当前位置:文档之家› 基于模型驱动的软件开发方法研究

基于模型驱动的软件开发方法研究

基于模型驱动的软件开发方法研究
基于模型驱动的软件开发方法研究

软件开发模型介绍与对比分析

常用的软件开发模型 软件开发模型(Software Development Model)是指软件开发全部过程、活动和任务的结构框架。软件开发包括需求、设计、编码和测试等阶段,有时也包括维护阶段。 软件开发模型能清晰、直观地表达软件开发全过程,明确规定了要完成的主要活动和任务,用来作为软件项目工作的基础。对于不同的软件系统,可以采用不同的开发方法、使用不同的程序设计语言以及各种不同技能的人员参与工作、运用不同的管理方法和手段等,以及允许采用不同的软件工具和不同的软件工程环境。 1. 瀑布模型-最早出现的软件开发模型 1970年温斯顿?罗伊斯(Winston Royce)提出了著名的“瀑布模型”,直到80年代早期,它一直是唯一被广泛采用的软件开发模型。 瀑布模型核心思想是按工序将问题化简,将功能的实现与设计分开,便于分工协作,即采用结构化的分析与设计方法将逻辑实现与物理实现分开。将软件生命周期划分为制定计划、需求分析、软件设计、程序编写、软件测试和运行维护等六个基本活动,并且规定了它们自上而下、相互衔接的固定次序,如同瀑布流水,逐级下落。从本质来讲,它是一个软件开发架构,开发过程是通过一系列阶段顺序展开的,从系统需求分析开始直到产品发布和维护,每个阶段都会产生循环反馈,因此,如果有信息未被覆盖或者发现了问题,那么最好“返回”上一个阶段并进行适当的修改,开发进程从一个阶段“流动”到下一个阶段,这也是瀑布开发名称的由来。 瀑布模型是最早出现的软件开发模型,在软件工程中占有重要的地位,它提供了软件开发的基本框架。其过程是从上一项活动接收该项活动的工作对象作为输入,利用这一输入实施该项活动应完成的内容给出该项活动的工作成果,并作为输出传给下一项活动。同时评审该项活动的实施,若确认,则继续下一项活动;否则返回前面,甚至更前面的活动。对于经常变化的项目而言,瀑布模型毫无价值。(采用瀑布模型的软件过程如图所示)

模型驱动的开发方法——基于面向对象的开发

模型驱动的开发方法——基于面向对象的开发 2012210874 魏翔案例 案例名称:《基于UML的GRAPPLE在数字化医院信息系统设计中的应用》 案例简述: GRAPPLE (Guidelines for Rapid application Engineering: 快速应用工程指导原则)主要适用于面向对象系统。因此,每个段中的动作主要是生成面向对象的工作产品。GRAPPLE 所包括的5个段分别为: 1需求收集 1.1发现业务过程 首先要分析员要用客户业务常用的词汇与客户进一步面谈,从而建立一个或者一组能够捕获业务过程中的步骤和判定点的活动图,即从客户的业务流程出发理解系统。 1.2领域分析 领域分析可以与前一个动作同时进行,它们的共同目标是达到对某特定领域的理解。在此过程中,分析员需要分析与客户的会谈从而开发初步类图、建立和标记类之间的关联并且找出关联的多重性。 1.3发现系统需求 在此阶段,GRAPPLE 要求开发组举行一次联合应用开发会议,参加者包括客户的决策者、用户以及开发组成员。会议的参加者一同收集系统需求,需求收集的结果是一个包图,这个包图中的每个包代表系统的一个主要功能模块,每个包中包括一组用例,它们详细说明这个包代表的功能。本系统最重要的是事务对象包,它包括了系统涉及的大部分功能模块,例如挂号收费模块、看病诊断模块、取药模块、住院出院模块等;用户接口包定义了数据导入导出接口、打印接口;数据库包则定义了系统使用的数据库表、视图、存储过程。 2分析 2.1开发用例 “发现系统需求”阶段得到的每个功能包中的用例说明系统必须要做的事。在“开发用例”阶段开发组还必须分析和理解每个用例,描述用例执行步骤以便绘制详细用例图。HIS 系统案例的用例图如图 1所示。

软件工程复习题及答案

2006-2007-2软件工程复习 一、单项选择题(20选10) 1. 结构化分析的主要描述手段有( B )。 A. 系统流程图和模块图 B. DFD图、数据词典、加工说明 C. 软件结构图、加工说明 D. 功能结构图、加工说明 2. 用于表示模块间的调用关系的图叫( D )。 A.PAD B.SC C.N-S D.HIPO 3. 在( B )模型中是采用用例驱动和架构优先的策略,使用迭代增量建造方法,软件“逐渐”被开发出来的。 A.快速原型 B. 统一过程 C.瀑布模型 D. 螺旋模型 4. 常用的软件开发方法有面向对象方法、面向( A )方法和面向数据方法。 A. 过程 B. 内容 C. 用户 D. 流程 5 从工程管理的角度来看,软件设计分两步完成( D )。 A. ①系统分析②模块设计 B. ①详细设计②概要设计 C. ①模块设计②详细设计 D. ①概要设计②详细设计 6. 程序的三种基本结构是( B )。 A. 过程、子程序、分程序 B.顺序、条件、循环 C.递归、堆栈、队列 D.调用、返回、转移 7. 程序的三种基本结构是( B )。 A. 过程、子程序、分程序 B.顺序、条件、循环 C.递归、堆栈、队列 D.调用、返回、转移 8. SD方法衡量模块结构质量的目标是( C )。 A. 模块间联系紧密,模块内联系紧密 B. 模块间联系紧密,模块内联系松散 C. 模块间联系松散,模块内联系紧密 D. 模块间联系松散,模块内联系松散 9.为提高软件测试的效率,应该( C )。 A.随机地选取测试数据 B.取一切可能的输入数据作为测试数据 C.在完成编码后制定软件测试计划 D.选择发现错误可能性大的数据作为测试数据 10.( D )测试用例发现错误的能力较大。 A.路径覆盖 B.条件覆盖 C.判断覆盖 D.条件组合覆盖 11.软件需求分析应确定的是用户对软件的( A )。 A. 功能需求和非功能需求 B. 性能需求 C. 非功能需求 D. 功能需求 12.下列各种图可用于动态建模的有( C )。 A.用例图 B. 类图 C. 序列图 D. 包图 13.软件过程模型有瀑布模型、( B )、增量模型等。 A. 概念模型 B. 原型模型 C. 逻辑模型 D. 物理模型 14.面向对象的分析方法主要是建立三类模型,即( D )。 A. 系统模型、ER模型、应用模型 B. 对象模型、动态模型、应用模型 C. E-R模型、对象模型、功能模型 D. 对象模型、动态模型、功能模型 15.测试的分析方法是通过分析程序( B )来设计测试用例的方法。 A.应用范围 B.内部逻辑 C.功能 D.输入数据 16. 软件工程是研究软件( B )的一门工程学科。 A. 数学 B. 开发与管理 C. 运筹学 D. 工具 17. 需求分析可以使用许多工具,但( C )是不适合使用的。 A.数据流图 B.判定表 C.PAD图 D.数据字典 18.划分模块时,一个模块内聚性最好的是( A )。 A. 功能内聚 B. 过程内聚 C. 信息内聚 D. 逻辑内聚 19.软件可移植性是用来衡量软件的( D )的重要尺度之一。 A.效率 B. 质量 C. 人机关系 D. 通用性 20.软件配置管理是在软件的整个生存周期内管理( D )的一组活动。 A.程序 B.文档 C.变更 D.数据 二、判定题(20选10) 1统一过程是一种以用户需求为动力,以对象作为驱动的模型,适合于面向对象的开发方法。(×) 2当模块中所有成分结合起来完成一项任务,该模块的内聚是偶然内聚。(×) 3SD方法衡量模块结构质量的目标是模块间联系松散,模块内联系紧密(√) 4当模块中所有成分结合起来完成一项任务,该模块的内聚是功能内聚。(√) 5在进行需求分析时,就应该同时考虑软件的可维护性问题。(√) 6需求分析可以使用许多工具,但数据流图是不适合使用的。(×)

常用软件开发模型比较分析

常用软件开发模型比较分析 2007-09-26 20:21 正如任何事物一样,软件也有其孕育、诞生、成长、成熟和衰亡的生存过程,一般称其为“软件生命周期”。软件生命周期一般分为6个阶段,即制定计划、需求分析、设计、编码、测试、运行和维护。软件开发的各个阶段之间的关系不可能是顺序且线性的,而应该是带有反馈的迭代过程。在软件工程中,这个复杂的过程用软件开发模型来描述和表示。 软件开发模型是跨越整个软件生存周期的系统开发、运行和维护所实施的全部工作和任务的结构框架,它给出了软件开发活动各阶段之间的关系。目前,常见的软件开发模型大致可分为如下3种类型。 ① 以软件需求完全确定为前提的瀑布模型(Waterfall Model)。 ② 在软件开发初始阶段只能提供基本需求时采用的渐进式开发模型,如螺旋模型(Spiral Model)。 ③ 以形式化开发方法为基础的变换模型(T ransformational Model)。 本节将简单地比较并分析瀑布模型、螺旋模型和变换模型等软件开发模型。 1.2.1 瀑布模型瀑布模型即生存周期模型,其核心思想是按工序将问题化简,将功能的实现与设计分开,便于分工协作,即采用结构化的分析与设计方法将逻辑实现与物理实现分开。瀑布模型将软件生命周期划分为软件计划、需求分析和定义、软件设计、软件实现、软件测试、软件运行和维护这6个阶段,规定了它们自上而下、相互衔接的固定次序,如同瀑布流水逐级下落。采用瀑布模型的软件过程如图1-3所示。

图1-3 采用瀑布模型的软件过程 瀑布模型是最早出现的软件开发模型,在软件工程中占有重要的地位,它提供了软件开发的基本框架。瀑布模型的本质是一次通过,即每个活动只执行一次,最后得到软件产品,也称为“线性顺序模型”或者“传统生命周期”。其过程是从上一项活动接收该项活动的工作对象作为输入,利用这一输入实施该项活动应完成的内容给出该项活动的工作成果,并作为输出传给下一项活动。同时评审该项活动的实施,若确认,则继续下一项活动;否则返回前面,甚至更前面的活动。瀑布模型有利于大型软件开发过程中人员的组织及管理,有利于软件开发方法和工具的研究与使用,从而提高了大型软件项目开发的质量和效率。然而软件开发的实践表明,上述各项活动之间并非完全是自上而下且呈线性图式的,因此瀑布模型存在严重的缺陷。 ① 由于开发模型呈线性,所以当开发成果尚未经过测试时,用户无法看到软件的效果。这样软件与用户见面的时间间隔较长,也增加了一定的风险。 ② 在软件开发前期末发现的错误传到后面的开发活动中时,可能会扩散,进而可能会造成整个软件项目开发失败。 ③ 在软件需求分析阶段,完全确定用户的所有需求是比较困难的,甚至可以说是不太可能的。 1.2.2 螺旋模型螺旋模型将瀑布和演化模型(Evolution Model)结合起来,它不仅体现了两个模型的优点,而且还强调了其他模型均忽略了的风险分析。这

常见的软件开发模型

常见的软件开发模型 软件开发模型是软件开发全部过程、活动和任务的结构框架。 1.软件开发模型是对软件过程的建模,即用一定的流程将各个环节连接起来,并可用规范的方式操作全过程,好比工厂的流水线。 2.软件开发模型能清晰、直观地表达软件开发全部过程,明确规定要完成的主要活动和任务,它用来作为软件项目工作的基础。 3.软件开发模型应该是稳定和普遍适用的 软件开发模型的选择应根据: 1.项目和应用的特点 2.采用的方法和工具 3.需要控制和交付的特点 软件工程之软件开发模型类型 1.边做边改模型 2.瀑布模型 3.快速原型模型 4.增量模型 5.螺旋模型 6.喷泉模型 边做边改模型(Build-and-Fix Model) 国内许多软件公司都是使用"边做边改"模型来开发的。在这种模型中,既没有规格说明,也没有经过设计,软件随着客户的需要一次又一次地不断被修改. 在这个模型中,开发人员拿到项目立即根据需求编写程序,调试通过后生成软件的第一个版本。在提供给用户使用后,如果程序出现错误,或者用户提出新的要求,开发人员重新修改代码,直到用户满意为止。 这是一种类似作坊的开发方式,对编写几百行的小程序来说还不错,但这种方法对任何规模的开发来说都是不能令人满意的,其主要问题在于:(1)缺少规划和设计环节,软件的结构随着不断的修改越来越糟,导致无法继续修改; (2)忽略需求环节,给软件开发带来很大的风险; (3)没有考虑测试和程序的可维护性,也没有任何文档,软件的维护十分困难。

瀑布模型(Waterfall Model) 1970年Winston Royce提出了著名的"瀑布模型",直到80年代早期,它一直是唯一被广泛采用的软件开发模型。瀑布模型将软件生命周期划分为制定计划、需求分析、软件设计、程序编写、软件测试和运行维护等六个基本活动,并且规定了它们自上而下、相互衔接的固定次序,如同瀑布流水,逐级下落。 在瀑布模型中,软件开发的各项活动严格按照线性方式进行,当前活动接受上一项活动的工作结果,实施完成所需的工作内容。当前活动的工作结果需要进行验证,如果验证通过,则该结果作为下一项活动的输入,继续进行下一项活动,否则返回修改。 瀑布模型强调文档的作用,并要求每个阶段都要仔细验证。但是,这种模型的线性过程太理想化,已不再适合现代的软件开发模式,几乎被业界抛弃,其主要问题在于: (1)各个阶段的划分完全固定,阶段之间产生大量的文档,极大地增加了工作量; (2)由于开发模型是线性的,用户只有等到整个过程的末期才能见到开发成果,从而增加了开发的风险; (3)早期的错误可能要等到开发后期的测试阶段才能发现,进而带来严重的后果。 我们应该认识到,"线性"是人们最容易掌握并能熟练应用的思想方法。当人们碰到一个复杂的"非线性"问题时,总是千方百计地将其分解或转化为一系列简单的线性问题,然后逐个解决。一个软件系统的整体可能是复杂的,而单个子程序总是简单的,可以用线性的方式来实现,否则干活就太累了。线性是一种简洁,简洁就是美。当我们领会了线性的精神,就不要再呆板地套用线性模型的外表,而应该用活它。例如增量模型实质就是分段的线性模型,螺旋模型则是接连的弯曲了的线性模型,在其它模型中也能够找到线性模型的影子. 快速原型模型(Rapid Prototype Model) 快速原型模型的第一步是建造一个快速原型,实现客户或未来的用户与系统的交互,用户或客户对原型进行评价,进一步细化待开发软件的需求。通过逐步调整原型使其满足客户的要求,开发人员可以确定客户的真正需求是什么;第二步则在第一步的基础上开发客户满意的软件产品。 显然,快速原型方法可以克服瀑布模型的缺点,减少由于软件需求不明确带来的开发风险,具有显著的效果。 快速原型的关键在于尽可能快速地建造出软件原型,一旦确定了客户的真正需求,所建造的原型将被丢弃。因此,原型系统的内部结构并不重要,重要的是必须迅速建立原型,随之迅速修改原型,以反映客户的需求。 增量模型(Incremental Model) 又称演化模型。与建造大厦相同,软件也是一步一步建造起来的。在增量模型中,软件被作为一系列的增量构件来设计、实现、集成和测试,每一个构件是由多种相互作用的模块所形成的提供特定功能的代码片段构成. 增量模型在各

基于模型开发及平台化应用-演讲报告

基于模型开发及平台化应用 梁海强 2015.6

目录 1项目背景 项目目标 2 3项目方案 4 项目成果 5项目应用及效益

公司项目繁多,方案各异,且开发周期短,为满足项目开发要求,解决以上问题,公司对各车型控制软件进行平台化的开发,同时对同一车型不同配置进行软件自适应开发。 项目背景 项目繁多 开发周期短 方案 多样 项目繁多 ?公司不断增加产品开发项目。如绅宝EV 、EV200、EV150、 M307等多个车型,涉及“大中小、高中低、234”等车型 平台。 开发周期短 ?每一个项目开发周期都很短,一个项目从立项到量产要求在 很短的时间内完成。 方案多样 ?为了满足市场需求,每个车型又有多种配置方案。

本项目旨在达成三方面的目标: 建立基于模型开发整车控制策略的软件平台; 对于不同车型进行控制模型软件平台化的开发,保证控制模型软件的可移植性,缩短整车控制软件开发周期;针对同一车型不同车型配置方案,进行软件自适应开发,保证一款车型同一版软件对应不同的车型配置。 软件自适应 开发 控制模型软件平台化 搭建模型开发平台

三、项目方案-建立V 流程的模型软件开发平台 标杆车分析控制需求分析 控制系统定义与 设计 策略模型开发 模型集成自动代码生成SIL 测试 实车测试 匹配标定 HIL 测试 MIL 测试 V erification “验证” V alidation “确认” 控制需求分析V 型开发流程 VS ?简洁、明确?便于交流?便于维护图形化设计 ?及早纠错 ?改善开发过程早期验证 ?开发效率高?代码品质高代码自动生成 ?提高效率?便于交流 文档自动化 优势

软件开发模型的优缺点和适用范围

软件开发模型的优缺点和适用范围 软件开发模型大体上可以分为三种类型。第一种是以软件需求完全确定为前提的瀑布模型;第二种是在软件开发初始阶段只能提供基本需求时采用的渐进式开发模型,如原型模型、 螺旋模型等;第三种是以形式化开发方法为基础的的变换模型。时间中经常将几种模型组合使用, 以便充分利用各种模型的优点。 1. 瀑布模型 瀑布模型也称软件生存周期模型。它在软件工程中占有重要地位,它提供了软件开发的基本框架,这比依靠“个人技艺”开发软件好得多。它有利于大型软件开发过程中人员的组织、管理,有利于软件开发方法和工具的研究与使用,从而提高了大型软件项目开发的质量和效率。 瀑布模型的缺点:一是个阶段的划分完全固定,阶段之间产生大量的文档,极大地增加了工作量;二是由于开发模型是线性的用户只有等到整个过程的末期才能见到开发成果,从而卡增加了开发的风险;三是早期的错误可能要等到开发后期的测试阶段才能发现,进而带来严重后果。 2. 原型模型 原型模型的主要思想:先借用已有系统作为原型模型,通过“样品”不断改进, 使得最后的产品就是用户所需要的。原型模型通过向用户提供原型获取用户的反 馈,使开发出的软件能够真正反映用户的需求。 原型模型的特点:开发人员和用户在“原型”上达成一致。这样一来,可以减少设计中的错误和开发中的风险,也减少了对用户培训的时间,而提高了系统的实用、正确性以及用户的满意程度。缩短了开发周期,加快了工程进度。降低成本。 原型模型的缺点:当告诉用户,还必须重新生产该产品时,用户是很难接受的。 这往往给工程继续开展带来不利因素。不宜利用原型系统作为最终产品。 3. 螺旋模型 螺旋模型采用一种周期性的方法来进行系统开发。这会导致开发出众多的中间版 本。 螺旋模型的优点: 1)设计上的灵活性,可以在项目的各个阶段进行变更。 2)以小的分段来构建大型系统,使成本计算变得简单容易。 3)客户始终参与每个阶段的开发,保证了项目不偏离正确方向及项目的可控性。 4)随着项目推进,客户始终掌握项目的最新信息,从而他或她能够和管理层有效地交互。 5)客户认可这种公司内部的开发方式带来的良好的沟通和高质量的产品。

软件过程模型的优缺点对比

软件过程模型的比较 瀑布模型 瀑布模型(经典生命周期)提出了软件开发的系统化的、顺序的方法。其流程从用户需求规格说明开始,通过策划、建模、构建和部署的过程,最终提供一个完整的软件并提供持续的技术支持。 优点: 1. 强调开发的阶段性,各阶段具有顺序性和依赖性 2. 强调早期调研和需求分析,推迟编码实现的观点 3. 提供了一个摸板,这个摸板使得分析、设计、编码、测试和支持的方法可以在该摸板下有一个共同的指导 缺点: 1. 文档驱动,用户无法及时了解产品的情况 2. 依赖早期调研和需求分析,很难适应在许多项目开始阶段必然存在的不确定 性。 3. 流程单一,必须要完成前一阶段的任务,才能进行下一阶段,开发过程中的 成功经验无法用于本产品。 4. 测试在后期引入,对于系统存在的重大缺陷,如果在可执行程序评审之前没 有被发现,将可能造成重大损失。 5. 组织庞大,人员闲置。 适用范围:需求确定,工作能够采用线性的方式完成的软件。 增量过程模型 增量过程模型包括增量模型、RAD 模型。 (一)增量模型增量过程模型以迭代的方式运用瀑布模型,把软件产品作为一系列的增量构 件来设计、编码、集成和测试。每个构件由多个相互作用的模块构成,并且能够完成特定的功能。使用增量模型时,第一个增量往往是核心功能。 优点: 1.能在较短的时间内向用户提交可完成部分工作的产品。 2.逐步增加产品功能可以使用户有充裕的时间学习和适应新产品,从而减少一个全新的软件可能给客户组织带来的冲击。 3. 规避技术风险 4. 可并行开发构件,加快开发的进度 缺点:

1. 没有考虑软件的整体质量和长期的可维护性。 2. 大部分情况是不合适的操作算法被采用目的为了演示功能,不合适的开发工 具被采用仅仅为了它的方便,还有不合适的操作系统被选择等等。 3. 由于达不到质量要求产品可能被抛弃,而采用新的模型重新设计 适用范围:项目在既定的商业要求期限之前不可能找到足够的开发人员; (二)RAD 模型 RAD 模型是一种侧重于短暂的开发周期的增量软件过程模型,它是瀑布模型的“高速”变体,通过基于构建的构建方法实现快速开发。开发团队能够在非常短的时间内创造出“全功能系统” 优点: 1.开发速度快,质量有保证。 2.对信息系统特别有效。 缺点: 1. 对于大型的可伸缩的项目,RAD 需要大量的人力资源来创建多个相对的独立 的RAD 团队 2. 如果开发者和用户没有为短时间内急速完成整个系统做好准备,RAD 项目将 会失败。 3. 如果一个系统不能合理的模块化,RAD 构件建立会有很多问题。 4. 如果系统需求是高性能,并且需要通过调整构件接口的方式来提高性能,不 能采用RAD 模型 5. 技术风险很高的情况下 适用范围:1、不适合技术风险很高的开发,不适合系统需求是高性能,并且需要通过调整构件接口的方式来提高性能的产品开发。 2、适用于工期紧张,又可细分功能,还要有合适的构件 演化过程模型 演化过程模型包括原型开发,螺旋模型,协同开发模型。 (一)原型开发从需求收集开始,开发者和客户在一起定义软件的总体目标,标识已知的需 求并且规划出需要进一步定义的区域。然后是“快速设计”,它集中于软件中那些对客户可见的部分的表示,这将导致原型的创建,并由客户评估并进一步精化待开发软件的需求。逐步调整原型使其满足客户的需求,这个过程是迭代的。其流程从听取客户意见开始、随后是建造/修改原型、客户测试运行原型、然后回头往复循环直到客户对原型满意为止。由于这种模型可以让客户快速的感受到实际的系统(虽然这个系统不带有任何质量的保证),所以客户和开发者都比较喜欢这种过程模型(对于那些仅仅用来演示软件功能的公司而言或从来不考虑软件质

常见软件开发模型

常见软件开发模型 模型优点缺点 瀑布模型文档驱动系统可能不满足客户的需求 快速原型模型关注满足客户需求可能导致系统设计差、效率低,难于 维护 增量模型开发早期反馈及时,易于维护需要开放式体系结构,可能会设计差、 效率低 螺旋模型风险驱动风险分析人员需要有经验且经过充分 训练 瀑布模型(Waterfall Model ) 1970年Winston Royce 提岀了著名的“瀑布模型“,直到80年代早期,它一直是唯一被广泛采用的软件开发模型。 瀑布模型中,如图所示,将软件生命周期划分为制定计划、需求分析、软件设计、程序编写、

软件测试和运行维护等六个基本活动,并且规定了它们自上而下、相互衔接的固定次序,如 同瀑布流水,逐级下落。 在瀑布模型中,软件开发的各项活动严格按照线性方式进行,当前活动接受上一项活动的工作结果,实施完成所需的工作内容。当前活动的工作结果需要进行验证,如果验证通过,则该结果作为下一项活动的输入,继续进行下一项活动,否则返回修改。 瀑布模型强调文档的作用,并要求每个阶段都要仔细验证。但是,这种模型的线性过程太理想化,已不再适合现代的软件开发模式,几乎被业界抛弃,其主要问题在于: (1)各个阶段的划分完全固定,阶段之间产生大量的文档,极大地增加了工作量; (2)由于开发模型是线性的,用户只有等到整个过程的末期才能见到开发成果,开发的风 从而增加了险; (3)早期的错误可能要等到开发后期的测试阶段才能发现,进而带来严重的后果。 快速原型模型(Rapid Prototype Model ) 快速原型模型的第一步是建造一个快速原型,实现客户或未来的用户与系统的交互,用户或客户对原型进行评价,进一步细化待开发软件的需求。通过逐步调整原型使其满足客户的要求,开发人员可以确定客户的真正需求是什么; 第二步则在第一步的基础上开发客户满意的软件产品。 显然,快速原型方法可以克服瀑布模型的缺点,减少由于软件需求不明确带来的开发风险,具有显著的效果。快速 原型的关键在于尽可能快速地建造出软件原型,一旦确定了客户的真 正需求,所建造的原型将被丢弃。因此,原型系统的内部结构并不重要,重要的是必须迅速 建立原型,随之迅速修改原型,以反映客户的需求。

常用软件开发模型

常用软件开发模型比较分析 正如任何事物一样,软件也有其孕育、诞生、成长、成熟和衰亡的生存过程,一般称其为“软件生命周期”。软件生命周期一般分为6个阶段,即制定计划、需求分析、设计、编码、测试、运行和维护。软件开发的各个阶段之间的关系不可能是顺序且线性的,而应该是带有反馈的迭代过程。在软件工程中,这个复杂的过程用软件开发模型来描述和表示。 软件开发模型是跨越整个软件生存周期的系统开发、运行和维护所实施的全部工作和任务的结构框架,它给出了软件开发活动各阶段之间的关系。目前,常见的软件开发模型大致可分为如下3种类型。 ①以软件需求完全确定为前提的瀑布模型(Waterfall Model)。 ②在软件开发初始阶段只能提供基本需求时采用的渐进式开发模型,如螺旋模型(Spiral Model)。 ③以形式化开发方法为基础的变换模型(Transformational Model)。 本节将简单地比较并分析瀑布模型、螺旋模型和变换模型等软件开发模型。 1.2.1 瀑布模型 瀑布模型即生存周期模型,其核心思想是按工序将问题化简,将功能的实现与设计分开,便于分工协作,即采用结构化的分析与设计方法将逻辑实现与物理实现分开。瀑布模型将软件生命周期划分为软件计划、需求分析和定义、软件设计、软件实现、软件测试、软件运行和维护这6个阶段,规定了它们自上而下、相互衔接的固定次序,如同瀑布流水逐级下落。采用瀑布模型的软件过程如图1-3所示。 图1-3 采用瀑布模型的软件过程 瀑布模型是最早出现的软件开发模型,在软件工程中占有重要的地位,它提供了软件开发的基本框架。瀑布模型的本质是一次通过,即每个活动只执行一次,最后得到软件产品,

MDA模型驱动开发方法学

MDA模型驱动开发方法学 主讲:张文(Jevons)一、传统软件工程方法学 传统的软件开发方式有许多模型,瀑布模型是其中最典型也最受诟病的一种,为了描述一个软件的生命周期,我们暂时以这种模型来阐述一下软件开发的过程。 软件开发要经历可行性分析研究,需求分析,总体设计(概要设计),详细设计,集成和测试等过程。一个成熟的软件模型在这些环节都需要生成大量的文档,目前的很多CMMI工具能很好的管理好这些文档,比如将需求文档关联到后期的详细设计的过程或编码的过程等。由于这个过程的生命周期太长,导致了开发过程中发现的问题不能及时反映到模型中来(虽然某些工具能跟踪到需求的变化),这个传统的工作过程虽然在目前遇到了极大的挑战,所以目前非常流行所谓的敏捷开发,本人也非常崇尚这种开发方式,但从我的经验来看,敏捷开发应该更多的体现在小项目或大项目的子模块的开发。对于一个较大的项目而言,一定的设计和研讨还是必不可少的。但如何解决之前所提到的开发周期过长,错误反馈不到位的诟病呢? 我认为,在详细设计阶段,如果能有一个好的开发模型将能极大的解决这种问题,而MDA就是这么一个开发模型。 二、MDA的过程

MDA,全称叫模型驱动开发,顾名思义,开发是由模型来推动的,即开发之前需要建立良好的模型。 也许大家现在有了一定的概念了,因为大家在大大小小的开发时都会画一些uml图,建立一定的模型,然后一个软件的雏形就应运而生了。如果大家能做到这一步,恭喜你,说明你已经具备一定的设计能力了。但我也要反问你,在工作过程中,请问有哪次的模型是你自己觉得非常满意的,或者说是你的得意之作吧。面对这个简单问题,我想任何肯定回答都是牵强的,因为小的软件过程基本上不需要良好的设计,而大的软件过程,则很难做到良好的设计,如果没有一个良好的开发机制的话。 而MDA的开发方式则不一样,因为设计和编码可以融为一体,而且任何编码之前都是设计,任何设计都能生成编码,代码中也能访问到设计中的元数据定义,这就是MDA的神奇之处。 三、MDA的具体实施 金蝶的MDA方式建立在金蝶BOS的基础之上,BOS意思是Busingess Operation System,意思是业务定义系统,但远没那么牛,但在这个工具上实施MDA则是恰到好处。 一个典型的开发过程如下:首先定义实体,该实体具有一定的属性,而且从一定的父实体集成过来(如表单,基础数据等),这个实体也有一定的业务方法,在业务方法的定义中可以确定参数、返回值和异常,同时,可以在方法上定义EJB事务属性等。这些方法都可

(Model Base Design)基于模型的设计

什么叫基于模型的设计? 为什么要基于模型的设计? 基于模型的设计过程中,需要做什么事情? 再问几个小问题: 模型验证是否必要? 模型验证有哪些工作可以做? 模型验证是否一定需要被控对象模型? 代码生成效率如何? 底层驱动是否要建模? Embedded Coder(以前的RTW Embedded Coder)支持哪些芯片? MIL、SIL、PIL、HIL的目的和实现方式? 如何定点化? 如何做代码集成? 什么叫基于模型的设计? 这是一个很大的话题,因为本人能力所限,仅讨论使用Simulink模型开发嵌入式软件的设计过程。也就是说,我只能聊基于模型的嵌入式软件设计。 我的理解是,通过对算法建模进行软件设计的过程,都可以叫基于模型的设计。 当然,如果仅限于算法建模,把Simulink/Stateflow当做Visio使用,而不去进行其他环节的工作,这样的基于模型设计是不完整的,可能对你的开发效率不会有很大的提升。 如果想通过基于模型的设计提升软件开发团队的开发效率,提高软件品质,我觉得至少有如下几点可以考虑: 算法建模 算法模型的验证 文档自动化 代码生成 代码和模型的等效性验证。 传统的开发过程中,我们有一个环节,需求捕获,也即,从系统需求分解出软件需求。 在基于模型的设计过程中,我们同样可以通过分析系统需求,获得软件需求。 当然,根据系统需求的详细程度,我们可以考虑是否要写专门的软件需求。 在基于模型的软件设计中,我们主要关心的是系统的功能需求,或者说可以通过软件实现的功能需求。如果这部分需求在系统需求文档里已经有非常清楚的定义,那么我们可以以系统需求文档作为依据建立模型。 当然,如果系统需求不是足够清楚,那我们有必要编写专门的软件需求文档。 如果不考虑Simulink/Stateflow的应用上的问题,也就是说,如果我们都是熟练的Simulink/Stateflow用户,那么建模过程的主要工作是需求分析,通俗点讲,需求弄清楚了,建模也就是非常简单的事情了。 当然,建模的时候,要考虑未来的验证、实现以及后期维护的问题。 我个人的体会,这个阶段,不要着急建模,一定要先弄清需求,另外,建模的时候,模型架构非常重要。

基于TMS320DM642驱动模型的驱动程序开发

基于TMS320DM642驱动模型的驱动程序开发 武汉大学金朝辉 随着新技术不断涌现和DSP实时系统日趋复杂,不同类型的外部设备越来越多,为这些外部设备编写设备驱动程序已成为依赖操作系统管理硬件的内在要求。但是,由于内存引脚、响应时间和电源管理等条件的限制,为一个给定的DSP系统编写设备驱动程序有时会很困难。针对设备驱动程序开发者遇到的上述难题,TI公司为C64X系列DSP的开发者提供了一种"类/微型驱动模型(Class/Mini-driver Model)",该模型在功能上将设备驱动程序分为依赖硬件层和不依赖硬件层,两层之间使用通用接口。实践结果表明,采用类/微型驱动模型进行设计后,应用软件可以复用绝大部分相似设备的驱动程序,从而提高驱动程序的开发效率。 1 类/微型驱动模型简介 在类/微型驱动模型中,类驱动通常用于实现多线程I/O请求的序列化和同步功能;同时对设备实例进行管理。在包括视频系统I/O和异步I/O的典型实时系统中,只有少数的类驱动需要表示出外部设备的类型。 类驱动通过每个外部设备独有的微型驱动对该设备进行操作,微型驱动则通过控制外设的寄存器、内存和中断资源来实现对外部设备的控制,微型驱动程序必须将特定的外部设备有效地表示给类驱动。例如:视频显示设备存在一些不同的帧存,应用软件会根据不同的I/O操作进行帧存的分配,此时微型驱动必须映射视频显存,使得类驱动可对不连续的内存(分别存放RGB或YUV分量)设计特定的I/O请求,类/微型驱动模型允许发送由开发者定义数据结构的I/O请求包给微型驱动来控制外部设备,此分层结构使设备驱动的复用能力得到加强,并且丰富了发送给微型驱动I/O 请求包的结构。 类/微型驱动模型的结构如图1所示,上层应用程序并非直接控制微型驱动,而是使用一个或一个以上的类驱动对其进行控制。每个类驱动在应用程序代码中表现为一个API函数,并且通过微型驱动的接口IOM与微型驱动进行通信,类驱动使用DSP/BIOS的中的API函数来实现诸如同步等系统服务(DSP/BIOS是TI公司推出的一种实时操作系统,实际上它是一组可重复调用系统模块的ABI函数集合)。到目前为止DSP/BIOS共定义了3种类驱动:流输入输出管理模块(SIO/DIO)、管道管理模块(PIP/PIO)和通用输入输出模块(GIO)。在PIP/PIO和SIO/PIO类驱动中,调用的API函数已存在于DSP/BIOS的PIP和SIO模块中,这些API函数将参数传给相应的适配模块(Adapter),适配模块再与微型驱动交换数据。在GIO类驱动中,调用的API函数直接与微型驱动通信(需在CCS2.2以上)。

常用软件开发模型比较分析

1.2 常用软件开发模型比较分析 正如任何事物一样,软件也有其孕育、诞生、成长、成熟和衰亡的生存过程,一般称其为“软件生命周期”。软件生命周期一般分为6个阶段,即制定计划、需求分析、设计、编码、测试、运行和维护。软件开发的各个阶段之间的关系不可能是顺序且线性的,而应该是带有反馈的迭代过程。在软件工程中,这个复杂的过程用软件开发模型来描述和表示。 软件开发模型是跨越整个软件生存周期的系统开发、运行和维护所实施的全部工作和任务的结构框架,它给出了软件开发活动各阶段之间的关系。目前,常见的软件开发模型大致可分为如下3种类型。 ① 以软件需求完全确定为前提的瀑布模型(Waterfall Model)。 ② 在软件开发初始阶段只能提供基本需求时采用的渐进式开发模型,如螺旋模型(S piral Model)。 ③ 以形式化开发方法为基础的变换模型(Transformational Model)。 本节将简单地比较并分析瀑布模型、螺旋模型和变换模型等软件开发模型。 1.2.1 瀑布模型 瀑布模型即生存周期模型,其核心思想是按工序将问题化简,将功能的实现与设计分开,便于分工协作,即采用结构化的分析与设计方法将逻辑实现与物理实现分开。瀑布模型将软件生命周期划分为软件计划、需求分析和定义、软件设计、软件实现、软件测试、软件运行和维护这6个阶段,规定了它们自上而下、相互衔接的固定次序,如同瀑布流水逐级下落。采用瀑布模型的软件过程如图1-3所示。

空间维: 把MIS的实体(系统)划分为若干个子系统。按垂直方向如分解为战略决策与计划,管理控制和执行处理三个层次;再按水平方向分解,如划分为:生产管理,材料管理,财会管理等子系统。 常用方法: 把系统按空间维分成若干个子系统,分期开发子系统,子系统的开发再遵循时间维的分解,按开发工程分步骤开发。 1.2.2 螺旋模型 螺旋模型将瀑布和演化模型(Evolution Model)结合起来,它不仅体现了两个模型的优点,而且还强调了其他模型均忽略了的风险分析。这种模型的每一个周期都包括需求定义、风险分析、工程实现和评审4个阶段,由这4个阶段进行迭代。软件开发过程每迭代一次,软件开发又前进一个层次。采用螺旋模型的软件过程如图1-4所示。 图1-4 采用螺旋模型的软件过程 螺旋模型基本做法是在“瀑布模型”的每一个开发阶段前引入一个非常严格的风险识别、风险分析和风险控制,它把软件项目分解成一个个小项目。每个小项目都标识一个或多个主要风险,直到所有的主要风险因素都被确定。 螺旋模型强调风险分析,使得开发人员和用户对每个演化层出现的风险有所了解,继而做出应有的反应,因此特别适用于庞大、复杂并具有高风险的系统。对于这些系统,

基于软件复用的信息系统开发模型

收稿日期:2004206226;修返日期:2004208231 基于软件复用的信息系统开发模型 殷 磊,王润孝,王东勃 (西北工业大学制造自动化软件与信息研究所,陕西西安710072) 摘 要:在简要地介绍软件复用的概念和关键技术的基础上,结合领域工程、应用工程、组件化开发、原型开发方法以及面向对象开发方法等技术的优势,提出了一种基于软件复用的信息系统开发模型。关键词:软件复用;信息系统;开发模型 中图法分类号:TP311154 文献标识码:A 文章编号:100123695(2005)0820086203 I nfor mati on Syste m Devel opment Model Based on Soft w are Reuse YI N Lei,WANG Run 2xiao,WANG Dong 2bo (Institute of M anufacturing Auto m ation Soft w are &Infor m ation,N orthw estern Polytechnical U niversity,X i ’an Shanxi 710072,China ) Abstract:W ith the concep t and the key contents of s oft w are reuse t o intr oduce concisely,this paper p resents a inf or mati on syste m devel model based on s oft w are reuse with the advantages of domain engineering,app licati on engineering,com 2ponent 2based method,p r ot otype method and oriented 2object method .Key word:Soft w are Reuse;I nfor mati on Syste m;Devel opmentModel 1 软件复用 随着计算机应用领域的不断扩展,以及人们对利用计算机来解决各种问题的日益依赖,软件开发所需要解决问题的复杂程度急剧膨胀,系统的规模和复杂度也随之空前地扩大。软件的复杂性和其中包含的错误已经达到了开发人员无法控制的程度,这便是人们所说的软件危机。为了解决这个问题,人们提出了软件复用的方法。 所谓软件复用是指在软件开发活动中,利用已有的、可复用的软件成分来构造和生成新的软件系统。该软件成分可能是已有的软件成分,也可能是为复用而专门设计开发的可复用软件成分。可复用软件成分范围比较广泛,包括源代码、组件、需求分析结果、软件体系结构、设计方案、测试计划以及测试案例等。软件复用被认为是解决软件危机、提高软件生产率和软件质量、增强软件的开放性和对外部扰动的适应性的主要途径[1]。如今,软件复用技术已经发展成为软件工程的一个重要研究领域,人们对软件复用技术和方法进行了广泛、深入的研究,在复用技术上取得了一定的成果和成功的实践经验。 2 软件复用的关键技术 系统化软件复用有两个基本问题:①必须有可以复用的对象;②复用者需要知道如何去使用被复用的对象。因此软件复用包括两个相关的过程:面向复用的开发(Devel opment for Re 2 use )和使用复用进行开发(Devel opment with Reuse )[2] 。面向 复用的开发生成可复用的软件资产,包括软件组件、需求规范以及开发文档,即可复用的对象。这一生成可复用对象的过程可以是软件生产者从已经存在的应用系统中提取,也可以是由软件生产者重新进行设计开发。使用复用进行开发是利用已存在的可复用对象进行应用系统的开发。 实现系统化软件复用的关键技术主要包括:面向对象技术 (O riented Object Technol ogy )、软件组件技术(Soft w are Compo 2nent Technol ogy )、领域工程(Domain Engineering )、应用工程(App licati on Engineering )、软件体系结构(Soft w are A rchitec 2ture )、设计模式(Design Patterns )、软件再工程(Soft w are Ree 2ngineering )、开放系统(Open Syste m )、软件过程(Soft w are Pr ocess )、C ASE (Computer A ided Soft w are Engineering )技术以及 各种非技术因素等[2]。 211 领域工程 领域工程[3]是针对一个应用领域中的若干系统进行分析,建立基本能力和必备基础,并识别这些系统共享的领域需求,设计出能够满足这些需求的构架,并在此基础上开发和组织该领域的可复用构件的过程,它覆盖了建立可复用软件构件的所有活动。可复用软件构件的含义比较广泛,它包括了领域内所有可复用的软件成分。 领域工程包括领域分析、领域设计以及领域实现等三个主要的步骤,其中,领域分析是实施领域工程的关键步骤,也是人们研究的重点。领域分析输出的产品为领域模型。领域模型用于收集、组织和表示领域中所有可复用的信息,其目的是帮助用户了解问题域,并明确领域中可以复用的软件资产。图1显示了领域分析的输入和输出 。 ?68?计算机应用研究 2005年

软件开发过程规范

软件开发过程规范 版本 <1.0> 修订历史纪录

目录 1.前言 (3) 1.1 目的 (3) 1.2 对象 (3) 1.3 要求 (3) 1.4 适用范围 (3) 1.5 软件开发过程模型 (3) 1.6 开发过程划分 (3) 2.技术过程规范部分 (3) 2.1 概述 (3) 2.2 业务建模阶段 (4) 2.3 需求阶段 (5) 2.4 分析设计阶段 (6) 2.5 实现阶段 (7) 3.管理过程规范部分 (7) 3.1 概述 (7) 3.2 接受项目 (8) 3.3 重新评估项目范围和风险(对于较大项目) (8) 3.4 制定开发计划 (8) 3.5 迭代开发管理 (9) 3.6 监控项目的实施 (9) 3.7 结束项目 (10)

软件开发过程规范 1. 前言 1.1 目的 本规范的目的是使整个软件产品开发及项目工程阶段清晰,要求明确,任务具体,便于规范化、系统化及工程化。有利于提高软件生命周期的控制及管理,提高所开发软件的质量,缩短开发时间,减少开发和维护费用,使软件开发活动更科学、更有成效。 1.2 对象 本规范面向产品生命周期的所有相关人员,包括管理人员、开发人员、质管人员。 1.3 要求 具有软件开发管理职能的人员要求熟知项目开发的各阶段过程和各阶段过程相应的规范。 1.4 适用范围 适用于产品开发生命周期中的除产品提交外的其他全部过程;规范分为两部分:技术过程规范和管理过程规范,分别适用于软件开发过程中的技术性活动和管理性活动。 1.5 软件开发过程模型 本规范所采用的软件开发过程模型为简化的RUP开发过程模型;软件开发过程是体系结构为中心,用例驱动和风险驱动相结合的过程迭代。 1.6 开发过程划分 开发过程包括多次迭代,每次迭代的目标和侧重点不同;较早的迭代侧重于业务建模和需求建模;而后的迭代则侧重于分析设计和编码。 2. 技术过程规范部分 2.1 概述 本规范中将软件开发的整个技术过程分为四个顺序实施的阶段,分别为业务建模阶段、需求阶段、分析设计阶段和实现阶段。在对技术过程规范的描述,按阶段内部的活动和产物对四个阶段分别说明。 在本规范中对阶段内活动的说明,是按顺序性活动和持续性活动两类分别进行说明。对于顺序性活动是按该阶段中活动的总体顺序进行的描述,而在实际工作中,从各活动的具体实施的细节来看,各活动之间的顺序是不断交叉变化的。对于持续性活动主要是对贯穿该阶段过程始终的技术活动进行说明。

相关主题
文本预览
相关文档 最新文档