当前位置:文档之家› 工程文档-eRAN6.1_LTE_电调天线配置指导书-V1.0-20131009

工程文档-eRAN6.1_LTE_电调天线配置指导书-V1.0-20131009

工程文档-eRAN6.1_LTE_电调天线配置指导书-V1.0-20131009
工程文档-eRAN6.1_LTE_电调天线配置指导书-V1.0-20131009

电调天线配置指导书

(仅供内部使用)

For internal use only

华为技术有限公司Huawei Technologies Co., Ltd.

版权所有侵权必究

All rights reserved

修订记录Revision record

缩略语表

目录Table of Contents

1概述 (5)

2安装场景 (6)

2.1常规安装场景 (6)

2.1.1每扇区使用1根双极化天线,使用多芯线方式,即RRU+RCU (6)

2.1.2每扇区使用1根双极化天线,使用OOK方式,即RRU/RFU+SBT+RCU (7)

2.2级联安装场景 (7)

2.2.1每扇区使用4端口双极化天线,使用多芯线方式,即RRU+RCU (7)

2.2.2每扇区使用4端口双极化天线,使用OOK方式,即RRU/RFU+SBT+RCU (8)

3配置前准备 (8)

3.1天线配置数据获取 (8)

3.2电调天线记录表获取 (9)

3.2.1外置RCU (9)

3.2.2内置RCU (9)

3.3配置流程 (11)

4配置过程 (11)

4.1打开供电开关 (11)

4.2查询供电状态 (14)

4.3扫描RET (14)

4.4添加RET (15)

4.4.1常规安装 (15)

4.4.2级联安装 (15)

4.5加载天线配置数据 (16)

4.6配置电调天线与扇区、RRU端口的对应关系 (17)

4.6.1常规安装场景 (17)

4.6.2级联安装场景 (18)

4.7校准天线 (20)

4.8查询电调天线子单元动态信息 (20)

4.9设置天线下倾角 (21)

4.10查询RET 天线下倾角 (21)

5其他电调天线命令 (22)

5.1加载RET 天线软件 (22)

5.2查询RET 天线版本信息 (22)

5.3复位RET 天线 (22)

5.4查询RET 天线配置 (22)

5.5查询RET 天线下倾角范围 (23)

5.6删除RET 天线 (23)

6FAQ (23)

6.1如何从序列号上区分天线是内置RCU还是外置RCU (23)

1 概述

电调天线RET(Remote Electrical Tilt)由天线和远端控制单元RCU(Remote Control Unit)组成,电调天线之所以可以实现连续可调的电下倾,关键是在天线内部使用了可机械调节的多路移向器,该器件为一路输入,多路输出,通过机械传动机构可以同时改变输出各路信号的相位。然后通过远端控制单元RCU进行远端控制。RCU由驱动马达、控制电路与传动机构构成。驱动马达一般采用数控的步进马达,控制电路的主要功能是与控制器通信并控制驱动马达,驱动结构主要包括一个齿轮,该齿轮可以与传动杆咬合,齿轮在马达驱动下转动时,就可以拉动传动杆,从而改变天线的下倾角。

电调天线的原理图:

RET天线分为外置RCU的RET天线和内置RCU的RET天线。内置RCU的RET天线是指RCU已经安装到天线上,和天线共用一个外罩。

2 安装场景

外置RCU和内置RCU的RET天线都支持两种安装场景,分别是常规安装场(REGULAR)和级联安装场景(DAISY_CHAIN)。

2.1 常规安装场景

常规安装场景是指一个扇区只安装一个单频双极化天线,连接1个RCU使用。场景以外置RCU 为例,如果是内置RCU的电调天线,则不需在外面连接RCU。

2.1.1每扇区使用1根双极化天线,使用多芯线方式,即RRU+RCU

2.1.2每扇区使用1根双极化天线,使用OOK方式,即RRU/RFU+SBT+RCU

2.2 级联安装场景

2.2.1每扇区使用4端口双极化天线,使用多芯线方式,即RRU+RCU

2.2.2每扇区使用4端口双极化天线,使用OOK方式,即RRU/RFU+SBT+RCU

3 配置前准备

3.1 天线配置数据获取

外置RCU需要加载天线配置数据,内置RCU不需加载天线配置数据。

以安捷信天线配置数据为例:

配置数据bin 文件的命名方式为:HA-天线Model-天线端口频率-配置数据格式的版本

(版本).bin

示例:天线ADU451807 的配置数据文件命名为:HA-ADU451807-790-C(01).bin

说明:由于配置时需要加载天线的配置数据,因此在安装前必须获取天线生产厂商、型号、端口频率等信息。华为安捷信天线配置数据获取方式如下,其他厂商的天线配置数据由该厂商提供。

安捷信天线配置数据可以登陆https://www.doczj.com/doc/b418984058.html,/support/网站获取,获取路径为“无线->天馈->基站天线->产品文档->天线配置数据”,下载文件后,可以在文件中根据天线型号查找到对应天线的配置数据。

如果仅有天线的编码未获取到型号,可通过编码在PDM查询获取天线型号。

3.2 电调天线记录表获取

3.2.1外置RCU

RCU序列号记录表附在随RCU设备发货的《RCU安装指南》中,如下图所示。由设备安装人员填写完成后提供给网管人员,用于获取天线端口与RCU序列号、RRU端口号的对应关系,添加RET天线时使用。

说明:记录表中的信息必须包含RCU序列号、站点名称、站点编号和扇区编号,天线端口号(单频天线可选)和RRU端口号。

3.2.2内置RCU

内置RCU的序列号记录在随内置RET天线设备发货的《天线安装记录表》中,如下图所示。由设备安装人员填写完成后提供给网管人员,用于获取天线端口与RCU序列号、RRU端口号的对应关系,添加RET天线时使用。

说明:记录表中的信息必须包含RCU序列号、站点名称、站点编号和扇区编号,天线端口号和RRU端口号。注意:

1)本节仅针对华为安捷信的电调天线,其他电调天线的信息记录表和记录方式可能会不一致。

2)如果记录表中的扇区编号与基站实际配置的编号的方式不一致,配置前请将记录表中扇区编号与基站配置的扇区号一一对应。比如记录表扇区编号为A,基站配置扇区号为0,那

么扇区A就代表扇区0。

3.3 配置流程

4 配置过程

4.1 打开供电开关

如果RCU直接安装在RRU的RET口,使用“MOD RETPORT”命令打开RET天线的供电开关,设置电流告警门限。

如果RCU通过TMA或SBT连接到RRU,使用“MOD ANTENNAPORT”命令打开RET天线的供电开关,设置电流告警门限。

参数说明:

柜号、框号、槽号:用于表示具体的RRU柜框槽号

端口号:该参数表示RRU上的RET端口。

ALD供电开关状态:该参数表示ALD供电开关状态。在该端口需要为ALD设备供电的情况下,需要将ALD供电开关设置为“ON”。

参数说明:

端口号:该参数表示RRU上天线端口的编号。

ALD供电开关状态:该参数表示ALD供电开关状态。在该端口需要为ALD设备供电的情况下,需要将ALD供电开关设置为“ON”。

注意:

FDD:两个射频端口的RRU或RFU,仅R0A可以对RCU进行控制,所以安装时只能用R0A连接SBT,并将SBT与RCU连接,打开供电开关时只打开R0A端口(如果同时打开了R0B供电开关,开关会自动关闭并上报“射频单元ALD电流异常告警”且具体问题为“过流保护”,需要关闭R0B供电开关恢复告警)。四个射

频端口的RRU或RFU,一般仅R0A和R0B可以对RCU进行控制(具体参考产品特性文档ALD管理中的描述),但是四个射频端口的RRU或RFU连接RCU一般配置为RCU级联场景,所以安装时只要用R0A连接SBT,并将SBT与RCU连接,打开供电开关时只打开R0A端口即可。

TDD:TDD部分RRU端口用数字标识,两端口RRU标识为ANT0、ANT1,ANT0对应R0A,ANT1对应R0B,ANT0控制电调,所以配置时与FDD一致配置在R0A端口上。四端口ANT0~3一次对应R0A~D,ANT0控制电调(具体参考产品特性文档ALD管理中的描述)。

说明:

1.在操作过程中,由于RCU校准过程中电流会增大,因此电流告警门限类型推荐使用“UER_SELF_DEFINE(用户自定义类型)”,根据实际使用RCU级数手动设置电流告警门限,避免选择其余自动设置类型导致校准时基站过流保护。电流告警门限请根据下表中

的电流告警门限配置中推荐值设置。

2. RRU/RFU的天线端口和RET端口的供电开关不能同时设置为“ON”,否则系统返回“执行失败”。

外置RCU的RET天线电流告警门限:

备注:

1.表中数据是以华为安捷信RCU为例,供参考;

2.此告警门限表适用于单个RCU依次校准情况。

4.2 查询供电状态

查询电源开关的状态,观察ALD供电开关实际状态。

说明:该步骤查询R0A端口的ALD供电开关的状态为打开,如观察到R0A端口的ALD供电开关为关闭,请排查硬件连接或电流告警门限设置是否合理。

4.3 扫描RET

确认电源开关打开后,执行电调天线的扫描命令获取电调天线的基本信息(扫描到的RET 天线为物理上连接到基站上的设备,与是否配置无关),以便增加电调天线的时候使用。

其中,设备厂商编码和设备序列号在添加RET时需要填写。

4.4 添加RET

4.4.1常规安装

说明:设备厂家编码和设备序列号填写4.3中扫描得到的值。

4.4.2级联安装

如4.3扫描到的设备厂家编码和设备序列号如下:

级联安装时配置:

注意:添加RET时填写的设备序列号和用SCN ALD扫描出来的控制端柜框槽号必须一致,否则则会添加失败,在DSP RET中无法正常查询出设备序列号。

4.5 加载天线配置数据

如果是内置RCU的RET 天线不需要执行该步骤,因为内置RCU的RET天线已加载了对应天线的配置数据。

如果是外置RCU的RET天线需要执行该步骤。

参数说明:

操作类型:操作类型表示加载天线设备软件命令的操作类型。例如,按基站操作指加载该基站下的所有天线设备的天线配置数据。取值范围:

SUBUNIT(按照电调天线子单元操作):按天线设备编号和子单元编号进行操作CTRLPORT(按照控制端口操作):按天线设备控制端RRU/RFU的柜框槽号进行操作SECTOR(按扇区操作):按扇区编号进行操作

SITE(按照整个基站操作):按整个基站进行操作

请根据实际操作正确填写不同操作类型所需的参数值。

天线设备编号:该参数表示RET设备编号。

子单元编号:单天线默认为1

源文件:该参数表示源文件在FTP服务器上的全路径名称。如果不填路径,默认为FTP服务器设置的缺省路径。天线配置数据获取参见3.1。

备注:配置文件必须与电调匹配,否则可能会出现问题。

加载完成后,在操作信息输出区可以查看到执行结果是“执行成功”;若加载失败,根

据输出区返回的消息内容查看失败原因,重新加载RET天线配置数据。

4.6 配置电调天线与扇区、RRU端口的对应关系

4.6.1常规安装场景

适用场景参见2.1.1和2.1.2。

1)获取电调天线设备编号与控制端柜框槽号

2)获取RET天线控制端RRU对应的扇区号和天线通道号

说明:

天线通道号是指扇区天线在RRU上的通道编号,即RRU的端口号。

LST SECTOR必须指定扇区编号才会显示扇区天线配置信息,所以可以将三个扇区的信息全部查询出来后再进行对应。

3)根据1)和2)对应到的信息填写天线子单元信息。

4.6.2级联安装场景

参见场景2.2.1和2.2.2。

1)获取电调天线设备编号与控制端柜框槽号

2)获取RET天线控制端RRU对应的扇区号和天线端口号(RRU端口号)

说明:

天线通道号是指扇区天线在RRU上的通道编号,即RRU的端口号。

LST SECTOR必须指定扇区编号才会显示扇区天线配置信息,所以可以将三个扇区的信息全部查询出来后再进行对应。

3)根据电调天线记录表信息或者天线端口与RRU端口连接规范获取天线端口与RRU端口的对应关系。

假设0号RET天线对应RRU端口R0A和R0C,1号RET天线对应RRU端口R0B和R0D。

本文档没有描述扇区间RCU级联的场景,如果扇区间级联,则RCU对应的扇区号也是通过天馈安装记录表来获取的。

说明:如果是CDMA和LTE合路后共馈线共天线场景,CDMA侧原来没有电调天线,在LTE 侧配置并管理电调天线,此时,MOD RETSUBUNIT只配置和LTE侧连接端口的对应关系,和CDMA侧的连接端口的对应关系需要做好记录,建议在电调天线设备名称上增加CDMA 侧对应关系的描述便于维护。其它CDMA和LTE共天线场景参见站点解决方案CL共天线电调维护原则部分的描述。

4.7 校准天线

如果是内置RCU的RET天线不需要执行该步骤,因为内置RCU的RET天线出厂前

已完成校准。如果是外置RCU的RET天线需要执行该步骤。

校准的目的是确保能够正确设置RET天线下倾角,保证天线实际下倾角与设置的一致。校准一个RET 天线的时间需要花费2~4 分钟,校准过程中不能对当前设备进行其他操作。

4.8 查询电调天线子单元动态信息

查询电调天线与扇区的对应关系

《模糊控制》实验指导书

《模糊控制》实验指导书李士勇沈毅周荻邱华洲袁丽英 实验名称: 实验地点: 指导教师: 联系电话: Harbin Institute of Technology 2005.3

模糊控制实验指导书 一、 实验目的 利用Matlab 软件实现模糊控制系统仿真实验,了解模糊控制的查询表方法和在线推理方法的基本原理及实现过程,并比较模糊控制和传统PID 控制的性能的差异。 二、 实验要求 设计一个二维模糊控制器分别控制一个一阶被控对象1 1 )(11+=s T s G 和二阶被控对象) 1)(1(1 )(212++= s T s T s G 。先用模糊控制器进行控制,然后改变控制对 象参数的大小,观察模糊控制的鲁棒性。为了进行对比,再设计PID 控制器,同样改变控制对象参数的大小,观察PID 控制的鲁棒性。也可以用其他语言编制模糊控制仿真程序。 三、 实验内容 (一)查询表式模糊控制器实验设计 查询表法是模糊控制中的最基本的方法,用这种方法实现模糊控制决策过程最终转化为一个根据模糊控制系统的误差和误差变化(模糊量)来查询控制量(模糊量)的方法。本实验利用了Matlab 仿真模块——直接查询表(Direct look-up table )模块(在Simulink 下的Functions and Tables 模块下去查找),将模糊控制表中的数据输入给 Direct look-up table ,如图1所示。设定采样时间(例如选用0.01s ),在仿真中,通过逐步调整误差量化因子Ke ,误差变化的量化因子Kec 以及控制量比例因子Ku 的大小,来提高和改善模糊控制器的性能。

京信天线资料

天线产品单页资料 (电信集采版) 说明:本册为中国电信集采类产品单页资料,并仅限用于电信客户的集采产品订货。主要根据《2010年中国电信基站天线及室分天线集采》制定。 天馈事业部天线国内市场部 2010年10月

目录 一、全向天线 (1) 型号:OOA-360V11A (1) 二、定向单极化天线 (2) 型号:ODP-065V17A (2) 型号:ODP-065V18A (3) 型号:ODP-090V17A (4) 三、定向双极化天线 (5) 型号:ODP-032R18A (5) 型号:ODP-032R21A (6) 型号:ODP-065R15A (7) 型号:ODP-065R17A (8) 型号:ODP-065R18A (9) 型号:ODP-090R17A (10) 四、双极化电调天线 (11) 型号:ODV-032R18A (11) 型号:ODV-032R20A (12) 型号:ODV-065R15A (13) 型号:ODV-065R17A (14) 型号:ODV-065R18A (15) 型号:ODV-090R17A (16)

一、全向天线 型号:OOA-360V11A 产品描述:CDMA800/360°11dBi全向天线 电气性能指标 工作频率(MHz)820-880 天线增益(dBi)11±1 极化方式垂直极化水平面波瓣宽度(°)360 垂直面波瓣宽度(°) 6.5±2 方向图不圆度(dB)±1 电下倾角(°) 3 下倾精度(°) ±1 驻波比≤1.4三阶交调(dBm)≤-107 阻抗(Ω)50 功率容量(W)500 机械性能指标 天线尺寸(mm)3510×Ф52 重量(Kg)12.5 接头类型7/16阴头 环境温度(°C)-55~+70 抗风能力工作风速110km/h,极限风速 200km/h 雷电保护直接接地 方向图 820~880 MHz方向图 水平面垂直面

2G电调系列天线

电调系列天线 摩比天线技术(深圳)有限公司 目录 800MHz电调天线 MB800-65-15.5DE14 ....................................... 错误!未定义书签。MB800-65-17DE14 ......................................... 错误!未定义书签。MB800-65-18DE14 ......................................... 错误!未定义书签。 900MHz电调天线 MB900-65-16.5DE14 ....................................... 错误!未定义书签。MB900-65-17DE14 ......................................... 错误!未定义书签。MB900-65-18DE14 ......................................... 错误!未定义书签。 800&900MHz电调天线 MB800/900-65-15.5DE14 ................................... 错误!未定义书签。MB800/900-65-17DE14 ..................................... 错误!未定义书签。MB800/900-65-18DE14 ..................................... 错误!未定义书签。 1800MHz电调天线 MB1800-65-15DE10 ........................................ 错误!未定义书签。MB1800-65-17DE10 ........................................ 错误!未定义书签。MB1800-65-18DE10 ........................................ 错误!未定义书签。 3G宽频电调天线 MB3F-65-15DE10 .......................................... 错误!未定义书签。MB3F-65-17DE10(不能提供)................................ 错误!未定义书签。MB3F-65-18DE10 .......................................... 错误!未定义书签。MB3F-65-20DE6(不能提供)................................. 错误!未定义书签。 双频双极化电调天线 MB900/1800-65-14/17DE14/10 .............................. 错误!未定义书签。MB900/1800-65-17/18DE14/10 .............................. 错误!未定义书签。M B B880000--6655--1155..55D D E E1144 M 倾角设置可以通过手动调节或者外加驱动器等装置遥控调节

智能控制实验指导书

智能控制理论及应用 (实验指导书) 实验一模糊控制的理论基础实验 实验目的: 学习隶属函数编程;模糊矩阵合成运算编程;模糊推理运算编程。 1隶属函数编程 学习P39 例2-12 (以下为例程) 完成思考题P80 2-2 写出W及V两个模糊集的隶属函数,并绘出“非常老,很老,比较老,有点老”的四个隶属度函数仿真后的曲线。 %Membership function for old People clear all; close all; for k=1:1:1001 x(k)=(k-1)*0.10; if x(k)>=0&x(k)<50 y(k)=0; else y(k)=1/(1+(1/((x(k)-50)/5)^2)); end end plot(x,y,'k'); xlabel('X Years');ylabel('Degree of membership'); 2 模糊矩阵合成仿真程序 学习P31例2-10,仿真程序如下。 完成思考题P81 2-5,并对比手算结果。 clear all; close all; A=[0.2,0.8; 0.6,0.1]; B=[0.5,0.7; 0.1,0]; %Compound of A and B for i=1:2 for j=1:2 AB(i,j)=max(min(A(i,:),B(:,j)')) end end

3 模糊推理仿真程序 学习P47 例2-16,仿真程序如下。 完成思考题2-9,并对比手算结果。 clear all close all a=[1;0.5] b=[0.1;0.5;1] c=[0.2;1] for i=1:2 for j=1:3 ab(i,j)=min(a(i),b(j));%求出D end end t1=[]; for i=1:2 t1=[t1;ab(i,:)']; end %准备好DT; for i=1:6 for j=1:2 r(i,j)=min(t1(i),c(j)); end end %求出R a1=[0.8;0.1] b1=[0.5;0.2;0] for i=1:2 for j=1:3 ab1(i,j)=min(a1(i),b1(j)); %求出D1 end end t2=[]; for i=1:2 t2=[t2;ab1(i,:)']; end for i=1:6 for j=1:2 d(i,j)=min(t2(i),r(i,j)); c1(j)=max(d(:,j)); end end

智能控制技术实验报告

《智能控制技术》实验报告书 学院: 专业: 学号: 姓名:

实验一:模糊控制与传统PID控制的性能比较 一、实验目的 通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。 二、实验内容 本实验主要是设计一个典型环节的传统PID控制器以及模糊控制器,并对他们的控制性能进行比较。主要涉及自控原理、计算机仿真、智能控制、模糊控制等知识。 通常的工业过程可以等效成二阶系统加上一些典型的非线性环节,如死区、饱和、纯延迟等。这里,我们假设系统为:H(s)=20e0.02s/(1.6s2+4.4s+1) 控制执行机构具有0.07的死区和0.7的饱和区,取样时间间隔T=0.01。 设计系统的模糊控制,并与传统的PID控制的性能进行比较。 三、实验原理、方法和手段 1.实验原理: 1)对典型二阶环节,根据传统PID控制,设计PID控制器,选择合适的PID 控制器参数k p、k i、k d; 2)根据模糊控制规则,编写模糊控制器。 2.实验方法和手段: 1)在PID控制仿真中,经过仔细选择,我们取k p=5,k i=0.1,k d=0.001; 2)在模糊控制仿真中,我们取k e=60,k i=0.01,k d=2.5,k u=0.8; 3)模糊控制器的输出为:u= k u×fuzzy(k e×e, k d×e’)-k i×∫edt 其中积分项用于消除控制系统的稳态误差。 4)模糊控制规则如表1-1所示: 在MATLAB程序中,Nd用于表示系统的纯延迟(Nd=t d/T),umin用于表示控制的死区电平,umax用于表示饱和电平。当Nd=0时,表示系统不存在纯延迟。 5)根据上述给定内容,编写PID控制器、模糊控制器的MATLAB仿真程序,

华为微波天线调测指导书

天线调测指导书 (仅供内部使用) 拟制:邢子彬日期:2009-03-30 审核:日期:yyyy/mm/dd 审核:日期:yyyy/mm/dd 批准:日期:yyyy/mm/dd 华为技术有限公司 版权所有侵权必究

修订记录

天线调测指导书 关键词:天线、主瓣、旁瓣、接收电平 摘要:介绍了天线主瓣与旁瓣相关知识,以及单极化天线和双极化天线的调整方法。 缩略语清单: 一、主瓣和旁瓣 在对调天线前,需掌握天线主瓣和旁瓣的相关知识。 1、主瓣和旁瓣的定义 天线辐射的电场强度在空间各点的分布是不一样的,我们可以用天线方位图来表示。通常取其水平和垂直两个切面,故有水平方向图和垂直方向图,如图1所示为垂直方向图。方向图中有许多波瓣,最大辐射方向的波瓣叫主瓣,其它波瓣叫旁瓣,旁瓣中可以影响对调天线的是第一旁瓣。 图1 主瓣和旁瓣 2、定位主瓣

微波天线的主瓣宽度很窄,通常在0.6~3.7度之间,例如:一个1.2m的天线(工作频率为23 GHz),信号电平从主瓣信号峰值衰减到零只有0.9度的方位角。所以在定位主瓣的时候,一旦检测到信号,则只需要对天线做微调即可。 在对调天线扫描过主瓣的时候,信号电平要经历一个快速变化的过程,通过比较接收到的信号峰值可以确定天线主瓣是否对准,通常情况下主瓣信号峰值比第一旁瓣的信号峰值高20~25dB。当两端天线同时收到对端的主瓣信号,如果两个信号强度差在2dB以内,属于允许范围。 如图2是天线在自由空间传播模型的正面图,旁瓣围绕在以主瓣为圆心的周围成放射状传播。 图2 天线水平方向图 3、扫描路径 在不同的俯仰角(方位角)上扫描信号时,扫描到的旁瓣信号有时被误认为主瓣信号。如图3是天线水平方向上的辐射模型,天线在三种不同仰角位置扫描到的信号电平值: 图3 三种扫描路径

过程控制系统实验指导书

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

电调天线查询和设置_R3.0_20140814

1 动态管理 动态管理实现网元或者小区闭塞、网元单板复位、电调天线倾角查询和设置、小区功率查询等操作,这些操作与其它网元制式的操作过程差不多,不再进行一一描述,本节只介绍一些常用的功能。 动态管理具体操作过程为:选择网元->选择操作功能->操作实施 1. 选择网元 注:可通过错误!未找到引用源。节实现操作站点的筛选。 2. 选择操作功能

3. 操作实施,点击功能界面的运行即可,注意有些操作是针对多个对象的,要注意具体操作对象的选择,特别是非查询类的操 作要防止操作了错误的对象导致影响网络运行。如下图,默认是查询基站下面的所有小区,实际操作时只选择需要查询的小区即可。

1.1 电调天线查询和设置 只有实际安装了 选择好网元后,在选择操作功能时,在过滤框输入“RET”,可实现REG相关功能的过滤,如下图: 与调天线相关的三个功能为: 1. RET校准:实现RET电机的调试,由工程开通调试人员或者用服人员进行操作,据用服的兄弟反馈此功能作用性不大。 2. 查询RET掩角:即查询电调天线下倾角,要求在进行下倾角调整前,都必须先进行查询,以获取现网使用的下倾角,再在 这个基础上进行调整。

3. RET设置掩角:即设置电调天线下倾角,注意是每次直接设置需要的角度,不是设置调整角度;比如,某个RET原来是4 度,要增加3度,则直接设置为7度。 注意很有可能是一个RRU对应的天线有多个电机,在调整小区的下倾角时,必须把同一个RRU的多个电机一起调整。如下面的小区RRU有多个电机: 具体天线的电机数量,与天线的类型相关,以后台查询为准。以笔者的经验来看,对于4R的小区,就可能会有两个电机;一般2R的小区,只有1个电机。 有时候,可能会发现虽然选择某些基站,但无法进行RET掩角的查询和设置,这是因为小区RET电机未安装、电机工作不正常或者小区非RET天线导致的。 1.1.1 查询RET掩角 操作简单,选择好需要查询的小区,点击“运行”,即会出现查询结果:

电调天线控制系统

目录 一、系统概述 (2) 1.1 系统描述 (2) 1.2 电调天线的手动调节 (2) 1.3 电调天线的本地控制 (3) 1.4 电调天线的远程控制 (3) 二、附件介绍 (4) 2.1 驱动器MBRET-RCU-A (4) 2.2 手持控制器MBRET-CCU-A (4) 2.3 台式控制器MBRET-CCU-B (5) 2.4 控制信号避雷器MBLPD-AISG-C01 (5) 2.5 控制电缆MBRET-CXXX (6) 三、系统组件 (7)

远程电调天线控制系统简介 一、 系统概述 1.1 系统描述 本公司生产的电调天线采用组件配置模式,当不接驱动器时,装上手动调节杆即成为手调天线,这适用于一些天线安装位置不高,易维护且对自动化程序要求不高的场合。当天线安装位置较高,不易维护,但调节机会较少且对成本要求苛刻的场合,我们提供手持式的天线控制器,通过它,维护人员可以对多个基站的天线进行独立控制。同样,对于调节比较频繁的场合,我们提供机架安装方式的电调天线控制器,它可以通过RS232接口、USB 与PC 机相连,完成电调天线的本地控制或者通过以太网络进行远程控制。 所有的控制器提供12V 4A 或24V 2A 的直流驱动电源,驱动器的连接数量取决于驱动器的功耗及电缆的损耗。 1.2 电调天线的手动调节 本公司的所有电调天线均采用组件配置模式,在安装位置低,维护方便,调节机会少的一些地方,可以只选择手动电调天线,将天线手动调节到所需要的角度,然后用自带的锁紧螺母固定即可。 天线1 天线2 天线3 RCU3 RCU2 RCU1

图1 天线的本地控制 1.3 电调天线的本地控制 电调天线可以通过手持控制器(MBRET-CCU-A)或台式控制器(MBRET-CCU-B)实现本地控制。当采用手持控制器来控制电调天线时,手持控制器可以由维护人员随身携带。当采用PC机时,可以通过台式控制器的RS232接口控制。当采用笔记本电脑对天线进行调试时,还可以通过控制器的USB接口实现通信(目前大部分笔记本已经取消了串口,USB接口较常用)。台式控制器完成PC机与天线驱动器之间的协议转换,然后将指令发至驱动器执行,其系统框图如图1所示。 1.4 电调天线的远程控制 对于调节比较频繁,自动化要求较高的场合,可以采用机架安装方式的台式控制器。机架式的天线控制器提供了一个PPP串口和一个网口,通过PPP串口接一个MODEM可以实现远程无线连接。通过以太网接入内部网络可以实现局域网网内控制或INTERNET远程控制。图2是通过MODEM和INTERNET网络的电调天线控制示意图。 MBRET-CCU-B USB RS-232 PSTN 公共电话网 MBRET-CCU-B MODEM 电话线 电话线 MODEM RS-232 HTTP 网管中心交换机 电话线 MODEM RS-232 电话线 MODEM RS-232 HTTP HTTP MBRET-CCU-B MBRET-CCU-B RS-232

动环监控系统FSU现场安装调测指导

中国铁塔-运维监控系统FSU调测指导书 中国铁塔股份有限公司 2015年4月

修改历史

目录 1.概述 (5) 2.调测开通流程 (5) 3.准备工作 (5) 3.1资源信息配置 (5) 3.1.1站址信息 (6) 3.1.2铁塔信息 (7) 3.1.3机房信息 (8) 3.1.4FSU信息 (9) 3.1.5蓄电池 (10) 3.1.6开关电源 (13) 3.1.7空调 (14) 3.1.8摄像头 (15) 3.1.9红外 (16) 3.1.10烟感 (17) 3.1.11温感 (17) 3.1.12水浸 (18) 3.1.13门磁* (19) 3.1.14智能电表 (20) 3.2导出设备编码清单 (20) 4.入网调测申请流程 (22) 4.1提交测试申请 (22) 4.2提交测试报告 (23) 4.3专家组审核 (25) 4.4IT中心复核 (26) 5.现场调测指导 (29) 5.1开关电源测试指导 (29) 5.1.1电池熔丝故障告警 (29) 5.1.2电池充电过流告警 (30) 5.1.3电池温度过高告警 (30) 5.1.4电池供电告警 (31) 5.1.5直流输出电压过低告警 (31) 5.1.6直流输出电压过高告警 (32) 5.1.7交流输入电压过高告警 (32) 5.1.8交流输入电压过低告警 (32) 5.1.9交流输入停电告警 (33)

中国铁塔动环监控系统FSU入网操作指引 5.1.10交流输入缺相告警 (33) 5.1.11监控模块故障告警 (34) 5.1.12防雷器故障告警 (36) 5.1.13整流模块故障告警 (36) 5.1.14整流模块通信状态告警 (36) 5.1.15开关电源遥测信号 (37) 5.1.16均充控制 (38) 5.1.17浮充电压设定 (38) 5.1.18直流输出电压过低设定 (39) 5.1.19直流输出电压过高设定 (40) 5.2蓄电池组测试指导 (41) 5.2.1电池组中点电压不平衡 (41) 5.2.2蓄电池组遥测信号 (41) 5.3空调测试指导 (42) 5.3.1工作异常告警 (42) 5.3.2回风温度遥测 (43) 5.3.3远程开关机(遥控) (44) 5.3.4运行温度设定(遥调) (45) 5.4智能交流电表测试指导 (46) 5.4.1交流输入停电告警 (46) 5.4.2交流电表遥测信号 (47) 5.5门禁系统测试指导 (48) 5.5.1门磁开关状态告警 (48) 5.5.2远程开门 (49) 5.6机房环境测试指导 (50) 5.6.1水浸告警 (50) 5.6.2烟雾告警 (51) 5.6.3红外告警 (52) 5.6.4环境温湿度遥信(温度、湿度告警) (53) 5.6.5环境温湿度遥测 (53) 5.7监控设备测试指导 (54) 5.7.1空调通信中断告警 (54) 5.7.2开关电源中断告警 (56) 5.7.3智能电表通信中断告警 (56) 5.7.4智能门禁通信中断告警 (57)

沈阳SCARA机器人实验指导书

SCARA机器人实验指导书哈尔滨科利达智能控制技术有限公司

SCAR/教学机器人简介 KLD—400教学机器人有3个旋转关节,其轴线相互平 行,在平面内进行定位和定向。另一个关节是移动关节,用于完 成末端件在垂直平面的运动。手腕参考点的位置由两旋转关节的 角位移①1和①2,及移动关节的位移Z决定的,即P= f(①1,①2, Z), SCARA教学机器人为平面关节型机器人,本机器人采用 伺服电机和步进电机驱动,控制简单,编程方便, KLD—400 教学机器人是专为满足高等院校机电一体化、自动控制等专业 进行机电及控制课程教学实验需要和相关工业机器人应用培训 需要而最新开发的四自由度机器人,它是一个多输入多输出的动 力学复杂系统,是进行控制系统设计的理想平台;它具有高度的 能动性和灵活性,具有广阔的可达空间,是进行运动规划和编程系统设计的理想对象。除教学和培训外,KLD—400还可用于细小零件的搬运和电子元件的装配等工业作业。 系统特点 ?机构采用平面关节型(SCAR)结构,按工业标准要求设计,速度快、柔性好; ?采用交流伺服电机和谐波减速器等,模块化结构,简单、紧凑,完全满足实验的要求; ; ?控制系统采用Windows系列操作系统,二次开发方便、快捷,适于教学实验 ?提供通用机器人语言编程系统,可通过图形示教自动生成机器人语言等程序; ?提供实验教材,内容涵盖机器人运动学、动力学、控制系统的设计、机器人轨迹规划等。用户可以从中选择相关内容满足不同层次的教学实验需要。 ?性价比高;适于在高等院校大范围推广。 系统配置 ?硬件平台:KLD—400系列伺服运动控制器和微机平台(PC用户自备,带 ISA插槽) ?软件平台:1)Windows操作系统;2)KLD—400机器人图形示教软件 技术参数 结构形式平面关节式(SCARAB) 负载能力1kg 运动精度(脉冲当量/转)关节112800 关节212800 关节3800pulse/mm 关节41600 未端重复定位精度± 0.1mm 每轴最大运动范围关节10~270° 关节20~200° 关节30~60mm 关节40~345°

京信通信电调天线使用指南

连续电调板状天线使用说明书 京信通信系统(广州)有限公司 2006年2月

目录 1电调天线系统的连接 (3) 1.1 电调天线系统概述 (3) 1.2 电调天线系统的连接方式 (3) 1.2.1直接使用多芯电缆连接室外控制单元RCU; (3) 1.2.2通过Bias-Tee连接RCU; (4) 1.2.3通过内嵌馈电器Bias-Tee的塔顶放大器TMA连接RCU (5) 1.3室外控制单元RCU的安装 (5) 1.4电调天线系统的通信方式 (6) 1.4.1RS-232接口 (6) 1.4.2以太网接口 (6) 1.4.3无线数传接口 (7) 1.5中心控制单元IP地址的配置 (7) 1.5.1IP地址配置步骤 (7) 2OMT本地调测软件的安装及使用 (9) 2.1 OMT软件概述 (9) 2.2 软件运行环境 (10) 2.3 软件安装 (10) 2.4 软件使用说明 (11) 2.4.1 软件启动 (11) 2.4.2 使用说明 (12)

1 电调天线系统的连接 1.1 电调天线系统概述 京信电调天线系统包括:CCU(中心控制单元)、RCU(室外控制单元)、Bias-Tee(馈电器)、内嵌Bias-Tee的TMA(塔顶放大器)和多芯电缆,整个系统符合AISG标准。中心控制单元通过RS-232串口、以太网或无线MODEM等通信接口与本地调测软件或网管软件连接,组成了控制软件系统。整个电调天线系统的组成可以有三种连接方式: 1) 直接使用多芯电缆连接室外控制单元RCU; 2) 通过馈电器Bias-Tee连接室外控制单元RCU; 3) 通过内嵌馈电器Bias-Tee的塔顶放大器TMA连接RCU。 1.2 电调天线系统的连接方式 整个电调天线系统有三种连接方式: 1.2.1 直接使用多芯电缆连接室外控制单元RCU; 网 管 中 心

基站设备安装检查指导规范

中国通信建设第四工程局江苏分公司 基站设备安装现场检查指导规范 一、铁件安装: 1、室内走线架的地面支柱安装应垂直稳固,允许垂直偏差为 1.5?,加 固凹钢与墙柱(无墙柱时与墙壁)固定,不得与天花板、板墙固定,并符合抗震要求; 2、同一方向的立柱应在同一条直线上,当立柱妨碍设备安装时,可适当 移动位置; 3、走线架、凹钢加固点或支撑点距离在1.5-2米;走线架横档面向上安 装,水平凹形钢应成凹型安装。走线架应平直,无明显扭曲、歪斜、破皮、生锈。走线架侧旁支撑、终端加固角钢的安装应牢固、端正、平直; 4、室内走线架与墙壁或机柜列应保持平行,每米允许水平偏差为2mm; 5、对于机房为彩钢板房时,宜采用木螺丝使凹形钢和彩钢板房连接; 6、走线架连接时,应保证可靠的电气连,保护接地应符合设计文件要求, 室内走线架不得与室外走线架有电气连接;机房内走线架接地必须使用毛刺垫片安装,且相邻走线架用短连线连通,接地垫片应在铜鼻子和走线架中间,接地线可放在走线架内侧,保证电气连通。

二、机架安装: 机架的安装位置应符合工程设计平面图要求,如机架的安装位置如需要变更,必须征得设计和建设单位的同意,并办理设计变更手续; 1、落地机架安装 (1)落地机架固定方式应结合机房特点和抗震要求,采用底脚安装固定方式或者底座安装固定方式,机架走线槽、顶盖和防鼠网应全部安 装。当机架顶部须开出线孔时,开孔边缘不得有毛刺; (2)落地机架需采用M8或以上膨胀螺丝固定在地基上或机墩上,同时需进行机架顶部加固; (3)落地机架两侧应垂直地面,机架水平误差应小于2mm,允许垂直偏差小于3mm; (4)设备安装具体操作应根据设备厂家的安装操作手册要求,设备应单独接地,接地线径符合设计要求,防静电手环要正确安装; (5)落地机架前后门应安装且开、关顺畅,机架各部件油漆不应有脱落或碰伤,不得变形,接地线连接牢固可靠; (6)落地机架里面不应有多余的螺钉等杂物; 2、壁挂机架安装 (1)壁挂机架安装应结合机房特点和抗震要求,采用固定于墙上的挂架,并用M8或以上膨胀螺丝将挂架牢固固定于墙壁或其它附着物上; (2)设备安装具体操作应根据设备厂家的安装操作手册要求,设备应单独接地,接地线径符合设计要求,防静电手环要正确安装;

自动化过程控制实验指导书

一、过程控制仪表认识实验 一、实验目的 1、熟悉装置的具体结构、明确各部件的作用。 2、掌握常用传感器的工作原理及使用方法。 二、实验内容 1、水箱 本装置包括上水箱、中水箱、下水箱和储水箱,上、中、下三个水箱都有三个槽,分别是缓冲槽、工作槽和溢流槽。实验时,水流首先进入缓冲槽(可减小水流对工作槽的冲击),当缓冲槽中注满水时,水流便溢出到工作槽。 整个装置的管道都采用铝塑管,以防止阀门生锈。 打开储水箱后的小球阀可排出水箱中的水,另外还可排出空气,以防抽不上水。 2、微型锅炉、纯滞后系统、热电阻 本装置采用锅炉进行温度实验,锅炉用不锈钢材料制作,共有四层,从内向外依次是加热层、冷却层、溢流层和纯滞后管道层(盘管长达20米)。 热电阻为Pt100,三线制工作。 温度变送器内部已有内置电源,不能再接外加电源。 系统用2Kw的加热丝进行加热,并采用可控硅移相触发模块(移相触发角与输入电流成正比),本模块输入为4—20mA的标准电流,输出为380V的交流电。 3、液位传感器 本装置采用扩散硅压力变送器(不锈钢隔离膜片),标准二线制进行传输,因此工作时需要串接24V电源。 压力变送器通电15分钟后,方可调整零点和量程。使用的原则是:没通电,不加压;先卸压,再断电。 零点调整:在水箱液位为零时,调整输出电流表的读数为4mA。 满量程调整:在水箱加满水时,调整输出电流表的读数为20mA。

调整的原则是:先调零点,再调满量程,要反复多次调整(满量程调整后会影响零点)。 4、电动调节阀 采用德国PS公司生产的PSL 202型智能电动调节阀。调节阀由220V50HZ电源供电。工作环境温度为-20—70摄氏度,输入信号为4—20mA的控制信号,输出信号为4—20mA 的阀位信号。 5、变频器 采用日本三菱FR-S520变频器,内控为0—50HZ,外控为4—20mA,可通过控制屏上的双掷开关进行切换。 内控:上电时,EXT灯先亮,开关打到内控,Run灯亮,开始内控变频控制水泵。 外控:开关打到外控,按PU/EXT键,使EXT灯亮,按Run运行,按Stop停运。 内外控切换时,要注意按键和开关配合使用。 6、水泵 采用丹麦格兰富水泵,扬程高达10米,噪音很低。 7、流量计 流量计由流量传感器和转换器组成。 采用LDS-10S型电磁流量传感器,其流量为0—0.3立方米/秒,压力为1.6Mpa,4—20mA 标准输出,可与显示、记录仪表、积算器配套,避免了涡轮流量计非线性与死区大的缺点。 转换器采用LDZ-4型电磁流量转换器。 它为内置电源。 8、调节器 采用上海万迅公司的AI全通用人工智能调节器。708型为模糊控制器,818型为PID 控制器。 输入为1、2端子,输入为1—5V。 输出为7、8端子,输出为4—20mA。 主要功能是:接受反馈信号Vi,与给定Vs进行比较,得到偏差,并对偏差进行PID连续运算,通过改变PID参数,可改变控制作用。

远程实现内置RCU排气管天线电子下倾角调整实践

解决内置RCU排气管天线无法远程电调实践 随着网络不断建设发展,城区无线覆盖场景的不断变化,日常网优工作中需要不断进行天线RF参数的优化调整,而传统内置RCU排气管天线无法进行远程调整、安装位置较为险峻、现场调整效率低、日常代维进站困难等问题日益突出。宿州无线中心网优人员针对该问题进行了探索研究,摸索出远程实现内置RCU排气管电子下倾角调整的技术方案。 关键字:内置RCU 排气管天线电调调整 【故障现象】 排气管天线常用于城区天面资源较为紧张、站址协调困难、需要美化隐蔽等一些无线场景。天线安装的位置大多位于建筑物较为陡峭的位置,如下图示: 天线下倾角调整需要网优人员现场利用手持设备连接天线调整,不仅效率低而且面临业务阻挠、登临天面存在较大风险的问题。本文所列的天线型号为京信双频2T4R ODV2-065R18K-G 排气管天线,如下图示:

【原因分析】 一、常见电调天线及相关模块简介 二、外置RCU天线电子倾角调整方式简介 宿州华为设备外置RCU天线电子倾角调整方式:天线2对振子分别对应2个外置RCU,2个RCU通过控制线串接后接到设备侧远端(RRU)的RET接口。天线电下倾角调节过程如下: 1)M2000下发控制命令给BBU 2)BBU转发控制信号给RRU 3)RRU将控制命令转变为RS485信号,再通过RS485控制接口由多芯电缆发给天线电调RCU 4)天线电调RCU接到RS485信号后,执行相应的命令,从而实现天线倾角的调整

外置RCU天线电调连线图示: 三、内置RCU排气管天线下倾角调整方式 传统电倾角调整方式:人工携带手持电调设备CCU,通过手持CCU控制接口引出控制电缆连接到电调天线下RCU控制接口,实现电调控制。连线示意图如下: 手持电调设备CCU操作示意图如下:

LTE弱覆盖处理指导书v1.1

LTE弱覆盖处理指导书 一、弱覆盖问题分析流程 (一)覆盖优化整体原则 原则1:先排除站点故障,并检查天馈信息,网络参数 原则2:先优化RSRP,后优化RS SINR 原则3:覆盖优化的两大关键任务:消除弱覆盖;净化切换带、控制重叠覆盖。原则4:优先优化弱覆盖、越区覆盖,再优化重叠覆盖。 原则5:优先调整天线下倾角、方位角,再是调整RS的发射功率,最后考虑天线挂高和站点搬迁及加站。 (二)弱覆盖问题的定义 弱覆盖小区:有效覆盖采样点(小于-110dBm)占整体采样点比例低于设定的目标值。 MR弱覆盖采样点占比=主小区电平(RSRP<-110dbm)采样点/总采样点 注:目前宏站为小区RSRP小于-110dBm采样点大于20%;室分为RSRP小于-110dBm 采样点大于10%。 (三)弱覆盖原因分类 站点问题:站点故障导致出现暂时覆盖空洞引起弱覆盖;站点位置不合理(阻挡/过高/过低/过远),无法有效覆盖目标区域。 覆盖空洞:问题区域无站点主控而周边站点由于距离过远或者信号阻挡等原因无法有效覆盖,导致出现区域弱覆盖。 天馈问题:天线方位角及下倾角设置不合理,无法有效覆盖目标区域。 参数问题:功率参数、切换参数、重选参数及邻区配置若存在不合理的情况,均可能导致弱覆盖问题的产生

(四)常规分析流程 问题点分析流程如下: 步骤1、通过后台人员提取的后台数据核查覆盖弱覆盖区域的站点是否存在断站和告警问题,如有则优先处理。 步骤2、结合复勘报告与谷歌地图核查站点天线是否覆盖问题点区域,天线方位角与下倾角是否合理,如不合理则进行方位角与下倾角调整。 步骤3、若周边临近第一层站点无法更好的覆盖问题点,则考虑调整第二层站点进行信号覆盖。特别注意是在不影响高业务、高用户区域或者主干道路的情况下,适当调整天线方位角或者下倾角来改善问题。 步骤4、通过天线调整无法改善弱覆盖问题,则可酌情考虑增加站点小区参考信号发射功率来改善问题。同时结合KPI指标以及路测数据分析,核查问题点周边站点的切换参数和切换关系是否合理,如不合理则进行相应调整优化。判定方法为UE占用主服小区信号强度偏弱(低于切换门限-105dBm),邻区信号信号电平高于-105dBm,且满足切换条件,UE迟迟不发生切换,则可判定为切换不及时或者邻区缺失,切换不及时可通过调整切换偏置参数OFF与切换迟滞参数HYS来改善;信令中不断上报A3事件,引起切换失败与掉线问题,则基本判断为邻区关

京信天线资料.doc

京信天线资料 天线产品单页资料(电信集采版)说明:本册为中国电信集采类产品单页资料,并仅限用于电信客户的集采产品订货。 主要根据《中国电信基站天线及室分天线集采》制定。 天馈事业部天线国内市场部10月目录一、全向天线1型号:OOA-360V11A1二、定向单极化天线2型号:ODP-065V17A2型号:ODP-065V18A3型号:ODP-090V17A4三、定向双极化天线5型号:ODP-032R18A5型号:ODP-032R21A6型号:ODP-065R15A7型号:ODP-065R17A8型号:ODP-065R18A9型号:ODP-090R17A10四、双极化电调天线11型号:ODV-032R18A11型号:ODV-032R20A12型号:ODV-065R15A13型号:ODV-065R17A14型号:ODV-065R18A15型号:ODV-090R17A16天线产品技术单页一、全向天线型号:OOA-360V11A产品描述:CDMA800/360°11dBi全向天线电气性能指标工作频率(MHz)820-880天线增益(dBi)11±1极化方式垂直极化水平面波瓣宽度(°)360垂直面波瓣宽度(°)6.5±2方向图不圆度(dB)±1电下倾角(°)3下倾精度(°)±1驻波比≤1.4三阶交调(dBm)≤-107阻抗(Ω)50功率容量(W)500机械性能指标天线尺寸(mm)3510×Ф52重量(Kg)12.5接头类型7/16阴头环境温度(°C)-55~+70抗风能力工作风速110km/h,极限风速200km/h雷电保护直接接地方向图820~880MHz方向图水平面垂直面二、定向单极化天线型号:ODP-065V17A产品

第三卷-天线技术规范书(电调)

天线设备 检验检测明细 目录 一、总则 (1) 二、规范性引用文件 (6) 三、质量管理与保障体系 (6)

四、天线主要技术指标及要求 (7) 五、供货及验收 (35) 六、产品质量抽检 (36) 七、售后服务 (37) 八、技术资料和技术培训 (38)

本技术规范书是中国联合网络通信有限公司就向其提供基站用电调天线设备的投标人提出的技术要求,作为投标人制定技术应答书的依据。 一、总则 1.对于本规范书提出的有关要求,投标人应在技术应答书中逐项答复, 应答要求为“满足并优于”、“满足”、“不满足”。对于相关技术参数指标等内容,投标人应在性能要求表格中每一项指标下方的空格内做逐项应答,说明能否满足要求,并填写具体数值,要求以产品标称值应答,应答用蓝色粗体字,并填写附表一、点对点应答偏离表,同时应在投标文件中提供相应的测试报告或其他证明文件资料。 2.对于本规范书中未能提出的系统性能指标和不合理的功能配臵,投 标人应在建议书中加以补充说明,并提供有关详细资料。 3.投标人应根据招标项目的要求提出完整的设备配备,如有缺漏,由 投标人免费补足。 4.天线使用经验 为本项目提供的天线类型必须是经过工程实际使用、同时必须是为两个以上电信运营商提供一年以上满意服务的天线类型。 5.投标方应如实、准确填写下表(表1和表2),招标方保留核实的权 力。 表1:2008-2009年(对中国联通)电调天线供货记录

表2:2008-2009年(对其它电信运营商)电调天线供货记录 6.本技术规范书根据投标人的应答,经完善后将作为商务合同的附件之一。 7.采购清单 表3:电调天线采购清单

智能建筑控制设计实验指导书-Alerton-自主

ALERTON楼宇自控实验 一、实验目的 本实验为学生综合课程设计的一部分,在熟悉美国Honeywell楼宇自控系统软硬件的基础上,完成一次回风空调系统楼宇自控系统的初步方案设计,并在ALERTON楼宇自控实验平台上,完成一次回风空调系统楼控系统的软件设计调试。 通过实验,了解楼宇自控系统软硬件系统的构成,掌握建筑设备(特别是空调系统)的控制原理,掌握楼宇自控系统设计的一般方法。 一、实验装置: ALERTON楼宇自控实验平台:ALERTON实验展板为控制系统,并与局域网相连,实验室的每台计算机均为工作站,监控系统的运行状况。 (一)BACtalk楼宇自控系统简介 BACtalk楼宇自控系统是一个“Native BACnet”系统,具备先进性,开放性和标准化特性。是一套先进、可靠和完善的楼宇监控系统,可以收集、记录、保存和管理各系统中重要信息及数据,从而达到自动化管理和节约能源的效果。下面分别对ALERTON/BACtalk的软硬件系统进行介绍。 BACtalk系统网络结构图 1. BACtalk的硬件系统 BACtalk系统采用分布式结构,分散控制,集中管理。它是由管理层、系统集成层、现场控制器层、传感器/执行器层所构成的一种智能化控制网络。 (1)管理层 操作站设置在主控室及其它重要场所,是楼宇自控系统与操作人员的人机界面,由个人电脑、彩色显示器、鼠标、键盘及打印机等组成。操作人员通过互联网浏览器可以进行BACTalk系统操作,存取或更改系统内的资料及设定数据。其中的网络包括以太网和控制器网。 ①以太网:通信协议为BACnet/IP。以太网通讯路由器支持BACnet/IP协议RJ45通讯口及 10Mbyte速度,并连接主控制器网,负责其间路由功能,可和其它路由器及BACtalk Server

电调天线基本步骤、指令

1、 LST RET 查询是否存在电调天线 若没有查到相应结果,无电调天线,不能电调。 2、若有单元动态信息且开工状态,可用;实际倾角有值,可直接调整: ⑴MOD RETSUBUNIT 设置下倾角; DSP RETSUBUNIT 查询默认20 ⑵MOD BFANT 设置权值;(与倾角值相同)(F频需要,D频不需要) 3、有单元动态信息开工状态不可用;实际倾角 NULL,则进行下一步,开启天线端口 (1)MOD ANTENNAPORT F频段: MOD ANTENNAPORT:CN=0,SRN=60,SN=0,PN=R0A,PWRSWITCH=ON,THRESHOLDTYPE=UER_SE LF_DEFINE,UOTHD=10,UCTHD=15,OOTHD=400,OCTHD=360; MOD ANTENNAPORT:CN=0,SRN=61,SN=0,PN=R0A,PWRSWITCH=ON,THRESHOLDTYPE=UER_SE LF_DEFINE,UOTHD=10,UCTHD=15,OOTHD=400,OCTHD=360; MOD ANTENNAPORT:CN=0,SRN=62,SN=0,PN=R0A,PWRSWITCH=ON,THRESHOLDTYPE=UER_SE LF_DEFINE,UOTHD=10,UCTHD=15,OOTHD=400,OCTHD=360; D频段: MOD ANTENNAPORT:CN=0,SRN=200,SN=0,PN=R0A,PWRSWITCH=ON,THRESHOLDTYPE=UER_S ELF_DEFINE,UOTHD=10,UCTHD=15,OOTHD=400,OCTHD=360; MOD ANTENNAPORT:CN=0,SRN=201,SN=0,PN=R0A,PWRSWITCH=ON,THRESHOLDTYPE=UER_S ELF_DEFINE,UOTHD=10,UCTHD=15,OOTHD=400,OCTHD=360; MOD ANTENNAPORT:CN=0,SRN=202,SN=0,PN=R0A,PWRSWITCH=ON,THRESHOLDTYPE=UER_S ELF_DEFINE,UOTHD=10,UCTHD=15,OOTHD=400,OCTHD=360; (2)查询 DSP ANTENNAPORT(若无电流,打不开,不能电调) (3)打开天线端口有电流:SCN ALD:扫描天线设备柜框槽序列号 (4)MOD RET 设备编号 0 1 2 添加天线1、2、3 单天线双极化级联安装 序列号:对应柜框槽m 单天线 D频段是y结尾 F频段是b结尾 设备编号与本地小区标识,必须一致 (若没加天线)ADD RET (5)CLB RET 校准天线按照子单元

相关主题
文本预览
相关文档 最新文档