当前位置:文档之家› 电池组管理之电池均衡技术介绍

电池组管理之电池均衡技术介绍

电池组管理之电池均衡技术介绍

电池组管理之电池均衡技术介绍

写到电池均衡,基本上已经触及了BMS 的核心区域,首先需要明白几

点问题。

1.电池均衡是有限度的,效果需要用一定的参数进行评价。

2.电池均衡在HEV 和EV 里面,要求有很大的区别。

3.电池均衡的效果必须与成本和额外的能量消耗进行博弈和妥协。

而且其实有必要搞清楚为什么要进行均衡,从几篇论文中,可以得到一

些明确的阐述:

SAE_Battery Charge Equalization–State of the Art and Future Trends SAE_A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems

这两篇文章都是对这个方面较为全面的论述,中文的文章有一文《动力

电池组特性分析与均衡管理》写得比较全面,但是可能太抽象了。

均衡的原因:

EV 和HEV 都需要在充电和放电阶段承受很大的瞬间电流,充电的时候

表现在制动能量回收(regenerative braking current)。对于锂电池而言,这么大的

充电电流可能是部分较满的电池直接超过损坏的电压区间。

放电阶段则是电机在启动和汽车加速的时候,需要很高的瞬间能量。大

的放电电流,可能让某些电池处于深度放电的状态,一是影响输出电流,二是

电池本身就会损坏。

2010 Honda Insight-II 的示意

锂电池热分析

热分析技术在化学电池行业的应用 焦联联 耐驰科学仪器商贸(上海)有限公司 摘要: 电池是将物质化学反应产生的能量直接转换成电能的一种装置。在充电时它将电能转换为化学能,并以化学形式储存能量,放电时将化学能转换为电能,以电能形式释放能量。化学电池各个组成部分:如电极、电解质、隔膜、外壳等涉及材料类型众多,为了深入了解电池材料物理化学性质,热分析技术在材料的研究、探讨过程中被研究人员所广泛使用。 关键词:电池、化学电池、热分析 一、化学电池的分类 电池可分为化学电池和物锂电池。 1、化学电池的分类如下: (1)原电池(一次电池) 电池经过连续放电或间歇放电后,不能用充电的方法使两极的活性物质恢复到初始状态,即反应是不可逆的,因此两极上的活性物质只能利用一次。 原电池的特点是小型,携带方便,但放电电流不大。一般用于仪器及各种电子元器件。 常见的原电池有: 锌锰干电池Zn∣NH4Cl,ZnCl2∣MnO2 碱锰干电池Zn∣KOH∣MnO2 锌银电池Zn∣KOH∣Ag2O (2)蓄电池(二次电池) 电池工作时,在两极上进行的反应均为可逆反应。因此可用充电的方法使两极活性物质恢复到初始状态,从而获得再生放电的能力。 蓄电池能够充电和放电循环多次。常见的蓄电池有: 铅酸蓄电池Pb∣H2SO4∣PbO2 镉镍蓄电池Cd ∣KOH∣ NiOOH 锌空气电池Zn∣KOH∣O2(空气) 镍氢蓄电池MH∣KOH∣ NiOOH 锂离子电池LiCoO2∣有机电解质∣ C (3)燃料电池(连续电池)燃料电池是一种能量转换装置,在工作时必须有能量(燃料)输入,才能产出电能。普通蓄电池是一种能量储存装置,必须先将电能储存到电池中,在工作时只能输出电能,在工作时不需要输入能量,也不产生电能,这是燃料电池与普通电池本质的区别。燃料电池是将化学能转变为电能,普通蓄电池也是将化学能转变为电能,这是它们共同之处,但燃料电池在产生电能时,参加反应的反应物质在经过反应后,不断地消耗、不再重复使用,因此,要求不断地输入反应物质。普通蓄电池的活性物质随蓄电池的充电和放电变化,活性物质反复进行可逆性化学变化,活性物质并不消耗。 按电解质划分,燃料电池大致可分为五类:碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、固体氧化物燃料电池(SOFC)、熔融碳酸盐燃料电池(MCFC)和质子交换膜燃料电池(PEMFC)目前最常用的燃料电池为质子交换膜燃料电池(PEMFC)。 2、化学电池的基本组成部分 要组成一个电池必须要有以下几个基本组成部分, (1)电极 电极是电池的核心部分,主要涉及金属(合金)、石墨、活性炭、乙炔黑、或有机碳等(也有用碳化硼等材料)、粘结剂疏水性聚乙烯或聚四氟乙烯等。 (2)电解质 电池的主要组成之一,在电池内部担负着传递正负极之间电荷的作用。 (3)隔膜也叫隔离物

电池热管理知识总结

一(1) 3.4.1 电池组热管理系统的功能 电池组热管理系统的主要功能如下: ①电池温度的准确测量和监控;②电池组温度过高时的有效散热和通风; ③低温条件下的快速加热,使电池组能够正常工作; ④有害气体产生时的有效通风;⑤保证电池组温度场的均匀分布。 3.4.2 电池组热管理系统的关键技术 电池组热管理系统的关键技术有: ①确定电池最优工作温度范围;②电池热场计算及温度预测;③传热介质选择; ④热管理系统散热结构设计;⑤风机与测温点选择 3.4.3 电池组热管理策略 热管理从性质上可分为降温过程和升温过程。 (1)降温热管理 降温热管理最直接的目的是防止电池组的温度超过电池工作的最高温度,进一步的要求还包括:控制电池组的温升,均衡电池箱内各点的温度,保持各单体电池的温度一致,防止因温度不同而造成电池组间的电池性能差异。 按照降温介质可以分为空气冷却法、液体冷却法和相变材料冷却法。其中,空气冷却是最便宜的方法;液体冷却除了需要盛放冷却介质的空间,还需在体外有额外的循环系统,相变材料冷却的方法较为昂贵[19]。 温度是一个惯性比较大的环节,因此对空气冷却降温热管理使用滞环的方法来控制,如图7所示,这样可以避免因温度在临界点波动造成风机频繁启停。 2)升温热管理 对于锂电池而言,低温下电池负极石墨的嵌入能力下降。因此,低温主要是对锂电池的充电有负面影响,对电池的放电则影响不大[20]。在低温时,由于电池的活性差,电池负极石墨的嵌入能力下降,这时大电流充电很可能出现电池热失控甚至安全事故。因此,当电池管理系统监测到电池温度过低时会发出控制信息,通知充电机进行小电流充电。另外,由于低温(低于-10 ℃)环境下,电池的内阻会增加。在充电过程中,电池就会产生更多的热量,使得电池的温度逐渐升高。这样在进行一定时间的小电流充电后,当监测到电池的温度正常后,即可通知充电机恢复正常模式充电。综合以上的策略,锂电池的热管理控制流程图如图8 所示。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

锂电池电解液热稳定性研究

锂电池电解液热稳定性研究 欧阳学文 Thermal stability of lithiumion battery electrolytes Boris Ravdela,*, K.M. Abrahama, Robert Gitzendannera, Joseph DiCarloa, Brett Luchtb, Chris Campionb aLithion Inc., 82 Mechanic St., Pawcatuck, CT 06379, USA bUniversity of Rhode Island, Department of Chemistry, Kingston, RI 02881, USA 摘要 本文研究了LiPF6在固态中的热分解和在二烃基碳酸盐的溶解。通过差热扫描量熟分析(DSC)发现LiPF6热分解后生成LiF和PF5。在溶解过程中,PF5和二烃基碳酸盐反应生成多种分解产物,包括二氧化碳(CO2),醚类 (R20),烷基氟化物(RF),三氟氧化磷(OPF3)和氟磷酸盐(OPF2OR,OPF(OR)2)。通过核磁共振光谱仪(NMR)和气相色谱质谱检测仪(GCMS)表征分解物的结构。

关键词:锂电池;有机碳酸酯基电解液;电解液分解 1. 介绍 LiPF6溶解在二烃基碳酸盐的混合溶液因其导电率高,电化学稳定性好以及低温下的工作能力好等特性常被用作锂电池的电解液。然而,该混合溶液的热稳定性差甚至在中温环境(6085oC)发生变化。一般认为盐是溶液分解过程中的中间物。许多可供选择的盐都被研究并发现它们并不能满足锂电池电解液的要求(高导电率,低损耗,热力学稳定等)。改善LiPF6电解液的热力学稳定性将是一种比较有效的途径。在研究之前我们需要对电解液分解机制的充分了解。 我们已经利用DSC,电导率测试仪和NMR光谱仪研究了LiPF6以及其与一系列盐的混合溶液的热稳定性,包括乙烯碳酸盐(EC),二甲基碳酸盐(DMC),二乙基碳酸盐(DEC),乙基甲基碳酸盐(EMC)和混合碳酸盐(高于85 oC)。初步结论发表在引文[1]中。LiPF6及其有机碳酸酯基电解液的化学分解性质的相关研究发表在[13],但是还

国内外汽车动力电池管理系统(BMS)发展概况

引言 电池的性能和使用寿命直接决定了电动汽车的性能和成本,因此,如何提高电池的性能和寿命得到了各方面的重视。电动汽车上使用的动力电池是由多个电池单体通过串并联方式组成电池组,电池单体都紧密地布置在一起,在进行充放电时,各个电池单体所产生的热量互相影响,如果散热不均匀,将造成电池组局部温度快速上升,使电池的一致性恶化,使用寿命大大缩短,严重时会造成某些电池单体热失控,产生比较严重的事故。当动力电池处于低温环境中,电池的充放电性能会大大降低,导致电池无常工作。为了使动力电池组保持在合理的温度围工作,电池组必须拥有科学和高效的热管理系统。目前,国外的许多研究人员对电池组的热管理系统做了大量的研究,进行了一些新的探索,以期提高热管理系统的控制效果,从而提高电动汽车电池组的性能和使用寿命。 国外汽车动力电池管理系统(BMS)发展概况 目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国外均投入大量的人力物力开展广泛深入的研究。 日本青森工业研究中心从1997年开始至今,持续进行(BMS)实际应用的研究,丰田、本田以及通用汽车公司等都把BMS纳入技术开发的重点;美国Villanova大学和USNanocorp公司已经合作多年对各种类型的电池SOC进行基于模糊逻辑的预测;国Ajou大学和先进工程研究院开发的BMS系统的组成结构及其相互逻辑关系。该系统在上述结构中进行功能扩展,即增设热管理系统、安全装置、充电系统以及与PC机的通信联系。另外还增加与电动机控制器的通信联系,实现能量制动反馈和最大功率控制。 我国在十二五期间设立电动汽车重大专门研究项目,经过几年的发展之后,在BMS方面取得很大的突破,与国外水平也较为接近。在国家863计划2005年第一批立项研究课题中,就分别有理工大学承担的EQ7200HEV混合动力轿车用镍氢

电动汽车电池组热管理系统的关键技术

第22卷 第3期 2005年3月 公 路 交 通 科 技 Journal of Highway and T ransportation Research and Development V ol 122 N o 13 Mar 12005 文章编号:1002Ο0268(2005)03Ο0119Ο05 收稿日期:2004Ο03Ο16 基金项目:国家高技术研究发展计划(863计划)重大专题项目(2003AA501100) 作者简介:付正阳(1978-),男,北京人,清华大学汽车工程系硕士研究生,主要从事电动汽车方面的研究1 电动汽车电池组热管理系统的关键技术 付正阳,林成涛,陈全世 (清华大学 汽车安全与节能国家重点实验室,北京 100084) 摘要:电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。关键词:电动汽车;电池组;热管理系统 中图分类号:T M911141 文献标识码:A K ey Technologie s of Thermal Management System for EV Battery Packs FU Zheng Οyang ,LIN Cheng Οtao ,CHEN Quan Οshi (S tate K ey Laboratory of Autom otive Safety and Energy ,Tsinghua University ,Beijing 100084,China ) Abstract :Research and development of battery thermal management system (BT MS )is very im portant for the operation safety and relia 2bility of electric vehicle (E V )1In this paper ,by analyzing the in fluence of tem perature on the per formance and service life of batteries ,the desired function of a BT MS was outlined ,a procedure for designing BT MS was introduced 1Several key technologies during designing a BT MS were introduced and analyzed ,including optimum operating tem perature range of a battery ,heat generation mechanism ,ac 2quisition of the therm odynamic parameters ,calculation of tem perature distribution ,selection of heat trans fer medium ,design of cooling structure and s o on 1 K ey words :E lectric vehicle ;Battery pack ;Thermal management system 0 引言 能源与环境的压力使传统内燃机汽车的发展面临前所未有的挑战,各国政府、汽车公司、科研机构纷纷投入人力物力开发内燃机汽车的替代能源和动力,这大大促进了电动汽车的发展。 电池作为电动汽车中的主要储能元件,是电动汽车的关键部件[1,2],直接影响到电动汽车的性能。电池组热管理系统的研究与开发对于现代电动汽车是必需的,原因在于:(1)电动汽车电池组会长时间工作 在比较恶劣的热环境中,这将缩短电池使用寿命、降 低电池性能;(2)电池箱内温度场的长久不均匀分布将造成各电池模块、单体性能的不均衡;(3)电池组的热监控和热管理对整车运行安全意义重大。 清华大学从承担国家“八五”电动汽车攻关项目以来,在电动汽车、混合动力汽车和燃料电池汽车关键技术的研究中,积极开展了电池组热管理系统的研究,并在样车上进行了道路试验,目前电池组热管理系统的优化设计与改进工作正在进行中。本文是对前阶段研究工作的总结和今后工作的展望。

电动汽车动力电池及管理系统试卷A

广东文理职业学院刘鹏2018-2019学年度第一学期 期末考试试题(A卷) (考试时间: 90 分钟) 考试科目动力电池及管理适用班级:新能源汽车一班 一、单项选择题(每小题2分,共计30分) (题目正文:宋体,五号,行距20磅) 1. 燃料电池采用的燃料是()。 A.汽油; B.柴油; C.乙醇; D.氢气 2.燃料电池汽车的效率能达到以上()。 A.30%; B.40%; C.50%; D. 60% 3.在最适合汽车使用的燃料电池()。 A.质子交换膜燃料电池; B.磷酸燃料电池; C.熔融碳酸盐燃料电池对; D.固态氧化物燃料电池。 4.世界上第一家实现商品化销售的燃料电池汽车生产厂家是()。 A.丰田; B.通用; C.奔驰; D.本田。 5.蓄电池组中,标称电压为12V的单体电池端电压压差应小于()mV。 A.100; B.120; C.150; D.200 6.在25°C下,蓄电池组由32节单体蓄电池组成(单体标称电压为12V),则其浮充电电压应约为() A. 384V; B. 432V; C. 450V; D. 472V 7.在蓄电池管理系统中,由()把整流电压变成交流电压。 A.整流器; B.逆变器; C.充电器 8.在蓄电池管理系统中,,由()把直流电压变成交流电压。 A.整流器; B.逆变器; C.充电器; D.交流调压器 9. 15.2020年中国电池制造的能量密度要达到()。 A. 300wh/kg;A. 400wh/kg;A. 500wh/kg 10.用电流表测量电流,应将电流表和被测电流的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 11.用电压表测量电压,应将电压表和被测电压的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 12.万用表使用完毕后,应将选择开关放在()。 A.电阻档; B.交流电压最高档; C.直流电流档。 13.三相桥式整流电路,在交流电的一个周期内,每个整流元件的导通角为()。 A. 180度; B. 120度; C. 60度 14.单相整流电路中,二极承受的反向电压的最大值出现在二极管()。 A.截止时; B.由截止转导通时; C.导通时; D.由导通转截止时 15.燃料电池汽车的效率能达到以上()。 A. 30%; B. 40%; C. 50%; D. 60%。 系 别 : 专 业 班 别 : 姓 名 : 学 号 : … … … … … … ○ … … … 密 … … … ○ … … … … 封 … … ○ … … … … 线 … … ○ … … … … … … ○ … …

动力电池热管理系统性能试验方法

动力电池热管理系统性能试验方法 1 范围 本标准规定了动力电池热管理系统性能的试验方法。 本标准适用于乘用车用动力电池热管理系统,商用车用动力电池热管理系统可以参考。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41-2008 电工术语原电池和蓄电池 GB/T 19596-2017 电动汽车术语(ISO 8713:2002,NEQ) GB/T 31467.2电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程QC/T 468-2010 汽车散热器 GB/T 18386-2017 电动汽车能量消耗率和续驶里程试验方法 GB 18352.6-2016 轻型汽车污染物排放限制及测量方法(中国第六阶段) 3 术语和定义 GB/T 2900.41-2008、GB/T 19596-2017中界定的以及下列术语和定义适用于本文件。 3.1 动力电池热管理系统 battery thermal management system 综合运用各种技术手段,具备动力电池冷却、加热、保温和均温等功能,保证动力电池在不同环境下正常工作的系统。同时,该系统可以在动力电池发生热失控时提供报警信号,具备安全防护功能。通常,动力电池热管理系统包括主动式热管理系统和被动式热管理系统两种。 3.2 被动式热管理系统 passive thermal management systems 基于热传导、热辐射、热对流等热量传输原理,只依靠冷却或加热流体因为温度因素缓慢流动自然完成热量输入输出交换的热管理系统。该类系统通常适用于单体产热量小于 5W的电池。 3.3 主动式热管理系统 active thermal management systems 基于热传导、热辐射、热对流等热量传输原理,使用耗能部件消耗能量完成热量输入输出交换的系统。主动式热管理系统包括主动空气冷却加热系统和主动液体冷却加热系统两种,根据需要采用流体串行流动和并行流动两种方式实现热交换。 3.4 主动式空气冷却加热系统 Active Air Cooling and Heating Systems 又称风冷系统,利用空气作为热量交换载体控制分配动力电池系统内部温度的系统。该系统通常使用风扇和管道完成空气在电池系统内的流动,分为直接接触式和间接接触式两种。空气可以从电池系统外部进入并排出电池系统外,也可以在电池系统内部循环实现电池冷却或加热功能;若空气仅在电池内部循环,则电池系统内部通常需要有空气冷却装置(通常为空调蒸发器)、空气加热装置和空气循环风扇。该类系统通常适用于单体产热量

电池热管理系统

电池热管理 电池热管理概述 电池热管理系统 (Battery Thermal Management System, BTMS)是电池管理系统(Battery Management System, BMS)的主要功能(电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等)之一,通过导热介质、测控单元以及温控设备构成闭环调节系统,使动力电池工作在合适的温度范围之内,以维持其最佳的使用状态,用以保证电池系统的性能和寿命。 电池热管理重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。 1)电池能量与功率性能:温度较低时,电池的可用容量将迅速发生衰减,在过低温度 下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部短路。 2)电池的安全性:生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部 过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件。 3)电池使用寿命:电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起 电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命。 电池热管理系统是应对电池的热相关问题,主要功能包括: 1)散热:在电池温度较高时进行有效散热,防止产生热失控事故; 2)预热:在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性 能和安全性;

3)温度均衡:减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电 池过快衰减,以提高电池组整体寿命。 电池热管理方案 电池热管理方案主要分为风冷与液冷两大类,主要侧重于防止电池过热方面: 1.风冷 该技术利用自然风或风机,在电池包一端加装散热风扇,另一端留出通风孔,使空气在电芯的缝隙间加速流动,带走电芯工作时产生的高热量。风冷方案设计主要考虑电池系统结构的设计,风道,风扇的位置及功率的选择,风扇的控制策略等。风冷是以低温空气为介质,利用热的对流,降低电池温度的一种散热方式,分为自然冷却和强制冷却(利用风机等)。 整车中的电池风冷流道

动力电池能量管理系统

动力电池能量管理系统 检测时间:2016-05-23 09:39:53 摘要 近年来,由于日益严重的环境污染问题和日益增长的石油和能源消耗,新能源汽车的发展,越来越多的政府和世界主要汽车制造商的关注。三个电动汽车的发展。 本文介绍了电动汽车电池管理系统的主要功能和开发国内外介绍问题的根源,介绍了铅酸蓄电池工作原理和关键的操作特性,描述铅酸电池剩余量预测几个模型的设计和项目的特点,基于大量的电池充电和放电的实验数据,提出了这种设计方法来估计剩下的电池供电。 上述功能需求,设计提出使用主芯片单片机,分散的集合和集中控制的解决方案结合硬件、单片机的选择,电池参数收集,平衡和保护电路、功率转换电路和外部通信和其他主要模块硬件设计详细描述和基于C51单片机凯尔软件开发和设计环境软件解决方案设计的电池管理系统3主要流程:充电、放电和静态软件设计。最后,整个硬件和软件系统充电和放电的疲劳试验通过收集大量的实验数据,验证了硬件和软件设计的可行性和稳定性 关键词电动汽车; 电池管理系统;电池SOC估算;单片机;充电均衡控制

ABSTRACT In recent years, due to the increasingly serious problem of environmental pollution and the increasing consumption of oil and energy, new energy vehicles

Development, more and more governments and the world's major carmakers attention. Develop three electric vehicles The key technology is the motor drive system consists of three parts, the vehicle control system and power management systems, steam current Automotive battery life is short-range, low battery life, high maintenance costs and popular, therefore, Power management technology for energy management and vehicle power battery protection control is becoming increasingly important. This article describes the electric vehicle battery management system The main function of the system and the development of domestic and foreign presentation Root of the problem, and introduces the principle of lead-acid batteries and key operating characteristics described Lead-acid battery remaining amount prediction model design and features of several projects, based on a lot of battery Charging and discharging of the experimental data, this design method is proposed to estimate the remaining battery power. The above functional requirements, the design proposed to use the main chip microcontroller, decentralized collection And centralized control solutions combine hardware, MCU selection,

锂离子电池生产工艺及技术测试总结

锂离子电池工艺配料、技术与测试方法 目录 第一部分 1.1 锂离子电池简介 ---------------------------------------------------- 2 1. 2. 锂离子电池组成 ---------------------------------------------------- 2 1. 3. 锂离子电池原理 ---------------------------------------------------- 2 1. 4. 锂离子电池的种类 --------------------------------------------------- 3 1. 5. 锂离子电池优缺点 --------------------------------------------------- 4 1. 6. 如何正确使用锂离子电池 ------------------------------------------ 5 第二部分 2.1正极配方 - ---------------------------------------------------- ------- 6 2.2负极配方---------------- ----------------------------------------------- 6 2.3正极混料 ---------------- ---------------------------------------------- 7 2.4负极混料 --------------------------------------------------------------- 8 2.5物料球磨 ---------------------------------------------------------------- 9 2.8-2.10组装----------------------------------------------------------------- 10 第三部分 3.1. 性能特点 -------------------------------------------------------------- 14 3.2. 技术指标 -------------------------------------------------------------- 14 第四部分 4.1.聚合物锂离子充电电池规格------------------------------ 15 4.2文档参考的国标依据 ---------------------------- ------------------ 15

新能源汽车电池热管理调研报告

1. 新能源汽车电池热管理 1.1 市场情况 汽车热管理主要作用是为驾驶舱提供舒适温度环境,使汽车各部件在适合的温度范围工作。而新能源汽车的热管理包括空调系统、电池热管理、电子设备热管理和电机热管理,整体价值将达到整车的8%-10%左右。由于温度对电池安全、寿命、性能乃至整车续航里程都产生直接影响,因此电池热管理是新能源汽车热管理的核心。 相比传统汽车,新能源汽车电池热管理系统为新增加的系统,为从0到1的增量市场。以乘用车为例,液冷模式下单车价值在1500元左右。液冷模式的电池热管理系统包括电子膨胀阀、冷却板、电池冷却器、电子水泵等价值量较大的部件,系统整体单车价值约为1500元。该情况下,新能源汽车热管理系统价值量有望由传统汽车2000元左右提升至6000元,预估2020年国内市场规模有望达到70亿。 表1 电池热管理系统(液冷)单车价值量拆分 冷却板150 4~6 600~900 电池冷却器200 1 200 电子水泵250~300 1 250~300 电子膨胀阀150 1 150 其他200 合计1400~1700 (来源:长江证券研究所)1.2 电池热管理技术 电池热管理主要分为三个内容: 1)在电池温度较高时进行冷却,防止电池热失控; 2)在电池温度较低时进行加热,确保电池低温下的充电性能和安全性; 3)对电池系统进行保温,提高电池热管理效率,减少热管理能耗。 电池热管理系统的重点在于冷却,且根据冷却介质的不同,可分为风冷、液冷、相变材料冷却三种方式。目前已实现商用的是风冷和液冷,而相变材料冷却方案由于技术尚不成熟,尚未在汽车领域使用,短期内商业化可能性不大。 表1 不同电池冷却方案优劣势对比

动力蓄电池及管理系统

第二章 02 动力蓄电池及管理系统

一、动力电池主要性能指标 1.电压 (1)端电压。 (2)标称电压。 (3)开路电压。 (4)工作电压。 (5)充电终止电压。 (6)放电终止电压。

一、动力电池主要性能指标 2.容量 (1)额定容量。 (2)n小时率容量。 (3)理论容量。 (4)实际容量。 (5)荷电状态。 3.内阻 电池的内阻是指电流流过电池内部时所受到的阻力,一般是蓄电池中电解质、正负极群、隔板等电阻的总和。电池内阻越大,电池自身消耗掉的能量越多,电池的使用效率越低。

一、动力电池主要性能指标 4.能量 (1)总能量。 (2)理论能量。 (3)实际能量。 (4)比能量。 (5)能量密度。 (6)充电能量。 5.功率 (1)比功率 (2)功率密度

一、动力电池主要性能指标 6.输出效率 (1)容量效率。 (2)能量效率。 7.自放电率 自放电率是指电池在存放期间容量的下降率,即电池无负荷时自身放电使容量损失的速度,它表示蓄电池搁置后容量变化的特性。 8.放电倍率 电池放电电流的大小常用“放电倍率”表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电时间越短,即放电倍率越高,则放电电流越大。

9.使用寿命 一、动力电池主要性能指标 电池类型质量能量密度 (W·h/kg)质量功率密度 (W/kg) 能量效率 (%) 循环寿命 (次) 铅酸电池35~50150~40080500~1000镍镉电池30~50100~150751000~2000镍氢电池60~80200~400701000~1500锂离子电池100~200200~350>901500~3000

电动汽车整车电池热管理研究

电动汽车整车电池热管理研究 发表时间:2018-11-17T18:52:14.633Z 来源:《建筑模拟》2018年第24期作者:汪勇[导读] 笔者先分析电动汽车整车电池热管理的意义,再进一步提出电动汽车整车电池热管理的措施。汪勇 身份证号码:3408811992****0113 安徽江淮汽车集团股份有限公司安徽合肥 230000摘要:笔者先分析电动汽车整车电池热管理的意义,再进一步提出电动汽车整车电池热管理的措施。关键词:电动汽车;整车电池;热管理前言: 确保电池组工作在安全区间内,提供车辆控制所需的必需信息,发生意外的情况的时候要及时响应处理,并按照环境温度、电池状态和车辆需求等决定电池的充放电功率等这就是电池管理系统的主要任务。监测电池参数、估计电池状态、在线故障诊断、充电控制、自动均衡、热管理等。是BMS的主要功能。 1 电动汽车整车电池热管理的意义整个电动汽车的使用性能和寿命和安全性等内容直接受到电动汽车的电池热管理问题的影响,因此需要我们着重注意,在电动汽车中,蓄电池往往是重要的动力供应部分,所以如何提高电动汽车整车的性能以及安全性需要从蓄电池入手,蓄电池的温度特性关系着整个电动车的耐久性和使用寿命,常见的锂电池具有多方面的优点,比如循环寿命较长、允许工作温度范围较大、比能大、自放电率低等。所以目前的电动汽车常选用锂电池作为动力电源,在锂离子电池的热管理工作中需要根据锂离子的具体发热方式进行管理,通过对电池包结构的设计来进行热管理的方式和策略的设定,从而实现整个电池组中单体电池之间的串联和合理温度的保障,整个电池组中任何一个电池出现问题都会造成电池组整体的性能下降,所以要分别注重,例如在相同充电的条件下,不同的温差将会出现不同的电池组荷电状态,而电池热管理正是针对电池的热相关问题来进行的技术内容,通过热管理的方式来保障电池的正常动力供应,通常的热管理系统主要是在电池温度较低的情况下做好预热情况,保障低温充电、放电的高效和安全,其次是电池长时间工作之后温度升高,热管理进行有效的散热,避免因为温度过高造成的事故,另外在电池组之间的温度上也要进行均衡,避免产生过大的温度差异,造成局部过热,影响电池组的寿命和安全[1]。 2 电动汽车整车电池热管理的措施 2.1 以锂电池为例现阶段,锂电池是电动汽车运用的电源供应主要方式,所以以锂电池为例,在电动汽车的整车电池管理工作中,锂电池的电池温度对于整个车辆的使用和功率性能有直接的影响,所以需要进行热管理的控制,当温度较低时将造成电池容量的迅速衰减,在电动汽车的运行中不能提供足够的能源,例如在0度以下电池的可用容量大大减少,温度过低的情况还有可能出现瞬间的电压过充问题,出现电池内部锂的析出,有可能引起短路的问题,另外,在锂电池的热相关问题上,电池安全性的问题也与电池热问题相关,在生产和制造的过程中不当操作容易造成电池的局部过热,出现放热反应,严重的甚至造成爆炸、起火等严重事故,出现人员的安全隐患。除了以上问题,在锂电池的存放和工作过程中的环境温度也将影响到电池的寿命,通常而言,在电池的存放和工作过程中最佳温度为 10-30度之间,温度的过高或过低都会造成电池的寿命和安全问题,电力的需求使得动力电池的大型化成为一种趋势,这就更容易造成内部温度的不均匀和局部温度过高的现象,造成电池寿命的问题,电池加速衰减,从而影响到电动汽车的使用,在具体的运行过程中,动力系统必须要及时降低锂离子电池的问题,保障电池的安全性和足够的动力[2]。 2.2 空气强制对流在电池的热管理工作中,散热是一个重要的内容,空气的强制对流是散热的重要方式,将空气作为主要的传热介质,通过空气在模块的穿过来消散热量,从而达到散热的目的,但是空气本身的冷却效果是很小的,这就需要强制的空气冷却方式,运动产生的流动空气带走电池的热量,从而尽可能的降低电池温度,在强制对流的实现中,需要注意的是电池间的散热槽、距离等方面的设计工作,只有做好了科学的散热面积以及电池封装工作才能有效的进行散热工作,通常常见的电池组采用串联和并联式的通道,在仿真结果下对电池的散热性进行研究可以得出热辐射在整个散热过程中占有非常大的比例,所以强化传热是降低温度的有效措施,通过风冷的方式能够有效的进行电池的散热工作,并且结构简单,成本较低,但是同时冷却和加热的速度较慢[3]。 2.3 液体冷却通常在普通的要求下采用空气的流通方式就可以满足基本的散热要求,但是在较复杂的工况和要求下空气对流的方式就不能满足热管理的要求,所以在这种情况下我们通常采用液体冷却的方式,通过液体的方式进行电池组的热交换,常见的采用模块间布置管线或者模块布置夹套的方式,通过液体的沉浸来进行热交换,常见的传热介质包括油、制冷剂、水、乙二醇等,由于液体的导电问题,所以必须采取有效的绝缘措施,避免出现短路的现象,造成严重事故。传热介质的传热速率主要是根据液体的热导率、流动速率、密度、粘度等确定,在相同的流速和条件下,液体的传热速度大大高于空气的传热速度,这是由于液体本身的特点高于空气的导热率,液冷的方式能够热传递效率高、速度快,但是同时也有重量较大、部件较为复杂、保养过程复杂等缺点。通过试验结果可以证明液体的热传递效果大大高于空气介质的传热效果,但是同时系统较为复杂,并联型的混合动力车中只采用空气的冷却方式即可保证散热要求,纯电动汽车由于要求较高则需要液体冷却的方式,通过流道设计的研究可以得出并联流道整体温度要低于串联流道,在具体的设计和应用角度来看,串联流道结构更适用于产品的使用,综合而言整体散热较好,随着电池模块容量的增大,恶劣环境下运行对电池性能的要求越来越苛刻,高效的电池热管理系统极其重要[4]。结语 在电动汽车管理中,要重视整车电池的热管理,在设计不一样的汽车时,要根据不一样的汽车特点选择合适的热管理方式,从而确保电池的动力供应与热管理效果,使电动汽车的寿命与运行质量能得到保证。参考文献:

动力电池管理系统(BMS)的核心技术【深度解析】

动力电池管理系统(BMS)的核心技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 什么是BMS的核心技术? BMS系统通常包括检测模块与运算控制模块。 检测是指测量电芯的电压、电流和温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令。所以运算控制模块是BMS的大脑。控制模块一般包括硬件、基础软件、运行时环境(RTE)和应用软件。其中最核心的部分——应用软件。对于用Simulink 开发的环境的一般分为两部分:电池状态的估算算法和故障诊断以及保护。

状态估算包括SOC(State Of Charge)、SOP(State Of Power)、SOH(Stateof Health)以及均衡和热管理。 电池状态估算通常是估算SOC、SOP和SOH。SOC (荷电状态)简单的说就是电池还剩下多少电;SOC 是BMS中最重要的参数,因为其他一切都是以SOC为基础的,所以它的精度和鲁棒性(也叫纠错能力)极其重要。如果没有精确的SOC,加再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。此外,SOC的估算精度也是十分重要的。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。比如克莱斯勒的菲亚特500e BEV,可以一直放电SOC=5%。成为当时续航里程最长的电动车。下图是一个算法鲁棒性的例子。电池是磷酸铁锂电池。它的SOCvs OCV曲线在SOC从70%到95%区间大约只变化2-3mV。而电压传感器的测量误差就有3-4mV。在这种情况下,我们有意让初始SOC有20%的误差,看看算法能不能够把这20%的误差纠正过来。如果没有纠错功能,SOC会按照SOCI的曲线走。算法输出的SOC是CombinedSOC也即是图中的蓝色实线。CalculatedSOC是根据最后的验证结果反推回去的真正SOC。 SOP是下一时刻比如下一个2秒、10秒、30秒以及持续的大电流的时候电池能够提供的最大的放电和被充电的功率。当然,这里面还应该考虑到持续的大电流对保险丝的影响。 SOP的精确估算可以最大限度地提高电池的利用效率。比如在刹车时可以尽量多的吸收回馈的能量而不伤害电池。在加速时可以提供更大的功率获得更大的加速度而不伤害电池。同时也可以保证车在行驶过程中不会因为欠压或者过流保护而失去动力即使

相关主题
文本预览
相关文档 最新文档