当前位置:文档之家› (完整版)高中物理恒定电流知识点归纳及专题练习新人教版选修3-1,推荐文档

(完整版)高中物理恒定电流知识点归纳及专题练习新人教版选修3-1,推荐文档

(完整版)高中物理恒定电流知识点归纳及专题练习新人教版选修3-1,推荐文档
(完整版)高中物理恒定电流知识点归纳及专题练习新人教版选修3-1,推荐文档

一、对电流概念的理解

第一节电源和电流

1、下列有关电流的说法中正确的是()

A 在电解液中阳离子定向移动形成电流,阴离子定向移动也形成电流

B 粗细不均匀的一根导线中通以电流,在时间t 内,粗的地方流过的电荷多,细的地方

流过的电荷少

C 通过导线横截面的电荷越多,则导线中电流越大

D 物体之间存在电流的条件是物体两端存在电压

二、电流的微观表达式

2、有一横截面为S 的铜导线,流经其中的电流为I,设单位体积的导线有n 个自由电子,电子电量为e,电子的定向移动速度为v,在t 时间内,通过导体横截面的自由电子数目N 可表示为()

A. nvSt B.nvt C.It/e D.It/Se

三、电流的计算

3.某电解质溶液,如果在 1 s 内共有5.0×1018个二价正离子和1.0×1019个一价负离

子通过某横截面,那么通过电解质溶液的电流强度是()

A 0

B 0.8A

C 1.6A

D 3.2A

4.一个半径为r 的细橡胶圆环,均匀地带上Q 库伦的负电荷,当它以角速度ω绕中心轴

线顺时针匀速转动时,环中等效电流为多大()

Q A Q B 2

Q

C 2

2Q

D

四、对电动势概念的理解

第二节电动势

5.下列关于电动势的说法中正确的是

A 电动势的大小与非静电力的功成正比,与移送电荷量的大小成反比

B 电动势的单位与电势、电势差的单位都是伏特,故三者本质上一样

C 电动势公式E=W/q 中W 与电压U=W/Q 中的W 是一样的,都是电场力的功

D 电动势是反映电源把其它形式的能转化为电能本领大小的物理量

五、电路中的能量转化

6.将电动势为3.0V 的电源接入电路中,测得电源两节间的电压为2.4V,当电路中有6C 的电荷流过时,则

A 有18J 其它形式的能转化为的电能

B 外电路有14.4J 的电能转化其他形式的能-

C 内电路有3J 的电能转化其他形式的能

D 内电路有3.6J 的电能转化其他形式的能

9 0

第三节 欧姆定律

六、伏安特性曲线

7.

用伏安法测小灯泡的电阻

(1) 画出电路图

(2) 将图中实物按电路图连接好 (3) 连电路时, 开关应

;连完电路后, 闭

合开关前, 应将滑动片置于

端。

(4) 若电流表示数如图所示,电压表读数为 4.5 伏,

则灯泡电阻是 , 在图中画出电压表的指针位置, 并画出接线以表明测量时所用量程。

七、欧姆定律的计算问题

8、如图所示的电路中,各电阻的阻值已标出。当输入电 压 U AB =110V 时,输出电压 U CD = 11 V 。

9、如图所示的电路中,三个电阻的阻值相等,电流表

A 1、A 2 和 A 3 的内阻均可忽略,它们的读数分别为 I 1、I 2 和 I 3,则 I 1∶I 2∶I 3= ∶

10、如图所示的电路中,电阻 R 1、R 2、R 3 的阻值都是 1 Ω ,R 4、R 5 的阻值都是 0.5 Ω ,ab 端输入电压 U=5V 。当 c 、d 端接安培计时,其示数是 A ;当 c 、d 端接伏特计时,其示数是 V 。 11、现有电灯 L 1(3V 、3W )和电灯 L 2(3V 、6W )两只及一个可变电阻 R (0 → 10 Ω ,5A ),接在电压恒为 6V 的电路中,要求两只灯都正常发光,并且电路消耗功率最小,则应该用图中那个电路 ( )

第四节 综合分类问题

八、电表改装问题

(1) 将小量程电流表改装成电压表

1 方法:给电流表串联一只大的分压电阻。就可把电流表改 装成电压表。如图 1。

电压表

2 例题:有一电流表 G ,内阻 R g

=10 欧,满偏电流 I g

=3mA.把它改装成量和平为 3V 的电压表,要串联一只多大的分压电阻 R ?

分析与解:电压表 V 由表头 G 和分压电阻 R 组成,如图 1 虚线框内所示。所谓量程 3V ,意思是当电压表两端的电压U=3V 时,表头 G 分担的电压满偏电压 U g ,通过表头的电流为

满偏电流 I g ,指针指在最大刻度处,而最大刻度直接标以3V 。

图 1:给电流表串联一只大电 阻,将电流表改装成电压表。

表头 G 的满偏电压 U R =I g R g =0.03V,电阻 R 分担的电压 U R =U-U g =2.97V.串联电阻 R 的作用是分担一部分电压。作这种用途的电阻叫分压电阻。由欧姆定律可求出分压电阻:

R =

U R

R U g

g = 990Ω

U

U

1、 改装后的电压表的电阻 R V =R+R g = .所以分压电阻 R= - R g

I g I g

(2) 将小量程电流表改装成安培表

1 方法:给电流表并联一只很小的分流电阻。就可把电流表改装成安培表。 ○

2 例题:有一电流表 G ,内阻 R g

=25 欧,满偏电流 I g =3mA,把它改装成量程为 0.6A 的安培表,要并联一只多大的分流电阻?

分析与解:安培表由表头 G 和电阻 R 组成,如

图 2 中虚线框内所示。所谓量程 0.6A ,意思是通过 I 安培表的电流是 0.6A 时,通过表头 G 的电流为满偏电流 I g ,最大刻度直接标以 0.6A.

这时通过表冰的电流 I R =I-I g =0.597A 。并联电阻 R 的作用是分去一部分电流,作这种作用的电阻常叫分流电阻。由欧姆定律求出分流电阻: I g

R = R g = 0.126Ω

I R

安培表

图 2:给电流表并联一只很小的电阻,把电流表改装成安培表。

= I 测

12. 现有一个灵敏电流计,它的满偏电流为 I g =1mA,内阻 R g =200Ω,若要将它改装成量程为 5A 的电流表,应 一个 Ω 的电阻,改装后的电流表测量电流时,指针指在表盘上原来 0.2mA 处,则被测电流的大小是 .

13. 现有一个灵敏电流计,它的满偏电流为 I g =5mA,内阻 R g =500Ω,若要将它改装成量程为

15V 的电压表,应 一个 Ω 的电阻,改装后的电压表测量电压时,指针指在

表盘上原来 0.5mA 处,则被测电压的大小是

.

14. 图示电路中,R 1=12Ω,R 2=6Ω,滑动变阻器 R 3 上标有

“20Ω,2A”字样,理想电压表的量程有 0-3V 和 0-15V 两档,理想电流表的量程有 0-0.6A 和 0-3A 两档。闭合电键 S ,将滑片 P 从最左端向右移动到某位置时,电压表、电流表示数分别为 2.5V 和 0.3A ;继续向右移动滑片 P 到另一位置,电压表指针指在满偏的 1/3,电流表指针指

在满偏的 1/4,则此时电流表示数为 A ,该电源的电动势为

V 。15.如图 10-2 所示,三个电压表用

满偏电流相同的电流表改装而成,已知电压表 V 1 的示数为 8V ,电压表 V 3 的示数为5V ,则关于电压表 V 2 的示数, 下列判定中正确的是(

)

A .电压表 V 2 的示数必为 3V

B. 电 压 表

V 2 的 示 数 必 为 5V C .若三个电压表量程相同,则电压表 V 2 的示数必为 3V D .即使三个电压表量程相同,电压表 V 2 的示数也可能不等于 3V

16. 如图所示,AB 间电压恒为 11V ,R 为阻值较大的滑线变阻器, A P 为 R 的中点,用一只 0~5V ~15V 的双量程电压表的“5V ”档 U 测 PB 间的电压时,电压表恰好满偏,若换用“15V ”档测量,则 B

电压表的示数为( )

A .5V

B .5.3V

C .5.4V

D .5.5V 九、电流表内外接法比较 ○

1 电流表外接法 R = U

R 测 = R v // R x

U R x - I

I

v

电压真实,电流较真实值大,测量值总小于真实值适用于 R v>>R x, 即小电阻 ○

2 电流表内接法

R =U

R =

U - IR A

R 测 = R A + R x

I

x

I

电流真实,电压较真实值大,测量值总大于真实值

S

R 1

A

R 3

R 2

V

V

R

P

适用于R X>>R A, 即大电阻

17. 先后按图中(1)、(2)所示电路测同一未知电阻阻值 R x ,已知两电路的路端电压恒

定不变,若按图(1)所示电路测得电压表示数为 6V ,电流表示数为 2mA ,那么按图 (2)所示电路测得的结果应有( ) A. 电压表示数为 6V ,电流表示数为 2mA

B. 电压表示数为 6V ,电流表示数小于 2mA

C. 电压表示数小于 6V ,电流表示数小于

2mA

D. 电压表示数小于 6V ,电流表示数大于

2mA

18. 如图所示的电路待测电阻 R X 电阻,已知电压表的读数为 20V, 电流表读数为 0.4A, 电

压表的的内电阻为 2.0╳103

Ω,

电流表的的内电阻为 1.0╳10-2

Ω,待测电阻 R X 的测量值为

Ω,其真实值为

Ω.

19. 如图所示是用伏安法测电阻的部分电路,开关先接通 a 和 b 时,观察电压表和电流表

示数的变化,那么(

)

A. 若电压表示数有显著变化, 测量 R 的值时,S 应接 a

B. 若电压表示数有显著变化, 测量 R 的值时,S 应接 b

C. 若电流表示数有显著变化, 测量 R 的值时,S 应接 a

D. 若电流表示数有显著变化, 测量 R 的值时,S 应接 b 十、图像类问题

20. 如下图所示的电路中,电源电动势为 3.0V ,内阻不计,L 1、 L 2、L 3 为 3 个相同规格

的小灯泡,这种小灯泡的伏安特性曲线如图所示.当开关闭合后,下列判断正确的是( )

A. 灯泡 L 1 的电阻为 12Ω

B. 通过灯泡 L 1 的电流为灯泡 L 2 电流的 2 倍

C. 灯泡 L 1 消耗的电功率为 0.75W

D. 灯泡 L 2 消耗的电功率为 0.30W

0.25 0.20 0.15 0.10 0.05 0.00

I/A

U/V

21. 右图中图线①表示某电池组的输出

电压-电流关系,图线②表示其输出功率-电流关系.该电池组的内阻为 Ω,当电池组的输出功率为 120W 时,电池组的输出电压是 V .

50

45 40 35 30

120 100 80 60 40 ②

E

L L 2

S 1 L 3

3.0

2.5 ①

输出电压(V )

输出功率(W )

R 0

E

r

22. 如图所示,直线 OAC 为某一直流电源的总功率 P 总随电流 I 变化的图线,抛物线

OBC 为同一直流电源内部热功率 P r 随电流 I 变化的图线.若A 、B 对应的横坐标为 2 A ,那么线段 AB 表示的功率及 I =2 A 对应的外电阻是 A.2 W ,0.5 Ω B.4 W ,2 Ω C.2 W ,1 Ω

D.6 W ,2 Ω

十一、焦耳定律,功率,效率计算类

23. 如图所示,A 、B 两灯分别标有“110V 、100W ”和“110V 、40W ”,按不同方法接 入 220V 电路,能使两灯正常发光,且电路中消耗功率最小的是:( )

24. 如图8所示,电路中电源电动势为E ,内电阻为r ,定值电阻的阻值为R 0,变阻器的

全阻值为R ,关于各部分的功率,有关说法正确的是( R

A 、当R=R 0+r ,R 上消耗的功率达到最大值;

B 、当R=R 0+r ,R 0上消耗的功率达到最大值;

C 、当R+R 0=r ,电源的输出功率达到最大值;

D 、当R 0=R+r ,R 0上消耗的功率达到最大值。

25. 在如下图所示的电路中,电池的电动势 E=5V ,

内电阻 r=10Ω,固定电阻 R=90Ω,R 0 是可变电阻, 在 R 0 由零增加到 400Ω 的过程中,求:(1)可变电阻 R 0 上消耗热功率最大的条件和最大热功率.(2)电池的内电阻 r 和固定电阻 R 上消耗的最小热功率之和.

26. 如图所示的电路中,电源的电动势 E =80 V ,内电阻 r =2Ω,R 1=4Ω,R 2 为滑动变阻

器.问:

⑴R 2 阻值为多大时,它消耗的功率最大?

⑵如果电源内阻损耗功率不超过总功率的 20%,R 2 应取多少? ⑶如果要求电源输出功率为 600 W ,外电路电阻 R 2 应取多少?此时电源效率为多少?

⑷该电路中 R 2 取多大时,R 1 上功率最大?

十二、电阻定律类(导线及流体的伸缩类)

12、有一根粗细均匀的电阻丝,当加 2V 电压时,通过电阻丝的电流强度为 4A ,现把电 阻丝均匀拉长,然后加 1V 电压,这时通过电阻丝的电流强度恰为 0.5A 。则电阻丝拉长

B

后的长度应是原来的 倍。

十三、闭合电路欧姆定律动态分析类

27. 如图所示,R 1 是可变电阻器.电压表、电流表可看做理想电表,

电源内阻不计.闭合开关 S ,两电表都有一定示数.适当调节可变电阻器,能使电压表的示数加倍,而电流表的示数减半.则电阻 R 2 消耗的电功率将( )

A. 变为原来的 1/2

B .变为原来的 1/4

C .变为原来的 4 倍

D .与原来相同

28. 如右图所示电路,电池的电动势为 E ,内阻为 r 。R 1 和R 2 是两个阻值固定的电阻。电

流表为理想电表,当可变电阻 R 的滑片从 a 端向 b 端移动时,电 流表 A 1 的示数和电流表 A 2 的示数变化情况分别是 A.A 1 示数变大,A 2 示数变小 B.A 1 示数变大,A 2 示数变大

C.A 1 示数变小,A 2 示数变大

D.A 1 示数变小,A 2 示数

变小

十四、电路故障检测类

29. 在图 4 电路中,当合上开关 S 后,两个标有“3V 、1W ” 的灯泡均不发光,用电压表测得 U ac =U bd =6V,如果各段导线及接线处均无问题,这说明: (A) 开关 S 未接通

(B) 灯泡 L 1 的灯丝断了 (C) 灯泡 L 2 的灯丝断了

(D) 滑动变阻器 R 电阻丝断了

30. 如图所示的电路中,电源电压为 4 伏,当开关 S 闭合时,下列说法中正确的是:( )

A. 灯 L1 短路,电压表示数为 0

B. 灯 L1 断路,电压表示数为 0

C. 灯 L2 短路,电压表示数为 4V D .灯 L2 断路,电压表示数为0

31. 两个灯泡串联的电路图如图 1 所示,开关 S 闭合后,两个灯泡都不发光,用电压表测灯泡 L1 两端的电压时,其示数为 4.5V ,再用电压表测 L2 两端的电压时,其示数为零,则灯泡 L1、L2 的故障是

A .L1 短 路 ,L2 开 路

B .L1 开 路

C .L1、L2 都短路

D .L1、L2 都开路

十五、电动机类

32. 如图所示为用直流电动机提升重物的装置,重物的重量为 500N ,电源电动势为 110V ,不计电源内阻及各处摩擦,当电动机以 0.90m/s 的恒定速度向

上提升重物时,电路中的电流为 5.0A ,可以判断( )

A

R 1

V S

R 2

C 、电动机线圈的电阻为 22Ω

D 、电动机线圈的电阻为 4Ω

33. 如图 9 所示,已知电源电动势 E=20V ,内阻 r=1Ω,当接

入固定电阻 R=4Ω 时,电路中标有“3V 4.5W ”的灯泡 L 和内阻 r ′=0.5Ω 的小型直流电动机恰能正常工作,

求:(1)电路中的电流强度?(2)电动机的额定工作电压?(3)电 源的总功率?

十六、直流电路中电容问题

34. 右图电路中三只电阻的阻值之比为 R 1∶R 2∶R 3=1∶2∶2, 两只电容器的电容之比为 C 1∶C 2=3∶2,电源电动势 E 恒定, 内阻忽略不计。当电键 K 断开时,稳定后电容器 C 1、C 2 所带的电荷量分别为 q 1 和 q 2;当电键 K 闭合时,稳定后电容器 C 1、C 2 所带的电荷量分别为 q 1 /和 )

2q /。下列结论正确的是 ( A.q 1∶q 2 = 3∶4 B.q 1∶q 2 = 2∶3 C.q 1∶q 1 /=3∶5 D.q 2∶q 2 /= 5∶4

35.

如图所示,

E=10V ,C 1=C 2=30μF ,R 1=4.0Ω,R 2=6.0Ω,电池内阻忽 略不计。先闭合开关 S ,待电路稳定后,再将开关断开,则 断开 S 后流过 R 1 的电量为多大?

十七、实验中电表选择原则

36. 如图所示是某同学测量电阻 R X 的电路。 (1) 图中电压表的 P 接头未接,该同学将 P 接头分别试触 a 、b 两点,观察到电压表的示数有明显变化,则待测电阻 R X 的阻值跟 表的内阻值相差不大,为了使测量 R X 的值更准确,则 P 接头应接在 点。

(2) 该学校实验室只有如下器材:

待测电阻 R X (阻值约为 200 欧,额定功率 2W ) 蓄电池(电动势 12V 、内阻约 1 欧) 电流表 A 1(量程 0.6A ,内阻 0.1 欧) 电流表 A 2(量程 100mA ,内阻 5 欧) 电压表 V 1(量程 3V ,内阻 5 千欧) 电压表 V 2(量程 15V ,内阻 25 千欧)

R 1 R

2

C 2

C 1

R 3

E

滑动变阻器R1(0~50 欧,额定电流1A)

滑动变阻器R2(0~200 欧,额定电流200mA)

电键S,导线若干

若用该同学的电路测定R X的阻值,滑动变阻器应选;

电流表应选;电压表应选。

37.如右图,用伏安法测量一只10Ω左右的电阻,电源电压为

6V,可变电阻的最大值为10Ω,选用下面哪一组电流表和电

压表最合适? ()

A.0~0.6V, 0~3V B.0~0.6A, 0~15V

C.0~3A, 0~3V D.0~3A, 0~15V

答案:

1A.2AC.3D.4C.5D.6ABD.

7(1)(2)略,注意电流表外接,控制电路分压;(3)断开,右。(4)3Ω.

8.1V 9.3:2:2 10. 1,5/3.

11C. 12.并,0.04Ω,1A 13.串,2500Ω,1.5V 14.0.15V,7.5V

15.C 16.B 17 .D

18. 50,51.3 19.AD 20.ACD 21.5,30 22.A 23.B

24.AC 25.(1)R0=100Ω,P=0.0625W (2)0.01W

26.(1)6Ω,(2)R2>4Ω,(3)R2=2Ω,(4) R2=0Ω

12.2 27.B 28.D 29.C 30.ADC 31.B 32.ABC 33.(1)1.5A(2)9.5V(3)30W 34.D 35.1.8*10-4C 36.(1)电流,A(2)R1,A2,V2

37.B

“”

“”

At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

人教版高中物理选修31知识点归纳总结.doc

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

高中物理选修32知识点详细汇总

电磁感应现象愣次定律 一、电磁感应 1.电磁感应现象 只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。 产生的电流叫做感应电流. 2.产生感应电流的条件:闭合回路中磁通量发生变化 3. 磁通量变化的常见情况(Φ改变的方式): ①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S 增大或减小 ②线圈在磁场中转动导致Φ变化。线圈面积与磁感应强度二者之间夹角发生变化。如匀强磁场中转动的矩形线圈就是典型。 ③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化 (Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件: 无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源. 电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势, 而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化 二、感应电流方向的判定 1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手 掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即 为感应电流方向(电源). 用右手定则时应注意: ①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定, ②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直. ③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向. ④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势. ⑤“因电而动”用左手定则.“因动而电”用右手定则. ⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。 导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便. 2.楞次定律 (1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。 (定语) 主语 (状语) 谓语 (补语) 宾语 (2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。阻碍磁通量变化指: 磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用); 磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”. (3)楞次定律另一种表达:感应电流的效果总是要阻碍 ...).产生感应电流的原因. (F安方向就起到阻 ..(.或反抗

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第四章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ-=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω22 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I = = (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯 泡A 逐渐变暗。

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第一章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥期特:电生磁 2.产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备 b ②产生感应电动势的那部分导体 相当于电源。 ③电源内部的电流从负极流向正 极。 3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容: b.表达式:t n E ??? =φ (2).计算感应电动势的公式 ①求平均值:t n E ??? =φ_ ②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω2 2 1BL E = ④闭合电路殴姆定律:)r (R I E +=感 5.感应电流的计算: 平均电流:t r R r R E I ?+?=+= )(_ φ 瞬时电流:r R BLV r R E I +=+= 6.安培力计算: (1)平 均值: t BLq t r )(R BL L I B F ?=?+?= =φ_ _ (2). 瞬时值:r R V L B BIL F +==22 7.通过的电荷量:r R q t I +?= - = ??φ 注意:求电荷量只能用平均值,而不 能用瞬时值。 8.互感: 由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。这种现象叫互感。 9.自感现象: (1)定义:是指由于导体本身的电流发 生变化而产生的电磁感应现象。 (2)决定因素: 线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。 (3)类型: 通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微 亨(μH )。 10.涡流及其应用 (1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流 (2)应用: a.新型炉灶——电磁炉。 b.金属探测器:飞机场、火车站安全检查、扫雷、探矿。 第二章 交变电流 一.正弦交变电流 1.两个特殊的位置 a.中性面位置: 磁通量ф最大,磁通量的变化率为零,即感应电动势零。

高中物理选修3-1知识点归纳(完美版)

物理选修3-1 一、电场 1. 两种电荷、电荷守恒定律、 元电荷(e = 1.60 x 10-19C );带电体电荷量等于元电荷的 整数倍 2. 库仑定律:F =?2伞(真空中的点电荷){ F:点电荷间的作用力(N ); r k:静电力常量k = 9.0 x 109N?m/C 2; Q 、Q:两点电荷的电量(C ) ; r:两点电荷间的距离(m ); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引 } 3. 电场强度:E 二匸(定义式、计算式){ E:电场强度(N/C ),是矢量(电场的叠加原理);q :检验 q 电荷的电量(C ) } 4. 真空点(源)电荷形成的电场 E =竽 {r :源电荷到该位置的距离(m ), Q :源电荷的电量} r 5. 匀强电场的场强 E =U AB { 3B :AB 两点间的电压(V ) , d:AB 两点在场强方向的距离 (m )} d 6. 电场力:F = qE {F:电场力(N ) , q:受到电场力的电荷的电量 (C ) , E:电场强度(N/C ) } A E P 减 7. 电势与电势差: L A B = $ A - $ B , U A B = W AB /q = △ q 8. 电场力做功:W A B = qL AB = qEd = △ E P 减{ W A B :带电体由A 到B 时电场力所做的功(J ) , q:带电量(C ) , L A B : 电 场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m ); △曰减:带电体由A 到B 时势能的减少量} 9. 电势能:0A = q $ A {庄A :带电体在 A 点的电势能(J ) , q:电量(C ) , $ A :A 点的电势(V ) } 10. 电势能的变化 △曰减=E^A -E PB {带电体在电场中从 A 位置到B 位置时电势能的减少量} 11. 电场力做功与电势能变化 W A B = △ E P 减=qUk (电场力所做的功等于电势能的减少量 ) 12. 电容C = Q/U (定义式,计算式){ C:电容(F ) , Q:电量(C ) , U:电压(两极板电势差)(V ) } 13. 平行板电容器的电容 C =上匚(S:两极板正对面积,d:两极板间的垂直距离, 3 :介电常数) 4水d 常见电容器 类平抛运动(在带等量异种电荷的平行极板中: E = U d 垂直电场方向:匀速直线运动 L = V o t 注:(1)两个完全相同的带电金属小球接触时 ,电量分配规律:原带异种电荷的先中和后平分 的总量平分; 14.带电粒子在电场中的加速 (Vo = 0): W = △ E <增或 qU = mVt 2 15.带电粒子沿垂直电场方向以速度 V o 进入匀强电场时的偏转 (不考虑重力作用) 平行电场方向:初速度为零的匀加速直线运动 d at2 , F a=— =qE = qU 2 m m m ,原带同种电荷

高中物理选修32知识点详细讲解版

第一章电磁感应知识点总结 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。 (2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。 (3)“阻碍”的含义 . ①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”) ②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引

高中物理选修3-1知识点汇总

第一章 电场 1. 电荷 自然界只存在正、负两种电荷;单位是库伦,符号C ;元电荷电量e=1.6?10 19 -C ;电荷产生方 法有摩擦起电、接触起电、感应起电。 2. 电荷守恒定律 电荷既不能创造,也不能消失,它只能从一个物体转移到另一个物体,或从物体的这一部分转移到另一部分,转移过程中总电荷数不变。 3. 点电荷 当带电体的尺寸和形状对所研究的问题影响不大时,可将此带电体看成点电荷;对于电荷分布均匀的球体,可认为是电荷集中在球心的点电荷;检验电荷一般也可看成点电荷;点电荷实际上是一种理想化模型,并不存在。 4. 库伦定律 在真空中两个点电荷的相互作用力跟它们电荷量的乘积成正比,跟它们间距离的平方成反比, 作用力的方向在它们的连线上;F=k 2 21r Q Q , k=9?109N ·m 2/C 2 .。 5. 电场 带电体周围存在的一种特殊物质,对放入其中的电荷有力的作用;客观存在的;具有力的特性和能的特性。 6. 电场强度 放入电场中某一点的电荷受到的电场力跟它的电荷量的比值;E= q F ;方向是正电荷在该点的 受力方向;矢量,遵循矢量运算原理;点电荷场强F=k 2 r Q 。 7. 电势 描述电场能的性质;?= q E p ,E p 为电荷的 电势能;标量,正负表示大小;数值与零电势的选取有关,一般选择无穷远处为电势零点。 8. 电势差 描述电场做功的本领;U AB = q W AB ;标量, 正负表示电势的高低;也被称作电压。 9. 电势能 描述电荷在电场中的能量,电荷做功的本领;E p =?q ;标量。 10.电场线 从正电荷出发,到负电荷终止的曲线,曲线上每一点的切线方向都跟该点的场强方向一致;虚构的;永不相交;疏密表示电场强度的强弱;沿电场方向电势减小。 11.等势面 电场中电势相等的点构成的面;空间中没有电荷的地方等势面不相交;在平面中构成的是等势线;等差等势面的疏密程度反映电场的强弱。 12.匀强电场 电场强度大小处处相等;E=d U 。 13.电场力做功情况 只与始末位置有关,与路径无关;W=Uq ;匀强电场中W=Fs ·cos θ=Eqs ·cos θ;电场力做的正功等于电势能的减少,W=-?E 。 14.电容器 两个互相靠近又彼此绝缘的导体组成电容器;电容器能充电和放电。 15.电容 电容器所带电荷量与两极板间的电压的比值;单位是法,符号F ;C=U Q 。 16.平行板电容器 高中阶段主要接触的电容器;平行板电容器的电容C= kd S πε4;平行板电容器两极板间的电场可 认为是匀强电场。 17.带电粒子在匀强电场中的运动 加速或者偏转;a=m Eq =md Uq 。 第二章 磁场 1. 磁场 存在与磁体、电流或运动电荷周围的一种物质;对放入其中的磁极或电流有磁场力的作用;规

高中物理选修3-2知识点汇总

第一章电磁感应 1.磁通量 穿过某一面积的磁感线条数;标量,但有正负;Φ=BS·sinθ;单位Wb,1Wb=1T·m2。 2.电磁感应现象 利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。 3.感生电场 变化的磁场在周围激发的电场。 4.感应电动势 分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。 5.楞次定律 感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。 6.右手定则 让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。 7.法拉第电磁感应定律 电路中感应电动势的大小跟穿过这一电路的磁通量的变化率

成正比;E=n t? ?Φ。 8.动生电动势的计算 法拉第电磁感应定律特殊情况;E=Blv·sinθ。 9.互感 两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势;变压器的原理。10.自感 由于导体本身的电流发生变化而产生的电磁感应现象。11.自感电动势 由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L t I ? ?;日光灯的应用。12.自感系数 上式中的比例系数L叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。13.涡流 线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。 第二章直流电路 1.电流 电荷的定向移动;单位是安,符号A;规定正电荷定向移动的 方向为正方向;宏观定义I= t q;微观解释I=neSv,n为单位体积

高中物理选修3-3知识点与题型复习

热学知识点复习→制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T越高,运动越激烈,分子平均动能。 注意:对于理想气体,温度T还决定其内能的变化。 扩散现象:相互渗透的反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r的增加而。 (1)分子力的合力F表现:是为F引还是F斥?看间距与分界点r0关系,看下图 当r=r0时,F引=F斥,分子力为0; 当r>r0时,F引>F斥,分子力表现为 当r

非晶体:无确定的熔点。 → 物理性质:各向同性。原子排列:无规则 2,、同一种物质可能以晶体与非晶体两种不同形态出现。如碳形成的金刚石与石墨 3、有些晶体与非晶体可以相互转化。 4、常考晶体有:金刚石与石墨、石英、云母、食盐。常考非晶体有:玻璃、蜂蜡、松香。 三、热力学定律→研究高考对象为→主要还是理想气体 1、热力学第一定律:ΔU =W+Q 表达式中正、负号法则:如下图 2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点: (1)等温过程:内能不变,即ΔU=0。温度T ↑,则内能增加,ΔU >0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 2、液体柱模型 (1)明确点:P 液=egh 一般不用。当液体为汞时,大气压以 为单位时,高为h cm 时,P 液=h .计算气

人教版高中物理选修3-1知识点归纳总结

物理选修3- 1 知识总结 第一章第1节电荷及其守恒定律 、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分 ,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 、电荷量 1、 电荷量:电荷的多少。 2、 元电荷:电子所带电荷的绝对值 1.6 X 10 19C 3、 比荷:粒子的电荷量与粒子质量的比值。 第一章第2节库仑定律 一、 电荷间的相互作用 1、 点电荷:带电体的大小比带电体之间的距离小得多。 2、 影响电荷间 相互作用的因素 二、 库仑定律: 适用条件为真空中静止点电荷 计算时各量带入绝对值,力的方向利用电性来判断 第一章第3节电场电场强度 、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、 电场强度 1、 检验电荷与场源电荷 2、 电场强度 检验电荷在电场中某点所受的电场力 F 与检验电荷的电荷 q 的比值。 E F 国际单位:NC q 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、 点电荷的场强公式 F . Q E — k —2 q r 四、 电场的叠加 五、 电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线, 曲线的疏密程度表示场强的大小, 曲线上某点的切线方向表示场强的方向。 在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比, 成反比,作用力的方向在它们的连线上。 跟它们距离的平方 注意(1) (2)

高中物理选修32知识点总结-高中物理选修3-1欧姆定律知识点总结

高中物理选修32知识点总结|高中物理选修3-1欧姆定律知识点总结 【--高中生入党申请书】 欧姆定律是物理选修3-1课本的内容,高中生在学习时要掌握相关知识点,下面是给大家带来的高中物理选修3-1欧姆定律知识点,希望对你有帮助。 高中物理选修3-1欧姆定律知识点 一、导体的电阻 (1)定义:导体两端电压与通过导体电流的比值,叫做这段导体的电阻。 (2)公式:R=U/I(定义式)

说明: A、对于给定导体,R一定,不存在R与U成正比,与I成反比的关系,R只跟导体本身的性质有关。 B、这个式子(定义)给出了测量电阻的方法--伏安法。 C、电阻反映导体对电流的阻碍作用 二、欧姆定律 (1)定律内容:导体中电流强度跟它两端电压成正比,跟它的电阻成反比。

(2)公式:I=U/R (3)适应范围:一是部分电路,二是金属导体、电解质溶液。 三、导体的伏安特性曲线 (1)伏安特性曲线:用纵坐标表示电流I,横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。 (2)线性元件和非线性元件 线性元件:伏安特性曲线是通过原点的直线的电学元件。 非线性元件:伏安特性曲线是曲线,即电流与电压不成

正比的电学元件。 四、导体中的电流与导体两端电压的关系 (1)对同一导体,导体中的电流跟它两端的电压成正比。 (2)在相同电压下,U/I大的导体中电流小,U/I小的导体中电流大。所以U/I反映了导体阻碍电流的性质,叫做电阻(R) (3)在相同电压下,对电阻不同的导体,导体的电流跟它的电阻成反比。 高中物理选修3-1必考知识点 两种电荷

自然界中的电荷有2种,即正电荷和负电荷。如:丝绸摩擦过的玻璃棒所带的电荷是正电荷;用干燥的毛皮摩擦过的硬橡胶棒所带的电荷是负电荷。同种电荷相斥,异种电荷相吸。 相互吸引的一定是带异种电荷的物体吗?不一定,除了带异种电荷的物体相互吸引之外,带电体有吸引轻小物体的性质,这里的"轻小物体可能不带电。 电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。

高中物理选修3知识点公式总结

1、电荷量:电荷的多少叫电荷量,用字母Q 或q 表示。(元电荷常用符号e 自然界只存在两种电荷:正电荷和负电荷。同号电荷相互排斥,异号电荷相互吸引。 2、点电荷:当本身线度比电荷间的距离小很多,研究相互作用时,该带电体的形状可忽略,相当于一个带电的点,叫点电荷。 3、库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电荷量的乘积成正比,与它们之间 9109? =k N ﹒m 2/C 2。 45、电场强度:放入电场中一点的电荷所受的电场力跟电荷量的比值。 67、电场线的性质: a .电场线起始于正电荷或无穷远,终止于无穷远或负电荷; b .任何两条电场线不会相交; c. 静电场中,电场线不形成闭合线; d 8、匀强电场:场强大小和方向都相同的电场叫匀强电场。电场线相互平行且均匀分布时表明是匀强电场。 9 q E P ?= 10、等势面特点:①电场线与等势面垂直,②沿等势面移动电荷,静电力不做功。 11A B BA U ?? -=( 电势差的正负表示两点间电势的高低) 12、电势差与静电力做功:q W U = qU W =? 表示A 、B 两点的电势差在数值上等于单位正电荷从A 点移到B 点,电场力所做的功。 13 14、电势差与电场强度的关系:在匀强电场中,沿电场线方向的两点间的电势差等于场强与这两点间距离的Ed = 15 电容的单位是法拉(F ) 决定平行板电容器电容大小的因素是两极板的正对面积、两极板的距离以及两极板间的电介质。 ②对于平行板电容器有关的Q 、E 、U 、C 的讨论时要注意两种情况: 16、带电粒子在电场中运动: ①.带电粒子在电场中平衡。(二力平衡) ②.带电粒子的加速:动力学分析及功能关系分析:经常用2022 121qU mv mv -= ③.带电粒子的偏转:动力学分析:带电粒子以速度V 0垂直于电场线方向飞入两带电平行板产生的匀强电 场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动)。 t v L 0= ,U d mv qL L md Uq y 202202)v (21=?=

高中物理选修3-2前三章知识点总结

第四章 电磁感应知识点总结 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ -=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω2 2 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I == (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉 b.金属探测器,飞机场火车站安全检查、扫雷、探矿 第五章 交变电流知识点总结 一、交变电流的产生 1、原理:电磁感应 2、两个特殊位置的比较: 中性面:线圈平面与磁感线垂直的平面。 ①线圈平面与中性面重合时(S ⊥B ):磁通量φ最大,0=??t φ ,e=0,i=0,感应电流方向改变。 ②线圈平面平行与磁感线时(S ∥B ):φ=0, t ??φ 最大,e 最大,i 最大,电流方向不变。 3、穿过线圈的磁通量与产生的感应电动势、感应电流随时间变化的函数关系总是互余的: 取中性面为计时平面: 磁通量:t BS t m ωωφφcos cos == 电动势表达式:t NBS t E e m ωωωsin sin == 路端电压:t r R RE t U u m m ωωsin sin += = 电流:t r R E t I i m m ωωsin sin +== 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯泡A 逐渐变暗。

物理选修32知识点总结(全)带对应例题

选修3-2知识点 56.电磁感应现象Ⅰ 只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。 这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。 57.感应电流的产生条件Ⅱ 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 58.法拉第电磁感应定律 楞次定律Ⅱ ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。 ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。 如图所示。设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功 W BI L S BILv t ==···。t 为所用时间。 而在t 时间内,电流做功W I t '=··ε,据能量转化关系, W W '=,则I t BILv t ···ε=。 ∴ε=BIv ,M 点电势高,N 点电势低。 此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。 εφ=n t · ??, 公式 εφ=n t ??/。注意: 1)该式普遍适用于求平均感应电动势。2)ε只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式二: εθ=Blv sin 。要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式εφ =n t ??中 涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应 强度发生变化, 由??φ=BS , 此时ε=n B t S ??, 此式中的 ??B t 叫磁感应强度的变化率, 若??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φ t 表示磁通量变化的快慢,

高中物理选修3-4知识点汇总

第一章机械振动 1.机械振动 物体在某一中心位置两侧所做的往复运动;条件是物体离开平衡位置就受到回复力作用并且阻力足够小。 2.回复力 振动物体离开平衡位置受到指向平衡位置的合力;可以是几个力的合力或某个力的分力,不一定等于合外力。 3.描述振动的位移 特指偏离平衡位置的位移;由平衡位置指向振动质点所在位置;矢量。 4.振幅 物体离开平衡位置的最大距离;标量。 5.周期 物体完成一次全振动所需要的时间。 6.频率 单位时间内完成的全振动的次数;与周期互为倒数。 7.简谐振动 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动;F=-kx。8.弹簧振子 忽略摩擦、弹簧质量的理想化模型;周期和频率由弹簧劲度系数和振子质量决定;可以水平放置和竖直放置。 9.单摆 一条不可伸长、忽略质量的细线下端拴一可视为质点的小球;回复力是重力沿切线 方向的分力;当摆角很小时,单摆的摆动是简谐振动,周期T=2。 10.简谐振动的图像 表示振动质点在各个时刻相对于平衡位置的位移,不表示运动轨迹。 11.阻尼振动 振幅逐渐减小的振动;减小的机械能等于克服摩擦所做的功。 12.受迫振动 在外界周期性驱动力作用下的振动;受迫振动的频率等于驱动频率,与固有频率无关;驱动频率越接近固有频率,振幅越大,相等时共振。 第二章机械波 13.机械波 机械振动在介质中的传播;需要波源和弹性介质;波动由振动引起,但振动不一定就有波动;分为纵波和横波。 14.纵波 质点振动方向与波的传播方向在同一直线上的波。 15.横波 质点振动方向与波的传播方向垂直的波;高中主要研究横波。 16.波长

在波的传播方向上,两个相邻的、在振动过程中对平衡位置的位移总是相等的质点之间的距离;横波的两个相邻的波峰或波谷之间的距离;振动在一个周期里传播的距离;用表示。 17.波速 波的传播速率;只与介质有关;同一种均匀介质中,波速是定值,与波源无关。18.频率 波传播的频率与波源的振动频率相同。 19.描述机械波的物理量的关系 v=;v==f。 20.机械波的特点 每个质点都以各自的平衡位置为中心做振动,不随波而动,传播的是振动形式和能量;后一质点的振动总是落后于带动它的前一质点;每个质点开始振动的方向与波源开始振动的方向一致;各质点的振动周期都与波源相同。 21.机械波的图像 反映波在传播的过程中,某一时刻介质中各质点的位移在空间中的分布;正弦曲线。 22.波的叠加 几列波相遇时,每列波都能够保持各自的状态继续传播而不受干扰,只是在重叠的区域里,任意质点的总位移等于各列波分别引起的位移的矢量和。 23.波的反射 波遇到障碍物会返回来继续传播,发射角等于入射角,且波长、频率、波速不变。24.波的折射 波从一种介质进入另一种介质时,传播方向会发生改变;频率不变,波长和波速改变。 25.波的衍射 波绕过障碍物继续传播的现象;产生明显衍射现象的条件是障碍物或孔的尺寸比波长小或与波长相差不多。 26.波的干涉 频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象。 27.多普勒效应 由于波源和观察者之间有相对运动,使观察者感到波的频率发生变化的现象;相对接近,频率增大,相对远离,频率减小。 28.声波 纵波;常温下空气中声速是340m/s;人耳能听到的声波频率范围是20Hz~20000Hz;低于20Hz的声波是次声波;高于20000Hz的声波是超声波;能把原声和回声区分开来的最小时间间隔为0.1s。 29.驻波 两列沿相反方向传播的振幅相同、频率相同的波叠加时,形成的波形随时间改变,但不向任何方向移动的现象;特殊的干涉现象;管、弦乐器发生的原理。

相关主题
文本预览
相关文档 最新文档