含量不确定度分量的评定 3.1测量重复性不确定度分量的评定(A 类评定) 重复测量一份样品10次,并计算其重复性标准不确定度u(s)和相对标准不确定度u rel (s),运用实例见表1: 表1 样品碳含量测量重复性的A 类不确定度 测量项目 C 1 0.177% 2 0.176% 3 0.173% 4 0.189% 5 0.173% 6 0.191% 7 0.172% 8 0.195% 9 0.175% 10 0.178% 平均值 0.180% 标准偏差 0.00267% 标准不确定度u(s) 0.00267% 相对标准不确定度u rel (s) 0.0148 3.2 标准物质校准仪器的变动性 根据标准物质证书的信息,碳认定值w (C)=0.217%,并校准该标准物质5次,校准实验数据见表2. 测量项目 C

至今见过的最规范的不确定度评定的例子!

至今见过的最规范的不确定度评定的例子! 不确定度是指由于测量误差的存在,对被测量值的不能肯定的程度。反过来,也表明该结果的可信赖程度。在报告结果时,必须给出相应的不确定度,一方面便于使用它的人评定其可靠性,另一方面也增强了测量结果之间的可比性。今天,仪器论坛版友六弦琴为大家找来了不确定度评定的范例,供大家参考。如有疑问,请点击阅读原文版友将为大家详细解答 点击图片查看大图不确定度评定中需要注意的几个问题a) 抓住影响测量不确定度主要分量的评估,避免漏项。通常测量重复性分量、标准物质不确定度分量、工作曲线变动性分量等在合成标准不确定度中所占比重较大,须逐一评估。对某些不可能进行多次的测定,无重复性数据,应尽可能采用方法精密度参数或以前在该条件下的测试数据进行评估。b)忽略次要不确定度分量的影响。有些分量量值较小(属微小不确定度),对合成不确定度的贡献不大。例如,一个分量为1.0,另一个分量0.33,二者的合成不确定度为1.05,相差5%,即分量0.33在合成标准不确定度中的贡献可忽略。通常试料称量、相对原子量、物质的摩尔质量等分量相对于测量重复性、工作曲线变动性分量要小得多,一般可忽略。 c)不确定度评估中避免重复评估。如当已评估了测量重复性

分量,不必再评估诸如样品称量、体积测量、仪器读数的重复性分量。 d)不应将一些非输入量的测量条件当作输入量评估。例如,重量法中高温炉灼烧温度的变动性,测定碳、硫时氧气纯度的变动性,光度分析中波长的精度等,它们不是输入量,其对测量结果的影响反映在测量重复性中,不应将其作为分量进行评估。 e)合成标准不确定度和扩展不确定度通常取一位或两位有效数字。计算过程中为避免修约产生的误差可多保留一位有效数字。修约时可采用末位后面的数都进位而不舍去,也可采用一般修约规则。测量结果和扩展不确定度的数位一致。

气相色谱仪不确定度评定分析-共8页

气相色谱仪检测限检定结果的CMC 评定 概述 气相色谱仪的检定根据JJG700—2019《气相色谱仪》检定规程进行。检测限(包括F1D 、FPD 、NPD 、ECD 检测器)和灵敏度(TCD 检测器)反映了检测器的敏感度,是仪器重要的计量指标。 检定依据:JJG700—2019(气相色谱仪检定规程》。 测量环境条件:温度(5~35)℃ ,相对湿度(20~85)%。 一、火焰离子化检测器( FID)检测线检定结果的不确定度评定 1、检定过程概 1.3 测量标准:正十六烷-异辛烷溶液,1mL /瓶,100ng/ L ,不确定度为 =3%,k=2。 微量进样器,10μL ,相对标准偏差为1%。 1.4 被测对象:气相色谱仪型号:GC7890F ;检测器名称:FID 。色谱工作站:T2019P 。 1.5 测量过程:检定时,选择适宜的色谱条件,待基线稳定后,采集30min 基线,测得噪声值N ;再用微量进样器准确量取1.0 μL 标准溶液,并将其注入气相色谱仪,连续进样6次,记录峰面积A ,按公式计算出检测限。并设定毛细柱分流比为1:10,故实际进样量为0.1uL 。 2 建立数字模型 FID 2NW D =A 式中: D FID ——FID 检测限,g/s ;N ——基线噪声,A ; W ——正十六烷进样量,g ;A ——正十六烷峰面积的平均值,A ·S 。 3 方差与灵敏系数 2222222()()()()()()()u D u A c A u N c N u W c W =++ 为评定方便,采用相对标准不确定度评定,则有: ()1,()1,()1 ()()()()(),(),()222() ()2rel rel rel rel rel c A c N c W u D u N u A u W u N u A u W N A W u D u D D ======== 其中: 4 各分量的相对标准不确定度的分析 4.1 正十六烷峰面积A 的相对标准不确定度评定u rel (A ) 峰面积A 的不确定度主要由人员操作的重复性、进样的重复性、色谱数据处理系统积分面积的重复性等因素引入,可以通过连续测量得到测量列,采用A 类方法进行评定。 选择适当的色谱仪条件,待基线稳定后,采集30min 基线,测得噪声值N ;再用微

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

测量不确定度评定实例(完整资料).doc

此文档下载后即可编辑 测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 2 4 D v π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定度21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。 ①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()m m 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量

高度h 的6次测量平均值的标准差: ()m m 0026.0=h s 高度h 的误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围0.005mm ±,按均匀分布,示值的标准不确定度 0.0029 q u == 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3 由示值误差引起的高度测量的不确定度 q h u h V u ??= 3 由示值误差引起的体积测量的不确定度分量 ()()323233mm 04.1=+=h D u u u 3. 合成不确定度评定 ()()()3232221mm 3.1=++=u u u u c 4. 扩展不确定度评定 当置信因子3=k 时,体积测量的扩展不确定度为 3mm 9.33.13=?==c ku U 5.体积测量结果报告 () m m .93.88063±=±=U V V 考虑到有效数字的概念,体积测量的结果应为 () m m 48073±=V

分析测试中测量不确定度及评定

不确定专题 文章编号:1000-7571(2006)04-0089-06 分析测试中测量不确定度及评定 第五部分 测量不确定度评定中 要注意的一些问题 曹宏燕 (武汉钢铁集团公司技术中心,湖北武汉 430080) 摘 要:对A 类和B 类不确定度评定的概念、合成标准不确定度的评定方法、温度对溶液体积 的影响等几个容易混淆和在评定中要注意的问题进一步讨论,提出一些新的认识,有助于对测量不确定度评定概念的理解,并对评定中的具体问题作出正确、合理的判断。关键词:测量不确定度;A 类不确定度;B 类不确定度;合成标准不确定度;评定 中图分类号:O651 文献标识码:A 收稿日期:2004-06-08 作者简介:曹宏燕(1941-),男,教授,从事钢铁材料化学分析,Tel :023*********,E 2mail :caohy 2yh @https://www.doczj.com/doc/b218722926.html, 。 作者在本专题(第一至第三部分)对分析测试中测量不确定度的概念、评定的基本方法、主要不确定度分量的评定作了较为系统的介绍[1-3],并随后发表在本刊6个不确定度评定实例中剖析了不同类型分析方法评定的要点。但是,在不确定度评定实践中,还可能遇到一些具体问题,这些问题在不同的著作和论文中亦有不同的认识。以下就对标准不确定度A 类评定和B 类评定的认识、合成不确定度的评定方法、温度对溶液体积的影响及不确定度评定中的误区等几个容易混淆和要注意的问题作进一步讨论。 1 标准不确定度的A 类评定和B 类 评定 标准不确定度的A 类评定和B 类评定并无本质差别,只是评定方式不同而已。它们都基于概率分布,并都用标准差或方差表示,只是方便起见而称为不确定度的A 类评定和B 类评定。因此,指出某个分量是用统计方法得出的,某个分量是用非统计方法得出的,在不确定度评定中并不重要,重要的是评定的可靠性。 有些不确定度分量的评定可以认为是A 类不确定度评定,在另一情况下又可认为是B 类不确定度评定。不确定度的B 类评定中大量用到 技术说明书、技术资料和以往经验所提供的数据 和参数,这些数据和参数都是建立大量重复测量和对数据统计的基础上,即亦是通过统计方法得出来的(即A 类不确定度评定)。例如,不少分析方法标准列出的方法重复性限(r )和再现性限(R )的函数关系式,是由多个实验室对多个水平的样品进行实验室间共同试验,通过对大量实验数据统计而得来的;又如,容量器皿给出的体积允许差,亦是通过大量实验统计而得到的。这些数据和参数在共同试验数据进行统计时是A 类评定,而在随后引用时是B 类评定。理论上讲,每个实验室都可以对这些B 类不确定分量进行实地试验,用统计方法计算其标准不确定度(属于A 类评定)。但是,这需要对实验方法有充分的了解并花费大量的时间、精力和物力,而且不是每个实验室都能做到的,也没有必要这样做。 2 不确定度评定的可靠性 不确定度的评定中要充分利用仪器设备的校准证书、检定证书、准确度等级、极限误差或有关 技术说明书、技术资料、分析方法标准和手册所提供的数据及不确定度,这些数据和参数不少都是以技术标准或规范的形式规定下来,具有较高的可靠性和实用性,可直接引用进行不确定度分量 — 98—

化学分析测量误差,不确定度评定和数据处理

化学分析测量误差、不确定度评定和数据处理 一、化学分析测量误差 1.测量及其分类 1.1 测量就是将待测量与选作计量标准的同类量进行比较得出其倍数的过程。倍数值称为待测量的数值,选作的计量标准称为单位,因此,表示一个被测对象的测量值必须包括数值和单位。 1.2 根据测量方式测量分为直接测量和间接测量。 直接测量:可直接从仪器或量具上直接读出待测量大小的测量。例如:用天平称取样品的质量;从滴定管上读取溶液体积等。 间接测量:待测量的量值是由若干个直接测量量值经过一定的函数关系运算才获得,这样的测量称为间接测载量。 1.3根据测量条件是否相同测量又可分为等精度测量和不等精度测量。 在相同条件下进行的一系列测量是等精度测量。例如:同一个人,使用同一仪器,采用同样方法,对同一待测量连续进行多次重复测量,此时应该认为每次测量的可靠程度都相同,故称为等精度测量。这样一组测量值称为测量列。应该指出:重复测量必须是重复进行测量整个操作过程,而不是仅仅为重复读数。 在对某一被测量进行多次测量时测量条件完全不同或部分不同则各次测量结果的可靠程度自然也不同的一系列测量称为不等精度测量。例如,对同一待测量连续进行多次重复测量时,选用的仪器不同,或测量方法不同,或测量人员不同等,都属于不等精度测量。处理不等精度测量的结果时,根据每个测量的“权重”进行“加权平均”。事实上,在化学分析测试中,保持测量条件完全相同的多次测量是极其困难的,但条件变化对测试结果影响不大时,仍可认为这种测量为等精度测量,等精度的误差分析和数据处理比较容易,所以将绝大多数的化学分析测量都采用等精度测量。 2.误差及其分类 2.1 (量的)真值 与给定的特性量定义一致的值称为真值。 量的真值只有通过完善的测量才有可能获得,真值按其本性是不确定的,与给定的特性量定义一致的值不一定只有一个。 2.2 (测量)误差 测量结果减去被测量的真值称为(测量)误差。 误差之值只取一个符号非正即负。因为它是指与真值之差值常称为绝对误差。绝对误差是一个有量纲的数值,它表示测量值偏离的程度。绝对误差除以真值称为相对误差。相对误差是一个无量纲的量,常常用百分比来表示准确度的高低。 2.3 误差的分类

拉伸试验不确定度分析评价报告

金属拉伸试验不确定度分析 一、测量依据 金属试件的横截面为圆形。拉伸试验方法依据GB/T 228-2002《金属拉伸试验方法》。 二、测量过程描述 拉伸强度是以试验过程中试件断裂时的最大作用力除以试件截面积来表示。金属材料的室温拉伸试验抗拉强度检测时,首先根据试样横截面的种类不同测量厚度、宽度或直径,计算截面积S ;然后用电子拉伸机以规定速率施加拉力,直至试样断裂,读取断裂过程中的最大力F 。 S F R m = 三、测量溯源 试验过程中F 通过拉力机直接测量得到。试样横截面S 通过使用游标卡尺直接测量试样直径D ,然后计算得到。 四、金属拉伸试验测量不确定度分析 金属材料抗拉强度R m 测量结果不确定度来源主要包括: (1) 拉力机示值误差引入的标准测量不确定度; (2) 仪器检测过程中产生的校准不确定度; (3) 游标卡尺误差引入的标准不确定度; (4) 试验直径测量人员操作引入的不确定度 (5) 温度等环境因素引入的不确定度: (6) 试验夹角引入的不确定度。 五、数学模型 试验中的影响因素包括直径测量,拉力测量,温湿度,夹具滑动,试件的同轴度,加载速率等。考虑直径测量,拉力测量和加载速率的影响,忽略温湿度,夹具滑动影响,建立数学模型如下: 214*D F f f R m m π= 式中:R m —拉伸强度; f 1—加载速率影响系数; f m —操作中试样与竖直面的夹角影响系数; D —试件直径;

F —试件断裂时的拉力。 六、分析评定个项标准不确定度 (1)直径测量,u(D) 直径测量的不确定度由两部分组成:游标卡尺的示值误差导致的不确定度和操作者所引入的测量不确定度。 a ) 游标卡尺示值误差导致的不确定度,u 1(d) 游标卡尺的允差为±0.02mm ,估计其为矩形分布(均匀分布),则 u 1(d)=302.0mm =0.012mm b)由操作者所引入的测量不确定度,u 2(d) 根据经验估计,由操作者引入的测量误差在±0.10mm 范围内,估计其为矩形分布(均匀分布),则 u 2(d)=310.0mm =0.06mm 两者合并后,得直径测量的标准不确定度为 u(D)=2206.0012.0+mm=0.06mm 相对标准不确定度为0.06/25.32=0.24% (2) 拉力测量 对于数显测量仪器,拉力F 的测量不确定度来源于仪器校准的不确定度、仪器的测量不确定度两方面。 a) 仪器校准的不确定度,u(a F ) 经查仪器校准证书,其给出的扩展不确定度为U 95=0.5%,以正态分布估计,其标准不确定度为 u(a F )=0.5%/2=0.25% b) 仪器的测量不确定度u('F ) 拉力试验机的分辨率为1%,测量不确定度为 %29.032/01.0)(==F u 于是拉力测量的不确定度为

测量不确定度评定程序文件

1目的 为本中心合理评定测量结果的不确定度提供依据,使测量不确定度评定方法符合国际和国相关技术规、标准的规定。 2适用围 适用于与本中心所有检测项目有关参量测量结果的不确定度评定与表示。 3职责 3.1副主任 a)负责批准测量不确定度评定报告; b)批准对外公布实验室能力时的测量不确定度。 3.2技术负责人 a)制定实验室测量不确定度评定总体计划,提出中心测量不确定度评定的总 体要求; b)组织审核、验证项目测量不确定度评定报告。 3.3检测项目负责人 a)负责项目有关参量的测量不确定度评定,编写评定报告初稿。 4程序 4.1技术负责人制定年度培训计划,聘请专家讲授JJF1059-1999《测量不确定度 评定与表示指南》,使检测人员理解测量不确定度评定的基本知识和方法。办公室协助技术负责人具体实施培训计划,负责培训容和考核结果的记录、归档。 4.2测量不确定度评定步骤(详细评定步骤参见本程序附录1) 说明测量系统时要给出如下信息:①所用检测仪器型号、资产编号、技术指 标;②校准/检定证书号、校准/检定日期和校准/检定实验室明名称。 4.2.1根据检测项目依据的技术标准/规/规程,明确被测量,简述被测量定义、测量方法和测量过程。 4.2.2画出测量系统方框图 4.2.3给出测量不确定度评定数学模型。

424根据数学模型和有关信息,列出各不确定度分量的来源,尽可能做到不遗漏不重复,主要来源有(但不限于):所用的参考标准或标准物质(参考物质)、方法和仪器设备、环境条件、被测物品的性能和状态、操作人员等。需要指出,被测物品预计的长期性能所引起的不确定度来源通常不予考虑。 425评定各不确定度分量的标准不确定度:①不确定度A类评定采用统计方法; ②不确定度B类评定采用非统计方法。 合理地评定应依据对方法性能的理解和测量围,并利用以前的经验和资料、文献中确认的数据等。测量不确定度评定所需要的严密程度取决于①检测方法的要求;②客户的要求;③据以作出满足某技术规决定的紧限。 426计算合成标准不确定度。 427确定扩展不确定度和报告测量结果。 4.3测量不确定度报告的审核和批准 4.3.1中心技术负责人对各项目测量不确定度评定报告进行审核。必要时,可委托外单位专家审核。 4.3.2评审后的测量不确定度评定报告和测量不确定度表示意见经中心副主任批准后,作为实验室的受控技术文件打印归档,并作为作业指导书发至有关检测人员执行。 4.3.3检测项目负责人发现有关不确定度分量发生较大变化时,应及时向技术负责人或质量监督员报告并提出修改的具体意见,由技术负责人组织审核批准后实施。 4.4测量不确定度的报告和应用 在下列情况下检测实验室的检测报告(或证书)中应给出有关测量结果不确定度的信息:a)当不确定度与检测结果的有效性或应用有关时; b)客户有要求时; c)当不确定度影响到对技术标准/规限度的符合性时,(即测量结果处于技术标准/规规定的临界值附近时,测量不确定度的区间宽度对判断符合性具有重要影响)。 4.5注意事项

浅述标准物质在化学分析不确定度中的应用

浅述标准物质在化学分析不确定度中的应用 摘要:在样品均匀性和稳定性都一定的条件下,应用标准物质对化学物质进行定值测试,以此来表示标准物质标准值的不确定度。本文在全面地阐述了标准物质在化学分析不确定度中的重要性,提出估计化学分析中不确定度的相关问题, 并且讲述了应该如何选择标准物质,对标准物质在化学分析中的影响因素及重要性作了阐述。 关键词:标准物质;化学分析;不确定度 标准物质具有准确的计量标准,它常常被用作一个参比标准评估分析实验的操作水平,所以标准物质既是化学分析中数据检验的一个重要依据,同时它也是化学分析体系重要的一个主要组成成分。测量不确定度可以很好地表达被测量之值的分散性,同时衡量测量结果的准确性。在外界干扰条件受到控制的情况下,测量方法和测量数据的估计和假定是确定标准物质的重点,途径可以采用很多测量方法例如重量法或者质谱法等等来进行测量。 1 标准物质在化学分析不确定度定中的作用 标准物质拥有一种或多种均匀的特性量值, 技术上用校准仪器进行测量后给物质确定一个数值。标准物质经常用于仪器的校准、实验比对或者实验条件控制等领域。当工作人员在使用标准物质的时候,最好应该全面地阅读标准物质的相关证书,了解其标准物质制备的方法、测量方法以及用途等用来确保测量结果的准确性。 在进行化学测量结果的不确定度评定工作前, 应该明确标准物质对确定量值的重要性。通过选择合适的标准物质,对所使用的实验仪器例如天平等进行校准, 可以使待测物质的量值向准确化发展。不过, 试验的每一步都会受到很多外来因素的影响, 导致失败。所以,应该对样品的处理条件以及标准物质的控制重视起来,通过重复性实验来减少其误差。总之,可靠的标准物质是具有准确量值的一个计量标准,它在化学分析的整个过程中,既是作为是化学分析工作的基础, 也是评估实验操作水平的一个指标。 2标准物质对于化学分析的贡献 根据国际标准化组织制定的标准,标准物质不确定度的估算方法,是由于标准物质具有准确量值的计量标准, 标准物质在化学分析的过程中, 是确定测量结果不确定度的主要来源。标准物质对于化学分析的贡献可能会来自以下几个方面: 2.1标准物质不确定度的直接引用 标准物质特性量值的不确定度主要由物质的不确定性和实验方法的不确定性两部分组成,不同的标准物质不确定度各有不同, 主要是因为标准物质的确定

测量不确定度评定分析指南及评审规定

文件代号WHVRI/QW 002-2003 通用作业指导书 第1版第0次修订第1页共6页 修订批准人修订时间 标题:测量不确定度评定分析指南 2003年4月28日及评审规定实施日期 测量不确定度评定分析指南及评审规定 本作业指导书主要起草人:雷民叶国雄 本作业指导书审核:李建建 本作业指导书经质量总负责人2003年4月26日批准,并自2003年4月28日起实施。 质量总负责人(签名): 作业指导书编号: 受控标识:受控□非受控□

文件代号WHVRI/QW 002-2003 通用作业指导书 第1版第0次修订第2页共6页 修订批准人修订时间 标题:测量不确定度评定分析指南 2003年4月28日及评审规定实施日期 1 目的 为了使本单位的检定、校准和检测工作符合有关技术法规和客户对数据溯源的要求,必须对被测结果进行质量评估,并对测量数据进行分析,在用户的证书、报告中给出测量结果不确定度的表述;量的单位给出也应符合国家法定计量单位的要求。 2 适用范围 适用于对计量标准仪器、测试设备、测试结果的分析和表示。 3 依据文件 3.1 JJF1059-1999《测量不确定度评定与表示》; 3.2 测量不确定度表述导则ISO:1993(E); 3.3 JJF1027-91《测量误差及数据处理技术规范》; 3.4 中华人民共和国法定计量单位名称与符号方案。 4 职责 4.1 各专业实验室负责制订评定与分析项目计划、组织编写申报项目的不确定度分析报告,并进行初审。 4.2 科研业务部负责组织有关专家进行评审。 5 具体规定 5.1 能力要求 5.1.1 检定、校准和检测人员应了解被测量的定义及测量方法,必要时能写出其函数关系式。 5.1.2 应了解被测量与标准量的关系(必要时画出其量值传递或量值溯源框图)。5.1.3 应了解数据分析、统计技术,了解不确定度的定义、评定分析方法以及如何确定被测量的合成标准不确定度与扩展不确定度,了解扩展不确定度与包含因子(或置信概率)的关系,并能正确给出包含因子。 5.2 不确定度的估算

测量不确定度评定报告分析

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法

4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影 响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i

相关主题
文本预览
相关文档 最新文档