当前位置:文档之家› 磁链轨迹控制在机车辅助逆变电源中的应用

磁链轨迹控制在机车辅助逆变电源中的应用

磁链轨迹控制在机车辅助逆变电源中的应用
磁链轨迹控制在机车辅助逆变电源中的应用

逆变电源的几种控制算法

逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,鲁棒性好,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点: PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。 重复控制

四桥臂三相逆变器的控制策略

四桥臂三相逆变器的控制策略 阮新波严仰光 摘要提出了一种新型的三相四线逆变器,它有四个桥臂,第四个桥臂用来构成中点,从而省去了三相三桥臂逆变器中的中点形成变压器,减小了逆变器的体积和重量。针对这种逆变器,本文提出了一种电流调节器,它根据三相滤波电感电流和给定电流的误差值最大的那相选择逆变器的开关模态。为了消除输出相电压的静态误差,本文讨论 了一种基于PI调节器改进的电压调节方案。仿真结果表明,本文的思路是可行的。本 文为构造大功率、高效率的三相四线逆变器提供了可靠的理论基础。 关键词:三相逆变器控制策略 The Control Strategy for Three-Phase Inverter with Four Bridge Legs Ruan Xinbo Yan Yangguang (Nanjing University of Aeronaut ics & Astronautics 210016 China) Abstract A novel three phase inverter with four bridge legs i s presented in this paper.The inverter eliminates the neutral forming transforme r by adding a bridge leg to form neutral point to provide balanced voltages to a ny kinds of three phase loads.The principle of the inverter is analyzed,and a ne w current regulator,which chooses switching modes a ccording to the maximum cur rent error of filter inductance current and the reference current is proposed.Th e modified voltage regulator on the basis of PI regulator is proposed to elimina te output voltage static error under any load conditions. Keywords:Three-phase Inverters Control strategies 1 引言 三相逆变器一般是采用三个桥臂组成的拓扑结构,为了给不对称负载供电,必须在 输出端加入一个中点形成变压器(Neutral Formed Transformer,NFT),如图1所示。中点形成变压器是变比为1的自耦变压器,工作频率为输出交流电的频率,体积和重 量很大,而且体积和重量随着负载不对称的程度变化而变化,不对称度越大,NFT的体积重量也就越大。

自动控制原理 题库 第四章 线性系统根轨迹 习题

4-1将下述特征方程化为适合于用根轨迹法进行分析的形式,写出等价的系统开环传递函数。 (1)210s cs c +++=,以c 为可变参数。 (2)3(1)(1)0s A Ts +++=,分别以A 和T 为可变参数。 (3)1()01I D P k k s k G s s s τ?? ++ + =? ?+? ? ,分别以P k 、I K 、T 和τ为可变参数。 4-2设单位反馈控制系统的开环传递函数为 (31)()(21) K s G s s s += + 试用解析法绘出开环增益K 从0→+∞变化时的闭环根轨迹图。 4-2已知开环零极点分布如下图所示,试概略绘出相应的闭环根轨迹图。 4-3设单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标)。 (1)()(0.21)(0.51)K G s s s s = ++ (2)(1)()(21) K s G s s s +=+ (3)(5)()(2)(3) K s G s s s s += ++ 4-4已知单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求算出起始角)。 (1)(2) ()(12)(12) K s G s s s j s j += +++- (2)(20) ()(1010)(1010) K s G s s s j s j +=+++-

4-5设单位反馈控制系统开环传递函数如为 * 2 ()()(10)(20) K s z G s s s s += ++ 试确定闭环产生纯虚根1j ±的z 值和*K 值。 4-6已知系统的开环传递函数为 * 2 2 (2)()()(49) K s G s H s s s += ++ 试概略绘出闭环根轨迹图。 4-7设反馈控制系统中 * 2 ()(2)(5) K G s s s s = ++ (1)设()1H s =,概略绘出系统根轨迹图,判断闭环系统的稳定性 (2)设()12H s s =+,试判断()H s 改变后的系统稳定性,研究由于()H s 改变所产生的影响。 4-8试绘出下列多项式的根轨迹 (1)322320s s s Ks K ++++= (2)323(2)100s s K s K ++++= 4-9两控制系统如下图所示,试问: (1)两系统的根轨迹是否相同?如不同,指出不同之处。 (2)两系统的闭环传递函数是否相同?如不同,指出不同之处。 (3)两系统的阶跃响应是否相同?如不同,指出不同之处。 4-10设系统的开环传递函数为 12 (1)(1) ()K s T s G s s ++= (1)绘出10T =,K 从0→+∞变化时系统的根轨迹图。 (2)在(1)的根轨迹图上,求出满足闭环极点阻尼比0.707ξ=的K 的值。 (3)固定K 等于(2)中得到的数值,绘制1T 从0→+∞变化时的根轨迹图。 (4)从(3)的根轨迹中,求出临界阻尼的闭环极点及相应的1T 的值。 4-11系统如下图所示,试 (1)绘制0β=的根轨迹图。 (2)绘制15K =,22K =时,β从0→+∞变化时的根轨迹图。 (3)应用根轨迹的幅值条件,求(2)中闭环极点为临界阻尼时的β的值。

逆变电源控制算法哪几种

https://www.doczj.com/doc/b34328872.html,/ 逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点:

https://www.doczj.com/doc/b34328872.html,/ PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。

逆变器原理

太阳能光伏并网控制逆变器工作原理及控制方法摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1 引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为“光热”和“光伏”两种,其中光热式热水器在我

国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的“光生伏打现象”。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2 并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分:其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

逆变电源并联均流的PI控制和重复控制结合的复合控制方法研究

逆变电源并联均流的PI控制和重复控制结合的 复合控制方法研究 董杰荣雅君 可有效地抑制非线性负载所引起的扰动,减小输出电压畸变 在复合控制下,逆变电源输出电压能很快达到稳态,具有良好的动态特性。 AC 图1 PI控制与重复控制复合控制框图 t/ms (0.02s/格) u / V ( / 格 ) 1 V 图2 重复控制时输出电压与电流波形(带非线性负载) 0.1ms/格 1 V / 格 图3复合控制后输出电压波形(带非线性负载)

逆变电源并联均流的电压与电流瞬时值反馈控制方案 董杰 荣雅君 根据电压与电流的瞬时值进行控制 减小输出电压畸变,保证波形质量 U 图5 电路原理图 图6 双闭环控制波形 基于模糊聚类分析的逆变电源并网运行的孤岛检测

及保护判据研究 荣雅君 殷桂梁 一、孤岛的特点及其检测 1.电压和频率 逆变电源并网运行时,逆变电源向a 点提供的功率为 jQ P +;负载得到功率为Load Load jQ P +,则电网提供的功率为 P P P Load -=? Q Q Q Load -=? 如果逆变电源工作在单位功率因数,则有0=Q , Load Q Q =?。孤岛形成前瞬间,如果0=?P ,a V 幅值将发生 变化;如果0≠?Q ,负载电压出现一个突然的相位漂移,逆 图1 逆变电源并网运行示意图 变电源控制系统能改变输出电流的频率,即a V 的频率,直到 0=?Q (达到负载的谐振频率)。 2.电压相位突变 电流源型逆变电源,电网断开后,a V 不再被系统电压所固定,而逆变电源输出电流i 是固定的,它一直跟随逆变电源内部的PLL 提供的波形。i 和a V 仅仅在a V 的过零点发生同步,在过零点之间,逆变电源工作在开环状态。因此,逆变电源输出电流突变为参考相。由于频率没有发生变化,负载的相位与系 统断开前相同,因此a V 必然要跳变到新的相位(如图 2所示)。在a V 的下一个过零点,“新”电压和逆变电 图2 相位突变 源输出电流之间存在相位差。 3.电压谐波 电网断开后,逆变电源产生的谐波电流将会流入负载,负载阻抗通常要比系统阻抗大得多,谐波电流与负载阻抗相乘,a V 将产生更大的谐波[5]。逆变电源通过检测电压谐波或谐波的变化来判断是否处于孤岛状态。 二、基于模糊聚类分析的保护方法 1. 模糊聚类分析 设论域}{21n x x x U ,, , =为被分类的对象,每一对象由m 个特性指标表示其性质,}{21im i i i x x x x ,,, =,n i ,,, 21=。 则n 个样本的特性指标矩阵为: ????? ? ??????=nm n n m m x x x x x x x x x X 2 1 2222111211

自动控制原理(系统根轨迹分析)

武汉工程大学自动控制原理实验报告 专业班级:指导老师: 姓名:学号: 实验名称:系统根轨迹分析 实验日期:2011-12-01 第三次试验 一、实验目的 1、掌握利用MATLAB精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB仿真软件(版本6.5或以上) 实验内容

1.根轨迹的绘制 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。 图3.2 闭环系统一

图3.3 闭环系统一 的根轨迹及其绘制 程序 注意:在这里,构成系统s ys 时,K 不包括在其中,且要使分子和分母中s最高

次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 r locfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某点 并点击鼠标左键,这时图上会出现一个关于该点的信息框,其中包括该系统在此点的特征根的值及其 对应的 K 值、超调量和阻尼比等值。图 3.4 给出了函数 r locfind 的用法。 2.实验内容 图3.5 闭环系统二 1) 对于图 3.5 所示系统,编写程序分别绘制当 (1) G(s)= )2(+s s K , (2) G(s)= ) 4)(1(++s s s K ,

基于重复控制的全数字单相逆变电源研究

基于重复控制的全数字单相逆变电源研究 姜洪训 (四川机电职业技术学院,四川攀枝花617000) 摘要:本文建立了PWM逆变器的数学模型。介绍了重复控制理论,为了改善逆变器波形质量,提出了一 种基于改进型重复控制的单相逆变器系统的设计。采用DSP实现了数字闭环控制方案,设计了系统硬件和 软件,并进行了实验。实验结果证明带重复补偿的逆变系统波形质量好,精度高,输出电压波形畸变率小; 该控制系统既有较好的稳态性能,又有较快的响应速度。 关键词:逆变器重复控制数字控制DSP 中图分类号:TM464 文献标示码:A 文章编号:1003-4862 (2011)01-0001-05 Research on Full-Digital Single Phase Inverter Based on Repetitive Control Jiang Hongxun (Sichuan Electromechanical Institute of Vocation and Technology, Panzhihua 617000, Sichuan, China) Abstract: This paper establishes a mathematical model of PWM inverter and introduces repetitive control theory. In order to improve the quality of inverter waveform, a modified repetitive control system based on single-phase inverter is proposed. Using DSP, it realizes digital closed-loop control, and designs system’s hardware and software experiments. Experimental results show that the inverter system with a repeat compensation has good waveform quality, high precision and. low distortion output voltage waveform. The control system has both good static performance and fast response. Key words: inverter, repetitive control, digital control, DSP 1 引言 SPWM逆变器是目前应用最广泛的一种逆变器,作为一种高性能的逆变器,除了要求它满足体积小、重量轻和电磁兼容性好等基本指标外,还必须具备输出高质量电压波形的能力、且有足够的输出功率和高稳定性[1]。为此近年来人们对其提出了多种控制方法以改善其输出波形的质量,如PID控制、重复控制、双环反馈控制、三环控制、、无差拍控制等,其中应用最多的是电压电流双环控制方案和重复控制方案。双环控制具有控制器设计简单,输出电压波形失真小、动态响应快等优点,但这种双闭环控制方案采用PI 调节,它跟踪快速变化的正弦波时无法消除静态误差。而重复控制是基于内模原理的一种新型的控制策略,它对周期性外激信号的跟踪和抑制具有良好的稳态输出特性,鲁棒性好。本文建立了单相逆变器的数学模型,并对开环逆变器进行了分析,分析了双环控制的特点,提出了一种双环控制与重复控制相结合的控制方案,最后以TMS320LF2407为主控芯片搭建了一台50 Hz单相逆变器实验系统,并进行了实验,给出了实验结果,证明了所建立模型的正确性。 2 单相全桥逆变器的数学模型 单相逆变器主电路如图1所示[2],图中T1、T2、T3、T4是功率开关管,滤波电感L与滤波电容C构成低通滤波器,R r为考虑滤波电感L的等效串联电阻、死区效应、开关管导通压降、线路电阻等逆变器中各种阻尼因素的综合等效电阻。 收稿日期: 2010-09-01 作者简介:姜洪训(1967—),男,讲师,专业方向:电 气自动化。 1

逆变器控制

Design and Control for LCL-Based Inverters with Both Grid-Tie and Standalone Parallel Operations Chien-Liang Chen, Jih-Sheng Lai, Yu-Bin Wang, Sung-Yeul Park, and Hide Miwa Virginia Polytechnic Institute and State University Future Energy Electronics Center 415 Whittemore Hall, Blacksburg, VA 24061-0111, USA jlchen99@https://www.doczj.com/doc/b34328872.html,, laijs@https://www.doczj.com/doc/b34328872.html,, ybwang@https://www.doczj.com/doc/b34328872.html,, supark@https://www.doczj.com/doc/b34328872.html,, and hmiwa1@https://www.doczj.com/doc/b34328872.html, Abstract—The inductor-capacitor-inductor (LCL) filter allows higher noise attenuation and universal output in which a power conditioning system or an inverter can operate in both grid-tie and standalone modes. In this paper, the LCL filter design considerations including sensor position selection and component selections are discussed for single-phase paralleled inverters operating in both grid-tie and standalone modes. For grid-tie mode operation, each inverter is operating under a single current loop with proportional-resonant controller and admittance path compensation to reduce the steady-state error by providing a high gain at the fundamental frequency. For standalone mode operation, one of the inverters is implemented with a dual-loop controller to regulate the output voltage while the rest inverters operate in single current-loop controller with communication channels in between to ensure the uniformity of current sharing. Both the simulation and experimental results verify that the designed controllers are capable of paralleling inverter operation in grid-tie and standalone modes by adapting to different controller settings while keeping the same hardware setup. Keywords-LCL filter, grid-tie inverter, dual-loop control, PR controller, parallel inverter, admittance compensation. I.I NTRODUCTION The parallel inverter systems have demonstrated many advantages compared to a single high-power inverter [1-8]. For example, an inverter can be designed in modular manner which allows the system capacity to be multiplied and the reliability can be greatly improved with redundancy. Parallel inverter operation has been a major topic in uninterruptible power system (UPS) applications where the design is focused on the standalone operation, and the output stage is typically an inductor-capacitor (LC) filter. When connecting the paralleled inverters to utility grids, the capacitor becomes redundant, and thus either a pure inductor (L) or an LCL filter can be used as the inverter output stage. Compared with the L filter, the LCL filter is more attractive [9] because it can not only provide higher high-frequency harmonics attenuation with the same inductance value, but also allow the inverter to operate in both standalone and grid-tie modes, which makes it a universal inverter for distributed generation applications such as fuel cell and photovoltaic power conditioning system (PCS). Major factors that were used in LCL design considerations include inductor current ripple magnitude and reactive power consumption in capacitor [10], the range of LCL resonant frequency, and the total inductance value of LCL filter [11]. In this paper, the sensor position selection and the universal application in both grid-tie and standalone modes are added as the LCL design factors. The compliance of interconnect standards IEEE 1547 and 1547.1 [12,13] and their current harmonic limits can also be used in the LCL design criteria. However, the cause of inverter harmonic distortions were mainly found in nonlinear effects such as nonlinear device voltage drop, dead time, limited PWM resolution and lack of stiffness in dc link [14]. The controller with high gain at the harmonic frequencies such as proportional-resonant (PR) controller [15] and direct-quadrant (DQ) frame current controller [16,17] can be potential candidates to alleviate such harmonic distortions. In addition to harmonic concerns, the controller design for parallel inverter systems must consider stability and steady-state error issues. In general, parallel inverters are designed in standalone mode for UPS and distributed generation (DG) systems that supply regulated output voltages when grid is not available. Most reported standalone inverter systems use a LC filter and proportional-integral (PI) controller in their control loops [18-20]. In [18,19], multiple feedback loops were proposed to improve the output voltage performance and to damp the poles of LC filter. In [20], feedback, feed-forward, and nonlinear controls were considered for the entire UPS control system. These parallel inverter systems, however, are usually designed with LC filter [1-8] which will have difficulties in grid-tie operations due to the undetermined resonant frequency caused by the change of grid-side source impedance [21]. The design of parallel inverters also needs to consider the current sharing capability [5-6] and the communication [7-8] among paralleled inverters. In [5], some current-sharing schemes for parallel inverter systems including master-salve control, current-limit control, and circular-chain control are examined and compared. In [6], a current-weight-distribution control was proposed to allow inverters in parallel with different output current capability. In [7], the controller area network (CAN) communication interface is utilized in a parallel inverter system to obtain a higher reliability. In [8], a new voltage and frequency droop control for parallel inverter systems is proposed to allow a robust current sharing without communication between inverters. In this paper, the paralleled inverters adopt the LCL filter as the output stage to allow the inverter to operate in both grid-tie

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

控制系统的根轨迹分析

实验报告 课程名称:____ 自动控制理论实验_____指导老师:_____________成绩:__________ 实验名称:___控制系统的根轨迹分析___实验类型:___仿真实验___同组学生姓名:__无__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验十一 控制系统的根轨迹分析 一、实验目的 1、用计算机辅助分析的办法,掌握系统的根轨迹分析方法。 2、熟练掌握 Simulink 仿真环境。 二、实验原理 1、根轨迹分析方法 所谓根轨迹,是指当开环系统的某一参数(一般来说,这一参数选作开环系统的增益 K ) 从零变到无穷大时,系统特征方程的根在 s 平面上的轨迹。在无零极点对消时,闭环系统特 征方程的根就是闭环传递函数的极点。 根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可 以对系统进行各种性能分析: (1) 稳定性 当开环增益 K 从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半 s 平面,因 此这个系统对所有的 K 值都是稳定的。如果根轨迹越过虚轴进入右半 s 平面,则其交点的 K 值就是临界稳定开环增益。 (2) 稳态性能 开环系统在坐标原点有一个极点,因此根轨迹上的 K 值就是静态速度误差系数,如果 给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。 (3) 动态性能 当 0 < K < 0.5 时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周 期过程;当 K = 0.5 时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周 期过程,但速度更快;当 K > 0.5 时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃 响应为阻尼振荡过程,且超调量与 K 成正比。 同时,可通过修改系统的设计参数,使闭环系统具有期望的零极点分布,即根轨迹对系 统设计也具有指导意义。 2、根轨迹分析函数 在 MA TLAB 中,绘制根轨迹的有关函数有 rlocus 、rlocfind 、pzmap 等。 (1) pzmap :绘制线性系统的零极点图,极点用×表示,零点用 o 表示。 专业:_____________________ 姓名:____________________ 学号:___________________ 日期:____________________ 地点:____________________

相关主题
文本预览
相关文档 最新文档