当前位置:文档之家› $超导磁体失超传播与失超保护研究

$超导磁体失超传播与失超保护研究

$超导磁体失超传播与失超保护研究
$超导磁体失超传播与失超保护研究

超导磁体

4.9 超导磁体 4.9.1 概述 磁体系统是谱议的关键部件之一,它提供高强度和一定均匀度的恒定磁场,供主漂移室测量带电粒子的径迹,用以研究基本粒子间的相互作用和规律。超导磁体利用轭铁提供磁场回路。 根据BESIII 物理工作的需要,要求主漂移室有高的动量分辨率,但主漂移室的动量分辨率主要由室内物质的多次库仑散射决定,此时改进室的空间分辨率和测量次数(增加灵敏丝的层数)以改进测量统计性都不能改进动量分辨率,而增加磁场强度可以达到这一目的。但另一方面,如果磁场强度过高,更多的低能量粒子会陷在漂移室内打圈而很难测量。综合各种因素,选择北京谱仪磁铁的中心磁场设计值为1.0T 。 为避免在粒子径迹拟合时做过多的离线计算机校正,要求径迹区内磁场不均匀度较小。但由于线圈工艺复杂,体积宏大,加工生产中必然会产生不圆度。另外由于各子探测器电子学的需要,轭铁上电缆孔很多,参照BESII 的情况,目前仍将不均匀度指标定在≤5%。基于主漂移室IV 动量分辨率的要求,磁场测量精度应≤0.1%。 4.9.2 超导磁体设计 4.9.2.1 磁体基本参数设计及计算 根据北京谱仪BESIII 的物理要求,参照国际上同类磁体的设计进经验,确定采用单层线圈结构,间接冷却方式,超导电缆采用基于纯铝稳定体的设计。根据总体和内部子探测器的尺寸要求,初步确定磁体外形尺寸长度为4.91m ,内直径为2.75m ,外直径为3.4m ,线圈的长度为3.52m ,线圈中心直径为2.95m 。 若取线圈电流I 为3000A ,nI B 00μ=,其中T B 10=,可得1m 长的线圈匝数为n ≈266匝,超导电缆沿线圈轴向方向的厚度为3.7mm ,考虑到匝间的绝缘层的厚度后,线圈总匝数为921匝。考虑到线圈绕制时,由于超导电缆的连接会减少线圈的有效匝数,现将工作电流定为3150A 。 线圈的储能l D B l S B V B H E ???=??? =?=42121)21(2 0202πμμ = 9.5兆焦耳。从 n D B n S B ??=??=Φ42π=6063.6韦伯,dt dI L dt d =Φ,I L Φ =得出电感L = 2.1亨利。 考虑到在发生失超时,线圈吸收全部储能,最大温升控制在70K 以下,从超导电缆的焓差,可以确定超导电缆沿线圈径向方向的高度尺寸为20mm 。 超导线圈通电后,会产生很大的径向扩张力,需要设计一个支撑圆筒来箍住线圈,支撑筒必须是无磁材料,具有良好的焊接性能和机械强度。国外一般采

高温超导储能系统

高温超导储能系统 一、什么是超导储能系统? 超导储能系统(Superconducting Magnetic Energy Storage, SMES)是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其它负载的一种电力设施,一般由超导线圈、低温容器、制冷装置、变流装置和测控系统部件组成。 超导储能系统可用于调节电力系统峰谷(例如在电网运行处于其低谷时把多余的电能储存起来,而在电网运行处于高峰时,将储存的电能送回电网),也可用于降低甚至消除电网的低频功率振荡从而改善电网的电压和频率特性,同时还可用于无功和功率因素的调节以改善电力系统的稳定性。超导储能系统具有一系列其它储能技术无法比拟的优越性: (1)超导储能系统可长期无损耗地储存能量,其转换效率超过90%; (2)超导储能系统可通过采用电力电子器件的变流技术实现与电网的连接,响应速度快(毫秒级); (3)由于其储能量与功率调制系统的容量可独立地在大范围内选取,因此可将超导储能系统建成所需的大功率和大能量系统; (4)超导储能系统除了真空和制冷系统外没有转动部分,使用寿命长; (5)超导储能系统在建造时不受地点限制,维护简单、污染小。 目前,超导储能系统的研究开发已经成为国际上在超导电力技术研究开发方面的一个竞相研究的热点,一些主要发达国家(例如美国、日本、德国等)在超导储能系统的研究开发方面投入了大量的人力和物力,推动着超导储能系统的实用化进程和产业化步伐。 二、开发超导储能系统的必要性 由于电力系统的“电能存取”这一环节非常薄弱,使得电力系统在运行和管理过程中的灵活性和有效性受到极大限制;同时,电能在“发、输、供、用”运行过程中必须在时空两方面都达到“瞬态平衡”,如果出现局部失衡就会引起电能质量问题(闪变),瞬态激烈失衡还会带来灾难性电力事故,并引起电力系统的解列和大面积停电事故。要保障电网安全、经济和可靠运行,就必须在电力系统的关键环节点上建立强有力的电能存取单元(储能系统)对系统给与支撑。基于以上因素,电能存取技术越来越受到各国能源部门和电力部门的重视。 超导储能系统由于其存储的是电磁能,这就保证超导储能系统能够非常迅速

[液位,磁体,低温]超导磁体低温液位监测单元的设计与实现

超导磁体低温液位监测单元的设计与实现 引言 超导磁体相对于常规磁体而言,具有励磁线圈电流密度大、电流稳定性高、功耗小、体积小和运转费用低等优点,可满足用户对磁场高强度、高均匀度和高稳定度等性能的要求,在科学研究、医疗诊断、交通运输和电力系统等领域有着广阔的应用前景,其中采用了超导磁体的核磁共振(NMR)谱仪和磁共振成像(MRI)仪更是发展形成了一个产值巨大的市场.随着国民经济和科教医卫事业的迅速发展,我国对超导 NMR 和 MRI仪器设备的需求也在飞速增长,但是这些仪器设备的核心技术与制造基本上控制在少数发达国家手中,为了打破国外的技术垄断并满足国内市场的巨大需求,我国科研机构目前正在积极开展超导仪器设备的自主创新研制. 1 液氦和液氮的液位测量原理 1.1 液氦液位的测量原理 液氦的测量使用电阻式传感器,其测量原理如图 1 所示.使用一根铌钛超导丝制成的液位传感器插入液氦中,其中I+端和I-端连接电流源的正负极,V+端和V-端输出超导丝的电压.测量时,浸没在液氦中的那部分超导丝呈超导态,电阻为 0;而液面之上的超导丝由于加热电阻的作用呈正常态.通过测量传感器的电阻变化量,即可检测液氦液面的变化. 1.2 液氮液位的测量原理 液氮的测量使用电容式液位传感器,其测量原理如图 2 所示,电容传感器由两个同轴不锈钢管构成,中间使用聚四氟乙烯绝缘材料固定两个管子的位置,外管的管壁上开有若干流通孔,使液氮能在电容传感器中自由流入或流出.由于空气和液氮的介电常数不同,当液位变化时,传感器的电容量也相应变化,可以检测出液位的变化. 2 液位监测单元的硬件设计 2.1 硬件整体设计 液位监测单元的硬件整体架构如图 3 所示,液位监测单元硬件电路主要由模拟信号处理电路和以 STM32ARM 微控制器为核心的控制系统组成. 2.2 压控电流源的设计 为了适应不同规格的电阻传感器对电流源的需求,由微控制器所产生的PWM 输出经过光耦合器的隔离耦合以及比较器的缓冲后,再经过低通滤波后输出一个直流电压以控制电流源. 2.3 电压-频率转换电路

超导磁储能系统(SMES)及其在电力系统中的应用

高温超导磁储能系统及在电力系统中的应用 一、超导磁储能基本原理 1、什么是超导磁储能系统? 超导储能系统(Superconducting Magnetic Energy Storage, SMES)是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其它负载的一种电力设施,一般由超导线圈、低温容器、制冷装臵、变流装臵和测控系统部件组成。 超导储能系统可用于调节电力系统峰谷(例如在电网运行处于其低谷时把多余的电能储存起来,而在电网运行处于高峰时,将储存的电能送回电网),也可用于降低甚至消除电网的低频功率振荡从而改善电网的电压和频率特性,同时还可用于无功和功率因素的调节以改善电力系统的稳定性。超导储能系统具有一系列其它储能技术无法比拟的优越性: (1)超导储能系统可长期无损耗地储存能量,其转换效率超过90%; (2)超导储能系统可通过采用电力电子器件的变流技术实现与电网的连接,响应速度快(毫秒级); (3)由于其储能量与功率调制系统的容量可独立地在大范围内选取,因此可将超导储能系统建成所需的大功率和大能量系统; (4)超导储能系统除了真空和制冷系统外没有转动部分,使用寿命长; (5)超导储能系统在建造时不受地点限制,维护简单、污染小。 目前,超导储能系统的研究开发已经成为国际上在超导电力技术研究开发方面的一个竞相研究的热点,一些主要发达国家(例如美国、日本、德国等)在超导储能系统的研究开发方面投入了大量的人力和物力,推动着超导储能系统的实用化进程和产业化步伐。 2、储能工作原理 SMES在电力系统中的应用首先是由Ferrier在1969年提出的。最初的设想是将超导储能用于调节电力系统的日负荷曲线。但随着研究的深入,人们逐渐认识到调节现代大型电力系统的日负荷曲线需要庞大的线圈,在技术和经济上存在着困难。现在,SMES在电力系统应用中的研究重点主要着眼于利用SMES四象限的有功、无功功率快速响应能力,提高电力系统稳定性、改善供电品质等。超导磁能储存的概念最开始来自于充放电时间很短的脉冲能量储存,大规模能量储存开始于电器元件,其原理就是电能可以储存在线圈的磁场中。如果线圈是由超导材料制成,即保持在临界温度以下,即使发生变化,电流也不会发生衰减。线圈卸载荷,可以将电流释放回电路中去。 电流I循环储存在线圈中的能量E为

超导磁体低温液位监测单元的设计与实现论文

超导磁体低温液位监测单元的设计与实现论文引言 超导磁体相对于常规磁体而言,具有励磁线圈电流密度大、电流稳定性高、功耗小、 体积小和运转费用低等优点,可满足用户对磁场高强度、高均匀度和高稳定度等性能的要求,在科学研究、医疗诊断、交通运输和电力系统等领域有着广阔的应用前景,其中采用 了超导磁体的核磁共振NMR谱仪和磁共振成像MRI仪更是发展形成了一个产值巨大的市场.随着国民经济和科教医卫事业的迅速发展,我国对超导 NMR 和 MRI仪器设备的需求也在飞速增长,但是这些仪器设备的核心技术与制造基本上控 制在少数发达国家手中,为了打破国外的技术垄断并满足国内市场的巨大需求,我国科研 机构目前正在积极开展超导仪器设备的自主创新研制. 1 液氦和液氮的液位测量原理 1.1 液氦液位的测量原理 液氦的测量使用电阻式传感器,其测量原理如图 1 所示.使用一根铌钛超导丝制成的 液位传感器插入液氦中,其中 I+端和 I-端连接电流源的正负极,V+端和 V-端输出超导 丝的电压.测量时,浸没在液氦中的那部分超导丝呈超导态,电阻为 0;而液面之上的超导 丝由于加热电阻的作用呈正常态.通过测量传感器的电阻变化量,即可检测液氦液面的变化. 1.2 液氮液位的测量原理 液氮的测量使用电容式液位传感器,其测量原理如图 2 所示,电容传感器由两个同 轴不锈钢管构成,中间使用聚四氟乙烯绝缘材料固定两个管子的位置,外管的管壁上开有 若干流通孔,使液氮能在电容传感器中自由流入或流出.由于空气和液氮的介电常数不同,当液位变化时,传感器的电容量也相应变化,可以检测出液位的变化. 2 液位监测单元的硬件设计 2.1 硬件整体设计 液位监测单元的硬件整体架构如图 3 所示,液位监测单元硬件电路主要由模拟信号 处理电路和以 STM32ARM 微控制器为核心的控制系统组成. 2.2 压控电流源的设计 为了适应不同规格的电阻传感器对电流源的需求,由微控制器所产生的’ PWM 输出 经过光耦合器的隔离耦合以及比较器的缓冲后,再经过低通滤波后输出一个直流电压以控 制电流源.

高温超导体发展趋势

超导材料具有的高载流能力和低能耗特性,使其可广泛用于能源、 交通、医疗、重大科技工程和现代国防等领域。超导技术是具有巨大 发展潜力的高技术。以铌钛和铌三锡为主的实用低温超导体的研究和 开发起始于20世纪60年代,到70年代开始广泛用于磁体技术。目前已在两方面形成了较大规模的应用。一是重大科技工程方面,主要是高 能物理研究所需的大型粒子加速器,如正在欧洲建造的周长为27km的 大型质子碰撞机LHC,以及热核聚变反应装置,如ITER和LHD等;二是在医疗诊断方面正在广泛应用的核磁共振成像系统MRI和具有较高科学 与应用价值的核磁共振谱仪NMR。 高温超导体自1986年被发现以来,在材料的各个方面,尤其是成 材技术和超导性能方面取得了很大的进展。与此同时,各种应用开发 研究也已广泛展开,并且取得了可喜的成果。HTS材料具有较高的临界 温度(Tc)和上临界磁场(Hc2),从而使超导技术的应用在材料方面 有了更广泛的选择。首先高温超导材料可以使超导技术在液氮温区实 现应用,高Hc2值使高温超导材料成为制造高场磁体(>20T)的理想 选择。近年来,千米长线(带)材的成功制造,已使高温超导材料在 电力能源方面的应用成为现实。这些应用包括:磁体、输电电缆、电 动机、发电机、变压器、故障电流限制器等。用高温超导材料制成的 不同量级(1~20kA)的电流引线已于90年代初实现商品化,并广泛应 用于各种超导磁体系统,使得低温超导磁体可由G-M致冷机冷却,无 需液氦,实现了超导磁体可长时间稳定运行的目标。从目前的发展现 状和趋势,可以清楚地预见,在今后20年内,高温超导技术将在广泛 的领域走向实用化和商品化。 目前已发现的高温超导材料都属于氧化物陶瓷材料,不易加工成 材。同时,很强的各异性和极短的相干长度使得高临界电流密度( Jc)只能在使晶体高度取向的情况下才能实现。在众多的高温超导材 料中,铋锶钙铜氧体系和钇钡铜氧体系最具有实用价值,所以线(带) 材的研究开发主要集中在这两类超导体。超导体的实际应用除了需要 高Jc之外,还需要材料有相当的长度(>1km)和良好的机械性能及热 稳定性。所以同金属材料复合是必由之路。银(银)及其合金由于其 良好的稳定性和塑性,成为合适的高温超导线材基体材料。经过十余 年的研究和开发,高温超导线(带)材已取得重大进展。 铋-2223线(带)材铋-2223超导体具有较高的超导转变温度(Tc~110K)和上临界磁场(Hc2,0~100T)。特别是其层状的晶体 结构导致的片状晶体很容易在应力的作用下沿铜-氧面方向滑移。所 以,利用把铋-2223先驱粉装入银管加工的方法(PIT法),经过拉拔 和轧制加工,就能得到很好的织构。另外,在铋-2223相成相热处理 时,伴随产生的微量液相能够很好地弥合冷加工过程中产生的微裂纹, 从而在很大程度上克服了弱连接的影响。正由于这两个基本特性,使 人们通过控制先驱粉末、加工工艺及热处理技术,成功地制备出了高 Jc(>104A/cm2,77K)长带。 目前世界上已有多家公司在开发和生产铋-2223带材。处于前列

磁共振系统、超导磁体系统及其低温保持设备的制作技术

本技术涉及一种磁共振系统、超导磁体系统及其低温保持装置。该低温保持装置包括内筒、外筒、超导线圈以及变形部件;所述外筒套设在所述内筒外;所述内筒和所述外筒之间限定用于盛装所述冷却液的空腔;所述超导线圈设置于所述空腔内,且所述超导线圈的至少一部分被所述冷却液浸泡;所述变形部件设置于所述空腔内,所述变形部件的体积可通过其内部所填充介质的介质量改变,以致所述变形部件用于改变所述冷却液在所述空腔中的液面高度。上述超导磁体系统及其低温保持装置,不仅能提高冷却液在空腔中的液面高度,还能避免在运输等过程中冷却液消耗而导致其液面高度下降的问题。 权利要求书 1.一种低温保持装置,其特征在于,包括: 内筒; 外筒,所述外筒套设在所述内筒外;所述内筒和所述外筒之间限定用于盛装用于浸泡超导线圈的至少一部分的冷却液的空腔;及 变形部件,所述变形部件设置于空腔内,所述变形部件的体积可通过其内部所填充介质的介质量改变,以致所述变形部件用于改变所述冷却液在所述空腔中的液面高度。

2.根据权利要求1所述的低温保持装置,其特征在于,还包括储存部件、第一管道以及第一阀门,所述储存部件位于所述外筒的外侧或者位于所述空腔的远离所述变形部件的内壁上,所述第一管道连接所述变形部件和所述储存部件,所述储存部件为所述变形部件提供介质,从而改变所述变形部件的体积;所述第一阀门设置在所述储存部件上,所述第一阀门用于控制所述储存部件给所述变形部件提供介质。 3.根据权利要求2所述的低温保持装置,其特征在于,还包括第一控制装置、第一气压装置以及第一液面测量装置;所述第一控制装置与所述第一阀门电连接,所述第一控制装置与所述第一气压装置电连接,所述第一气压装置用于采集所述变形部件的第一气压值;所述第一液面高度测量装置与所述第一控制装置电连接;所述第一液面高度测量装置用于采集所述冷却液在所述空腔中的第一高度信息,并将所述第一高度信息传送给所述第一控制装置;所述第一控制装置根据所述第一高度信息和所述第一气压值控制所述第一阀门,从而改变所述变形部件的内部的介质量。 4.根据权利要求1所述的低温保持装置,其特征在于,还包括第二管道、第三管道以及第二阀门,所述第二管道设置在所述空腔中,所述第二管道用于将所述冷却液蒸发时产生的气体排出所述低温保持装置,所述第三管道连通所述第二管道和所述变形部件,以致所述第二管道中的所述冷却液蒸发时产生的气体流入所述变形部件,从而改变所述变形部件的体积;所述第二阀门设置在所述第二管道和所述第三管道之间,所述第二阀门用于控制所述第二管道的流通。 5.根据权利要求4所述的低温保持装置,其特征在于,还包括加热装置,所述加热装置设置在所述空腔内,所述加热装置用于加热所述冷却液使得其蒸发产生气体。 6.根据权利要求5所述的低温保持装置,其特征在于,还包括第二控制装置和第二气压装置,所述第二控制装置与所述第二阀门电连接,所述第二控制装置与所述第二气压装置电连接,所述第二气压装置用于采集所述变形部件的第二气压值;所述第二控制装置与所述加热装置电连接;所述第二控制装置根据预设的冷却液的液面高度值和所述第二气压值控制所述第二阀门,所述第二控制装置控制所述第二阀门开闭且控制所述加热装置的功率,从而改变所述变形部件的内部的气体量。

高温超导

高温超导实验 姓名:李首卿学号:201311141049 【摘要】超导由于其独特而优异的性质具有广泛而深刻的研究价值,本实验通过对氧化物高温超导材料特性的测量和演示,加深了我们对于超导体零电阻现象和迈斯纳效应这两个基本特性的理解。并且我们通过掌握对低温获得、控制、测量的低温物理实验的基本方法,了解到金属和半导体的电阻随温度的变化以及温差电效应。 关键词:高温超导零电阻现象迈斯纳效应电阻温度特性 一、引言 从荷兰的物理学家卡墨林·翁纳斯发现低温超导体,到BCS超导微观理论问世,再到高温超导的发现,人类不断地努力探索认识超导材料,开发应用超导技术。而随着人们将超导现象温度的提高,这个环境苛刻要求的降低为超导技术在各方面的应用开辟了十分广阔的前景。如今,超导技术广泛地应用于人类生活的方方面面,如:超导计算机、超导磁悬浮列车、超导重力仪和计量标准等。超导给我们的生活带来了巨大的影响。 二、实验原理 1、零电阻现象:只有在直流电情况下才有零电阻现象,当我们测量端电压时, 当温度稍低于液氦的正常沸点时,物体电阻突然跌落到零,这就是所谓的零电阻现象或导电现象。通常把具有这种超导电性的物体,称为超导体; 2、迈斯纳效应:不管加磁场的次序如何,超导体内的磁场感应强度总等于零。 超导体即使在处于外磁场中冷却到超导态,也永远没有内部磁场,它与外磁场的历史无关,这个效应我们称之为迈斯纳效应; 3、超导临界温度:当电流、磁场及其他外部条件(如应力、辐照)保持为零或 不影响转变温度测量的足够低值时,超导体呈现超导态的最高温度。我们有以下定义作为参数: 1)起始转变温度T c onset:降温过程中电阻温度曲线开始从直线偏离的温度; 2)中点温度T cm:待测样品电阻从起始转变处下降到一半时对应的温度, 我们也把它称作临界温度T c,通常所说的超导转变温度; 3)转变宽度?T c:把电阻变化从10%到90%所对应的温度间隔,其大小反映 了材料品质的好坏; 4)零电阻温度T c0:电阻刚刚完全降到零时的温度称为完全转变温度即零电

高温超导材料论文 最新

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧(YBCO)和铋锶钙铜氧(BSCCO)。钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林·昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 自卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973年, 发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge 超导体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1

高温超导技术

高温超导技术 1911年,荷兰莱顿大学的卡茂林-昂尼斯意外地发现,将汞冷却到 -268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。 这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中流大的电流,从而产生超强磁场。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感兴强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 后来人们还做过这样一个实验:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永久磁体,然后把温度降低,使锡盘出现超导性,这时可以看到,小磁铁竟然离开锡盘表面,慢慢地飘起,悬空不动。 迈斯纳效应有着重要的意义,它可以用来判别物质是否具有超性。 为了使超导材料有实用性,人们开始了探索高温超导的历程,从1911年至1986年,超导温度由水银的4.2K提高到23.22K(OK=-273°C)。86年1月发现钡镧铜氧化物超导温度是30度,12月30日,又将这一纪录刷新为40.2K,87年1月升至43K,不久又升至46K和53K,2月15日发现了98K超导体,很快又发现了14°C下存在超导迹象,高温超导体取得了巨大突破,使超导技术走向大规模应用。 超导材料和超导技术有着广阔的应用前景。超导现象中的迈斯纳效应使人们可以到用此原理制造超导列车和超导船,由于这些交通工具将在无磨擦状态下运行,这将大大提高它们的速度和安静性能。超导列车已于70年代成功地进行了载人可行性试验,1987年开始,日本国开始试运行,但经常出现失效现象,出现这种现象可能是由于高速行驶产生的颠簸造成的。超导船已于1992年1月27

聚变堆用Nb3Sn超导磁体设计分析

万方数据

万方数据

万方数据

万方数据

万方数据

聚变堆用Nb3Sn超导磁体设计分析 作者:刘旭峰, 杜世俊, 叶民友, LIU Xu-feng, DU Shi-jun, YE Min-you 作者单位:中国科学院等离子体物理研究所,安徽合肥,230031 刊名: 合肥工业大学学报(自然科学版) 英文刊名:Journal of Hefei University of Technology(Natural Science) 年,卷(期):2011,34(8) 参考文献(8条) 1.Devred A ITER Nb3Sn critical surface parameterization 2008 2.李保增;郭增基CICC超导体的设计及其稳定性 1995(02) 3.李保增CICC型超导体运行电流的设计[期刊论文]-低温与超导 2001(01) 4.严定传;欧阳峥蝾;李俊杰CICC超导磁体低温冷却设计 2007(01) 5.南和礼绝热超导磁体失超过渡过程的数值模拟研究[期刊论文]-低温物理学报 2000(04) 6.ITER Magnet Group ITER-D-2NBKXY vl.2 (R) 2009 7.郭增基;李保增12T(Nb,Ti)3Sn超导体电流密度的设计 1995(02) 8.李保增;毕延芳;吴维越大型超导电缆交流损耗的计算[期刊论文]-低温与超导 2000(04) 本文读者也读过(10条) 1.张超武.Andre Sulpice.周廉.唐先德.Jean-Louis Soubeyroux.张平祥.卢亚峰.ZHang CHao-Wu.Andre Sulpice.ZHou Lian.Tang Xian-De.Jean-Louis Soubeyroux.ZHang Ping-Xiang.Lu Ya-Feng ITER用内锡法Nb3Sn超导线材的不可逆温度研究[期刊论文]-低温物理学报2006,28(4) 2.刘洪涛.吴晓祖.刘向宏.周廉.E.Mossang.A.Sulpice Ti5Nb人工钉扎NbTi多芯超导体的磁通钉扎特征[期刊论文]-稀有金属材料与工程2004,33(1) 3.宋丽伟.马丽萍.李洪晓.郝士明Nb-Ni-Ti系富Ni角相平衡研究[会议论文]-2010 4.马权.周廉.陈自力.张平祥.刘向宏.卢亚锋.吴晓祖.杜社军.焦高峰.MA Quan.ZHOU Lian.CHEN Zili.ZHANG Pinxiang.LIU Xianghong.LU Yafeng.WU Xiaozu.DU Shejun.JIAO Gaofeng Nb、Ti、Ta扩散行为对NbTiTa超导线材制备的影响[期刊论文]-材料导报2007,21(4) 5.吴晓祖.周廉.刘向宏时效热处理对实用Nb46/5wt%Ti/Cu多芯线机械性能的影响[会议论文]-1999 6.刘方.翁佩德.武玉.谭运飞.Liu Fang.Weng Pei-de.Wu Yu.Tan Yun-fei超导股线Nb3Sn的性能测试研究[期刊论文]-低温物理学报2007,29(1) 7.谢宝海.吴晓祖.刘向宏.陈自力.蒲明华.李晓光.曹烈兆.周廉不同Ti含量对NbTi超导体临界电流密度的影响[期刊论文]-低温物理学报2004,26(1) 8.陈自力.谢宝海.焦高峰.杜社军.吴晓祖.刘向宏.张平祥.周廉铌钛超导体的非合金化制备[会议论文]-2005 9.刘勃.武玉.刘方.龙风.LIU Bo.WU Yu.LIU Fang.LONG Feng ITER超导股线的力学性能测试[期刊论文]-核聚变与等离子体物理2010,30(2) 10.刘建伟.李春广.唐先德.李建峰.刘向宏.冯勇.张平祥Ti在Nb3Sn超导线中的作用及其引入方法[会议论文]-2009 本文链接:https://www.doczj.com/doc/b52949230.html,/Periodical_hfgydxxb201108015.aspx

高温超导材料

高温超导材料 樊世敏 摘要自从1911年发现超导材料以来,先后经历了简单金属、合金,再到复杂化合物,超导转变温度也逐渐提高,目前,已经提高到164K(高压状态下)。本文主要介绍高温超导材料中的其中三类:钇系(YBCO)、铋系(BSCCO)和二硼化镁(MgB2),以及高温超导材料的应用。与目前主要应用领域相结合,对高温超导材料的发展方向提出展望。 关键词高温超导材料,超导特性,高温超导应用 1 引言 超导材料的发现和发展已经有将近百年的历史,前期超导材料的温度一直处于低温领域,发展缓慢。直到1986年,高温超导(HTS)材料的发现,才进一步激发了研究高温超导材料的热潮。经过20多年的发展,已经形成工艺成熟的第一代HTS带材--BSCCO带材,目前正在研发第二代HTS带材--YBCO涂层导体,近一步强化了HTS带材在强电领域中的应用。与此同时,HTS薄膜和HTS块材的制备工艺也在不断地发展和完善,前者己经在强电领域得到了很好的应用,后者则在弱电领域中得到应用,并且有着非常广阔的应用前景。 2 高温超导体的发现简史 20世纪初,荷兰莱顿实验室科学家卡默林昂尼斯(H K Onnes)等人的不断努力下,将氦气液化[1-7],在随后的1911年,昂尼斯等人测量了金属汞的低温电阻,发现了超导电性这一特殊的物理现象。引起了科学家对超导材料的研究热潮。从1911到1932年间,以研究元素超导为主,除汞以外,又发现了Pb、Sn、Nb等众多的金属元素超导体;从1932到1953年间,则发现了许多具有超导电性的合金,以及NaCl结构的过渡金属碳化合物和氮化物,临界转变温度(Tc)得到了进一步提高;随后,在1953到1973年间,发现了Tc大于17K的Nb3Sn等超导体。直到1986年,美国国际商用机器公司在瑞士苏黎世实验室的科学家柏诺兹(J. G. Bednorz)和缪勒(K. A.Müller)首先制备出了Tc为35K的镧-钡-铜-氧(La-Ba-Cu-O)高温氧化物超导体,高温超导材料的研究才取得了重大突破[10,11]。临界转变温度超过90K的钇-钡-铜-氧等一系列高温氧化物超导体被发现,成为了高温超导材

超导材料在能源上的应用

超导材料在电力系统和热核聚变上的应用姓名:成双良班级:复材1402 学号:1105140212 摘要:超导技术是21世纪具有重大经济和战略意义的高新技术,在国民经济诸多领域具有广阔的应用前景,在能源方面尤其是电力系统以及热核聚变实验之中尤为突出。实用化超导材料是超导技术发展的基础。目前,国际上发现的实用化超导材料主要有有低温超导线材、铋系高温超导带材、YBCO涂层导体。文章首先介绍了超导材料的发展基础,重点综述了上述几种实用化超导材料制备及加工、性能和应用方面的最新研究进展,并对相关领域存在的问题及今后的发展作出展望。 关键词:超导材料,电力系统,热核聚变,NbTi,Nb3Sn,铋系高温超导带材,YBCO涂层导体 Application of Superconducting Materials in Power System and Thermonuclear Fusion Abstract:Superconducting technology is a high-tech with significant economic and strategic significance in the 21st century. It has wide application prospect in many fields of national economy, especially in energy, especially power system and thermonuclear fusion experiment. Performance improvementin practical superconducting materials is the foundation of application development. The overall picture of superconductors is diverse and developing rapidly. Currently, practical superconducting materials comprise mainly Nb-based low-temperature wires, bismuth-strontium-calcium copper oxide high-temperature superconducting tapes and yttrium barium copper oxide coated conductors. A review is presented here of the fabrication issues, key properties and recentdevelopments of these materials, with an assessment of the challenges and prospects for fixture applications. Keywords: superconducting Materials, power system, thermonuclear fusion, NbTi,Nb3Sn, BSCCO tapes, YBCO coated conductors

高温超导材料

高温超导材料 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展背景及其发展历史 高温超导体通常是指在液氮温度(77 K)以上超导的材料。人们在超导体被发现的时候(1911年),就被其奇特的性质(即零电阻,反磁性,和量子隧道效应)所吸引。但在此后长达七十五年的时间内所有已发现的超导体都只是在极低的温度(23 K)下才显示超导,因此它们的应用受到了极大的限制。 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧(YBCO)和铋锶钙铜氧(BSCCO)。钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林·昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 自卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其 中Nb 3 Ge超导体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年柏诺兹和缪勒发现了35K 超导的鑭钡铜氧体系。这一突破性发现导致了更高温度的一系列稀土

高温超导体国内外现状

国外超导材料技术研发概况 新材料产业网作者:管理员 2010-9-10 15:17:03 来源: 新材料产业网超导材料技术是21世纪具有战略意义的高新技术,极具发展潜力和市场前景。世界各主要国家政府纷纷制订相关计划和加大研发投资,推动基础研究和产业化发展,竞争十分激烈。 一、美国 美国能源部(DOE)早在1988年就创建了超导计划,该计划将高科技公司、国家实验室和大学结合起来,进行具有高度复杂性的高温超导技术的应用研发工作,并在此基础上于1993年底制定了超导伙伴计划(Superconductivity Partnership Initiative,SPI)。SPI是整个超导计划的一部分,目的是加速高温超导(High temperature superconductors,HTS)电力设备走进市场。DOE在2001年9月24日宣布了新一轮的高温超导计划——SPI二期,投入总资金达1.17亿美元,支持高温超导商业化示范电缆、100MVA高温超导发电机、1000英尺、3相长距离高温超导输电电缆、高温超导变压器、高温超导核磁共振成像装置、超导飞轮储能装置、高温超导磁分离器等7个项目的研发。 2003年7月,DOE在公布的《‘Grid 2030’A National Vision for Electricity’s Second 100 Years》报告中,把高温超导技术列为美国电力网络未来30年中发展的关键技术之一。该计划制订了2010年、2020年和2030年美国在电力方面高温超导的发展目标(表1),其中在2020年前希望在HTS发电机、变压器和电缆方面具有显著改善,并完成长距离超导传输电缆;2030年前建成国家超导主干输电

超导储能工作原理图文分析

超导储能工作原理图文分析 1.超导系统认识 超导储能(SMES)是利用超导体的电阻为零特性制成的储存电能的装置,其不仅可以在超导体电感线圈内无损耗地储存电能,还可以通过电力电子换流器与外部系统快速交换有功和无功功率,用于提高电力系统稳定性、改善供电品质。 将一个超导体圆环置于磁场中,降温至圆环材料的临界温度以下,撤去磁场,由于电磁感应,圆环中便有感应电流产生,只要温度保持在临界温度以下,电流便会持续下去。试验表明,这种电流的衰减时间不低于10万年。显然这是一种理想的储能装置,称为超导储能。 由于超导储能具备反应速度快、转换效率高等优点,可以用于改善供电质量、提高电力系统传输容量和稳定性、平衡电苻,因此在可再生能源发电并网、电力系统负载调节和军事等领域被寄予厚望。近年来,随着实用化超导材料的研究取得重大进展,世界各国相继开展超导储能的研发和应用示范工作。 2.超导储能工作原理 超导储能的基本原理是利用电阻为零的超导磁体制成超导线圈,形成大的电感,在通人电流后,线圈的周围就会产生磁场,电能将会以磁能的方式存储在其中。超导储能按照线圈材料分类可分为低温超导储能和高温超导储能。用于储能的超导技术已经开始显现极有前景的成果。其工作原理是能量储存在绕组的磁场中,由下式表示: 式中,R和L分别是绕组的电阻和电感。稳态储能时 di L dt必定为零,驱动电流环流所需 电压简化为V=RI。 绕组的电阻依赖于温度。对于大多教导体材料,温度越高,电阻越大。如果绕组温度下降,电阻也会下降,如图3-10所示。某些材料中,电阻会在某个临界温度时急剧下降到精确零欧。图中,该点标为Tc。在此温度以下,再无需电压来驱动绕组中的电流,绕组的端

超导磁储能系统的发展与展望

龙源期刊网 https://www.doczj.com/doc/b52949230.html, 超导磁储能系统的发展与展望 作者:苏放 来源:《中国科技博览》2015年第27期 [摘要]超导磁储能装置(SMES)是将超导磁体的无损高效储能特性与电力电子的快速电能转换技术相结合的一种新型功率调节和能量转换装置,也是目前实用化程度最高的一种超导电力装置。本文阐述了SMES的特点、基本结构以及在电力系统的具体应用,综述了国内外相关研究成果与发展现状,并讨论了其未来的前景与发展趋势。 [关键词]超导磁储能系统电力系统高温超导 中图分类号:TM917 文献标识码:A 文章编号:1009-914X(2015)27-0150-03 0 引言 自德国物理学家昂尼斯(K.Onnes)1911年研究汞在低温下的电阻随温度变化发现了超导现象之后,科学界的目光开始投向了这样一个新生的科学分支,人们希望能将其应用于实际当中。随着一个世纪超导技术的不断发展,超导应用也越来越受到各国的重视。尤其在80年代以铋系(Bi2Sr2CaCu2O8)和钇系(YBa2Cu3O7、YBa2Cu4O8)等为代表的高温超导材料的 研究取得了突破性进展后[1],超导在电力系统的应用也倍受看好。目前人们正在研究的超导 电力装置包括储能装置,电机,电线,限流器等。其中超导储能装置是一种能把电能存储在由循环电流产生的磁场中的设备。它利用超导磁体的低损耗和快速响应来储存能量的能力,通过现代电力电子型变流器与电力系统接口,组成既能储存电能(整流方式)又能释放电能(逆变方式)的快速响应器件,从而达到大容量储存电能改善供电质量提高系统容量和稳定性等诸多目的[2,3]。下文将详细介绍SMES的特点结构及在电力系统的应用,总结国内外相关研究成果与发展现状,讨论其未来的前景与发展趋势。 1 SMES概述 超导磁储能是利用超导体的零电阻特性以磁的形式存储能量,相比其他储能方式其有许多优势,如表所示,因此以超导线圈构建的超导磁储能系统在电力系统中具有广泛的应用前景[4]。(表1) 1.1SMES的特点 具体的说超导磁储能系统主要具有以下特点[5,6]: (1)响应迅速、控制方便。SMES通过变换器与交流系统相连,响应时间能达到毫秒级。改变电力电子器件的触发角即可改变装置输出功率,容易实现远方控制。SMES从最大充电功率到最大放电功率的转换只需几十毫秒。

电力储能技术

电力储能技术 摘要:一方面,随着我国经济的高速发展,用电量的需求逐年增长;另一方面,环境和资源的压力使得新能源的大量并网已成大势所趋,由此带来的电网安全稳定性问题和电能质量问题也越来越受到重视。电力储能技术为解决这些问题提供了一条解决之道,围绕电力储能技术的相关研究和应用不断涌现,目前已经出现了一系列比较成熟可实际应用的或者尚在研究阶段的储能方法。本文介绍了一些常见的电力储能方法。关键词:电力储能,特性,现状,应用; 0 引言 近年来,随着国民经济的迅猛发展,我国的电力需求也迅速增加,带动了电力行业的急剧扩张,电网装机容量实现了飞跃式增长。与此同时,一系列的问题也不断出现。 受自然环境和人类生产生活习惯的影响,我国的电力负荷需求存在着巨大的峰谷差。往往在一年中的某几个月或者一天中的某几个小时,电力负荷需求急剧增大,给电网和发电厂带来巨大的运行压力。而在其他时间,用电量较少,机组运行在低负荷状态,不能发挥出高效的性能,使电力设备利用率和运行经济性受到较大影响。如何进行大规模的电能削峰填谷,实现负荷平稳运行,成为我国电力行业需要面对的挑战之一。 目前全世界都面临环境问题和资源压力,我国也不例外。一方面严重的环境污染和巨大的碳排放量已经对社会发展造成了巨大的困扰,另一方面煤炭石油等能源缺口也限制了我国经济的发展。有鉴于此,开发清洁可再生能源迫在眉睫,表现在电力行业,就是风能、光伏发电在近年来得到了蓬勃发展。然而这些能源随自然条件的变化而变化,呈现间歇的特性,不能提供稳定的电力供应。因此存在大量的“弃风”、“弃光”现象,造成了资源的浪费。 电动汽车是新型负荷,也是新型家电,具有较好的调控性,可以纳入需求侧管理、电网调度,并与新能源发电配合,而且在保护环境和节约资源等方面具有传统汽车难以企及的优势。然而如何快速有效充电、如何保证电池的续航能力成为限制电动汽车发展的重要因素。 以上种种都表明电力行业目前存在巨大的机遇和挑战。而电力储能技术是解决上述问题的关键技术之一。目前电力储能技术的研究和发展越来越受到各国能源、交通、国防等部门的重视,电力储能的大规模应用将对现代化的电能生产、输送、分配和利用产生深刻的影响和重要的作用,已成为电力生产利用中的关键环节。 经过长时间的研究和探索,目前已经有一些储能方法投入了实际运行,例如抽水蓄能和压缩空气储能,还有一些储能方法具有较好的应用前景,但距离大规模实际应用尚有一段距离,例如飞轮储能、超导储能等。 1 储能技术分类 按照不同的分类方法,储能技术可以分为以下几类: 1)按照储能原理分类可以分为三类:物理储能,如抽水蓄能、压缩空气储能、飞轮储能等;化学储能,主要是电池储能,如铅蓄电池、钒流体电池、钠硫电池和锂电池等;电磁储能,如超级电容储能和超导储能等。 2)按照储能时间划分可以分为三类:短时储能,通常放电时间为秒级到分钟级;中期储能,通常放电时间为数分钟到数小时;长期储能,通常放电时间为数小时至数天。 3)按照功能划分,可以分为可分为能量型储能(Energy-usage energy storage,EES)和功率型储能(Power-usage energy storage,PES)两种。能量型储能特点是比能量高,主要用

相关主题
文本预览
相关文档 最新文档