当前位置:文档之家› 通过可利用赖氨酸评估的冷冻干燥,喷雾干燥和鼓干脱脂奶粉的储存稳定性

通过可利用赖氨酸评估的冷冻干燥,喷雾干燥和鼓干脱脂奶粉的储存稳定性

通过可利用赖氨酸评估的冷冻干燥,喷雾干燥和鼓干脱脂奶粉的储存稳定性
通过可利用赖氨酸评估的冷冻干燥,喷雾干燥和鼓干脱脂奶粉的储存稳定性

Storage stability of freeze-dried,spray-dried and drum-dried skim milk powders evaluated by available lysine

Kataneh Aalaei*,Marilyn Rayner,Ingegerd Sj€o holm

Department of Food Technology,Engineering and Nutrition,Lund University,P.O.Box124,SE-22100,Lund,Sweden

a r t i c l e i n f o

Article history:

Received3February2016 Received in revised form

17May2016

Accepted4July2016

Available online5July2016

Keywords:

Skim milk powder

Available lysine

Storage stability

Drying technology

Dye-binding methods a b s t r a c t

Formation of Maillard products and the in?uencing factors,which are of crucial importance for both manufacturers and consumers,are still not fully understood.Thus in this study available lysine was used as a marker to monitor the extent of Maillard reactions in freeze-dried,spray-dried and drum-dried skim milk powders during200days of storage at highly controlled atmospheres.Storage variables included two temperatures(20 C,30 C)and two relative humidities(33%,52%).The available lysine in?ve replicates was quanti?ed at pre-determined intervals by a dye-binding method using Acid-orange12, validated in our previous work.Findings of this study show that temperature and relative humidity during storage have a profound in?uence on the rate of available lysine loss.Choice of the drying technology as the other investigated variable also had a signi?cant impact.The drying process least affected the available lysine content in freeze-dried powders,followed by spray-dried and drum-dried powders.Storage at52%relative humidity and30 C for200days led to a39.2e45.9%decrease in the available lysine content,regardless of the drying of skim milk powder,while the powders stored at33% relative humidity and20 C did not show a signi?cant loss during the same period of time.

?2016Elsevier Ltd.All rights reserved.

1.Introduction

During recent years the application of skim milk powder(SMP) in the food industry has increased due to its long shelf-life and various functional properties.Based on a report by the Food and Agriculture Organization of the United Nations,the annual pro-duction of skim milk powder reached1.9million tons in2013, which was a3.3%increase compared to the previous year(Grif?n, 2013).Considering its composition,which is mainly proteins and carbohydrates and bearing in mind that it is usually stored for a signi?cant period of time before being used,the possibility of skim milk powder undergoing Maillard reactions during storage cannot be ruled out.These controversial and complex chemical reactions may lead to the formation of pro-in?ammatory molecules,specif-ically advanced glycation end products(AGEs),under certain cir-cumstances(Bengmark,2007;Goldberg et al.,2004;Henle,2005; Nguyen,van der Fels-Klerx,&van Boekel,2013;Siciliano,Maz-zeo,Arena,Renzone,&Scaloni,2015).Therefore,understanding and monitoring this reaction is of vital importance.This can be achieved by means of optimizing the parameters of processing as

well as controlling the conditions during transport and storage.

Available lysine is one of the markers that can be employed to

understand the early stages of the Maillard reaction and its content

is decreased with respect to the increased reaction rate.This

reduction in the amount of available lysine is considered to be the ?rst step of the Maillard reaction and is due to binding with lactose, the main carbohydrate in milk(Contreras-Calder o n,Guerra-Hern a ndez,&García-Villanova,2009;El&Kavas,1997;Hurrell, Finot,&Ford,1983;Malec,Pereyra Gonzales,Naranjo,&Vigo,

2002;Mehta&Deeth,2016;Ramírez-Jim e nez,García-Villanova, &Guerra-Hern a ndez,2004;Pereyra Gonzales,Naranjo,Leiva,& Malec,2010;Rutherfurd&Moughan,2008;Schmitz,

Gianfrancesco,Kulozik,&Foerst,2011;).In order to quantify the

available lysine,different approaches can be adopted depending on

the type of sample material.Regarding skim milk powder,a

convenient and reliable method is the dye-binding method using

Acid-orange12which was validated in our previous work for casein

(the main protein in milk),bovine serum albumin and a wide range

of skim milk powders(Aalaei,Rayner,Tareke,&Sj€o holm,2016).

There have been only a few studies done on the storage of skim

milk powder at mild temperatures(37 C,50 C,60 C),(Pereyra

Gonzales et al.,2010)and in those studies the sample was always

*Corresponding author.

E-mail address:Kataneh.aalaei@food.lth.se(K.

Aalaei).Contents lists available at ScienceDirect

LWT-Food Science and Technology journal ho mep age:https://www.doczj.com/doc/b613335864.html,/lo

cate/lwt

https://www.doczj.com/doc/b613335864.html,/10.1016/j.lwt.2016.07.011

0023-6438/?2016Elsevier Ltd.All rights reserved.

LWT-Food Science and Technology73(2016)675e682

commercial.In this study,the skim milk was obtained from a known source(local dairy)and extra effort had been put into manufacturing the different powders in the pilot plant where all the processing parameters were controlled.In order to obtain a clear picture of the impact of processing on the progress of the Maillard reaction,three types of skim milk powders produced by a pilot-scale freeze-dryer,spray-dryer and drum-dryer were inves-tigated,and their available lysine contents were quanti?ed.Sub-sequently,the storage effect was studied by storing the above-mentioned skim milk powders at various temperatures and rela-tive humidities in highly controlled atmospheres for200days.The storage variables included two temperatures(20 C,30 C)and two relative humidities(33%,52%)and available lysine was measured at intervals during200days.

Therefore,the aim of this project was to understand the effects of different drying technologies and various storage conditions on the level of remaining available lysine in order to determine the extent of early Maillard reactions.The hypothesis was that the impacts of the processing and further handling,including the storage and transportation,are more profound than previously thought and mostly underestimated.In other words,this study aims to increase the awareness that the Maillard reaction does not necessarily need extreme conditions to occur and it can take place at temperatures and humidities that are common in many places. The storage conditions investigated in this study can easily occur when consumers store an opened package at room temperature and consume the product intermittently over a long time.This was the criterion behind the selection of storage variables in the way that they closely resembled typical climate conditions during transport and storage,particularly at home.

2.Materials and methods

2.1.Chemicals and instruments

In order to analyze available lysine,the following chemicals were used:sodium acetate anhydrous reagent grade(CAS:127-09-3)was purchased from Scharlau(Sentmenat,Spain);Acid Orange 12(Crocein Orange G)(CAS:1934-20-9and MW?350.32)was supplied by Tokyo Chemical Industry(Tokyo,Japan);potassium dihydrogen phosphate for analysis(CAS:7778-77-0)and magne-sium nitrate hexahydrate for analysis(CAS:13446-18-9)were ob-tained from Merck(Darmstadt,Germany);propionic anhydride 99%(CAS:123-62-6)was acquired from ACROS Organics(Geel, Belgium);magnesium chloride hexahydrate(CAS:7791-18-6)was purchased from VWR International(Leuven,Belgium);oxalic acid dehydrate>99.5%(CAS:6153-56-6)and casein sodium salt from bovine milk(CAS:9005-46-3)were supplied by Sigma-Aldrich (Steinheim,Germany),while albumin,bovine96e99%(CAS: 9048-46-8)was obtained from Sigma-Aldrich(St.Louis,USA).

The instruments used included a3005orbital lab shaker type from Gesellschaft für Labortechnik,an Aqualab Series3water ac-tivity meter from Decagon Devices,a wireless Hygroclip with temperature and air humidity sensors,a M€a tman3from Eltex AB of Sweden,an Optima LE-80k ultracentrifuge from Beckman Coulter and a Varian Cary50UV e Vis spectrophotometer from Agilent Technologies.

2.2.Drying experiments

2.2.1.Freeze-drying

Freeze-drying was carried out using a pilot-scale freeze-dryer (Labconco,Missouri,USA).Skim milk(0.1%fat)was placed into aluminum trays(1cm thickness).The samples were then put into the freezer atà20 C for24h before freeze-drying.The freeze-drying temperature wasà20 C in the beginning and reached 20 C with a1 C/h increase.The condenser had a temperature of à50 C and the vacuum pressure was0.02mbar.The freeze-drying duration was seven days and the samples were immediately ground,vacuum-packed and placed into the freezer atà20 C until further analysis.

2.2.2.Drum-drying

The process was carried out using a Goudsche Machinefabriek drum-dryer(Waddinxveen,Netherlands).The surface temperature of the drum was115 C on average and the drying was completed in 40s.The obtained?akes were then ground,vacuum packed and placed into the freezer atà20 C until further analysis.

2.2.

3.Spray-drying

A lab-scale Büchi mini spray-dryer B-290(Flawil,Switzerland) was utilized for spray-drying.The inlet temperature of150 C and outlet temperature of85 C was applied.The?ow rate of the feed was0.6L/h and the pre-heated air had a?ow rate of540L/h.The powder was immediately collected,vacuum-packed and put into the freezer atà20 C until further analysis.

2.3.Storage of the samples

Storage of the samples was carried out in desiccators at two temperatures(20 C and30 C)and two relative humidities(33% and52%).In order to achieve33%relative humidity inside the desiccator,200g magnesium chloride was mixed with25ml distilled water and stirred until a homogeneous solution was ob-tained,while52%relative humidity was obtained by dissolving 200g magnesium nitrate in30ml distilled water(Motarjemi, 1988).The solutions were placed in the desiccators and allowed to equilibrate for one week before adding the samples.This is an important step often neglected in other studies.The temperature and relative humidity in the desiccators were monitored once prior to putting the samples in the desiccators,and regularly during storage,with a wireless Hygroclip.

Several glass Petri dishes each containing7g milk powder were placed in the desiccator,which was then placed in an incubator to reach the desired storage temperature.The temperature of the in-cubators was controlled regularly with the thermometer.At each pre-determined sampling point one plate was taken out and analyzed.Water activity and water content of the samples were determined before analysis of available lysine.

2.4.Quanti?cation of available lysine

The dye-binding method with Acid-orange12used for the de-terminations of available lysine in the samples is fully described earlier(Aalaei et al.,2016)and is based on work presented by Hurrell,Lerman&Carpenter,with slight modi?cations(Hurrell, Lerman,&Carpenter,1979).As a brief explanation,200mg of the sample was mixed with2ml of sodium acetate solution for20min. Then,0.2ml propionic anhydride was added to half of the?asks and continued mixing for another20min.Subsequently,40ml of the dye solution(1.36mg/ml)was added and mixed for1h.The analysis continued with the centrifugation step(5000rpm,10min) and measurement of the absorbance of the supernatant with the spectrophotometer at475nm and concentration of the available lysine was calculated using the equation from the calibration curve y?47.37xt0.01(R2?0.9999).The analysis was always carried out with?ve replicates.A signi?cance test was performed on the results by the student t-test for a signi?cance level of95%.

K.Aalaei et al./LWT-Food Science and Technology73(2016)675e682 676

3.Results

3.1.Loss of available lysine due to differences in drying methods

A non-heat treated skim milk,which had3.54%±0.09available lysine based on dry matter,was used as a reference sample in this study.Application of three different dryers on the skim milk(0.1% fat)resulted in skim milk powders with different levels of available lysine.Freeze-dried SMP had the highest available lysine content followed by spray-dried SMP and drum-dried SMP.The available lysine contents in freeze-dried,spray-dried and drum-dried skim milk powders were3.49%±0.07,3.23%±0.08and3.04%±0.09 based on the dry matter respectively(n?5).It should be mentioned that the powders also had different morphological characteristics such as color and texture.

3.2.Loss of available lysine during storage

Results of storage of different skim milk powders in four con-ditions are presented in the sections below.Storage conditions covered two temperatures(20 C,30 C)and two relative humid-ities(RH)(33%,52%).

3.2.1.Storage at52%RH,30 C

Freeze-dried,spray-dried and drum-dried SMPs were stored in the incubators at controlled temperatures and relative humidities for a period of200days and the results of available lysine mea-surements are shown in Fig.1.The available lysine concentrations in the samples based on percentage in the dry matter are plotted against storage time(days).

As can be seen in Fig.1,the storage time can be divided into two phases.During the?rst phase(0e20days),which can be called a lag-phase,it is believed that equilibration of water mostly takes place between the sample and the surrounding atmosphere.This lag-phase is more noticeable with regard to drum-dried SMP.The lag-phase is continued with a second phase(20e200days)where decreases of available lysine in the samples follow a?rst-order reaction.

3.2.2.Storage at52%RH,20 C

When the temperature of the storage was set to20 C(with the same52%RH),all three types of SMPs showed a continuous and smoother decrease in the available lysine contents.The noticeable point in Fig.2is that the linear behavior was observed here as well. Freeze-dried SMP has signi?cantly higher available lysine during the whole period of storage.

3.2.3.Storage at33%RH,30 C

When the samples were stored at lower RH(33%),the available lysine showed a more stable behavior(Fig.3).The SMP that indi-cated a different pattern was the spray-dried sample,which had an 8%decrease in the available lysine content in the?rst40days and then continued to decrease,but more slowly.Freeze-dried SMP had a signi?cantly higher available lysine during the storage time, compared to the other two samples.

3.2.

4.Storage at33%RH,20 C

As can be seen in Fig.4,available lysine displays a steady response at the lower RH and temperature.Spray-dried SMP, however,indicates a slight decline in the?rst10days of storage.

3.2.5.Storage of SMPs at a glance

In Fig.5,the results of storage in four different conditions are presented for the three types of skim milk powders for a better comparison.4.Discussion

Available lysine in this study was only used as one marker to monitor the Maillard reaction in the skim milk powders produced and stored differently.With respect to the effect of the drying method,freeze-dried SMP had the highest available lysine content followed by the spray-dried and drum-dried SMP.Considering the mechanism of the freeze-drying,which involves the drying of the frozen material under vacuum and room temperature,the results of this study correspond to what was expected.The effect of spray-drying on the loss of available lysine was7.45%on average and drum-drying had the most destructive effect on the level of avail-able lysine,which was12.89%.No other study could be found where the three types of dryers used in this study were applied and this made the comparison impossible.Contreras-Calderon and colleagues reported that application of the pilot-scale spray-dryer on infant formulas decreased the available lysine by10e15%. However,the temperature used in that study was215e230 C, which is higher than the temperature in our study(150 C),and the analysis method was FDNB(Contreras-Calder o n et al.,2009).El& Kavas measured the available lysine content in commercial spray-dried SMP with the dye-binding method and compared that with the raw milk,and concluded that14.3%of the available lysine was reduced after spray-drying(El&Kavas,1997).

Storage of the skim milk powders was conducted in four different conditions in this work(Fig.5).The idea behind the se-lection of the storage variables was that they should be a true representation of the conditions that milk powders are normally exposed to,especially at home after opening the package.Bearing that in mind,the temperature and relative humidity in some areas can be even higher and thereby the reaction is expected to be accelerated in those areas.Although freeze-dried SMP had signi?-cantly higher available lysine content,the rates of decrease for available lysine during20e200days of storage at52%RH and30 C for three types of skim milk powders were quite similar.However, the behaviors of freeze-dried,spray-dried and drum-dried SMPs in the?rst20days of storage were different.During that time,avail-able lysine in the drum-dried sample was more stable compared to the freeze-dried and spray-dried samples.Storage at52%RH and 30 C after200days resulted in a39.23%,42.65%and45.85% decrease in the available lysine contents of freeze-dried,spray-dried and drum-dried SMPs respectively.This temperature and humidity combination can be easily reached in some areas and considering the shelf life of skim milk powder e which is18 months e the decrease of the available lysine during the shelf-life period is de?nitely higher.In this study,lysine is not only seen as an essential amino acid that is necessary for the well-functioning of the body,but is also considered to be a marker informing us how the Maillard reaction and its health-risk consequences proceed.In a study by Malec,Pereyra Gonzales,Naranjo and Vigo,the effects of storage at various water activities(0.33e0.98)and temperatures (37 C,50 C,60 C)were investigated with regard to a model system composed of lactose and casein,and the available lysine was measured by the OPA method(Malec et al.,2002).They concluded that lysine losses followed?rst-order reaction kinetics in all the a w and temperatures studied,and the highest reaction rate at37 C belonged to the0.52water activity where almost50%of the available lysine content was reduced after only15days of storage (Malec et al.,2002).However,in this study,after the same period of time at52%RH and30 C,there was a17e25%decrease in the available lysine content regardless of the type of SMP.This can be explained by the temperature difference used in the two studies and also the matrix effect,which could have a moderating impact on the progress of the Maillard reaction in our study.In other words,the main substrates(lysine and lactose)may not reach each

K.Aalaei et al./LWT-Food Science and Technology73(2016)675e682677

Fig.1.Changes of available Lysine in freeze-dried,spray-dried and drum-dried skim milk powders during storage at 52%RH,30 C.Data points are the average of ?ve replicates and the error bars are representatives of the standard deviations.

K.Aalaei et al./LWT -Food Science and Technology 73(2016)675e 682

678

Fig.2.Changes of available Lysine in freeze-dried,spray-dried and drum-dried skim milk powders during storage at 52%RH,20 C.Data points are the average of ?ve replicates and the error bars are representatives of the standard deviations.

K.Aalaei et al./LWT -Food Science and Technology 73(2016)675e 682679

other as easily as they can in a model system.Generally,tempera-ture is a key factor regarding the rate of the Maillard reaction,but its impact is even more important in the vicinity of glass transition.Glass transition is the step in which the lactose is transformed from a glassy and stable state to a rubbery state,where the reaction has the highest rate (Silalai &Roos,2010).As a brief explanation,storage of the samples at high relative humidity causes the amor-phous lactose to absorb water.This leads to the plasticization and subsequently the glass transition temperature is decreased to below that of the temperature of storage (Vuataz,2002).Based on the study by Joupila &Roos,the glass transition temperature measured with differential scanning calorimetry (DSC)for skim milk powder is à2 C at 53%RH and 33 C at 33%RH.The powders had been stored at 24 C on saturated salt solutions for 24h before being analyzed with DSC (Jouppila &Roos,1994).Therefore,it is assumed in the present study that when SMPs were stored at 52%RH and 30 C,the lactose was not in the glassy state.This can explain the high decrease of the available lysine under this condi-tion.This was also con ?rmed in another study where scanning electron microscopy (SEM)was applied to commercial skim milk powders.Murrieta-Pazos and colleagues stated that the transformation of lactose from the glassy to the rubbery state oc-curs at around 54%RH (Murrieta-Pazos et al.,2011).

Similarly,in a study by Pereyra Gonzales et al.,storage of a model system of lactose and lysine for 50days at 33%RH and 37 C led to 50%of the lysine becoming unavailable,while in this study after 50days of storage at 33%RH and 30 C,the highest decrease belonged to spray-dried SMP which was 15%.This result can again be explained by the glass transition temperature of milk powder at that RH (33 C).The storage temperature in our work (30 C)is still below the glass transition temperature,but very close to it.In a previous study it was also concluded that although the system is still in the glassy state at 33%RH and 30 C,the Maillard reaction can take place but at a low rate (Pereyra Gonzales et al.,2010).This is responsible for higher decreases of available lysine at 33%RH and 30 C,compared to the storage at 33%RH and 20 C observed in this study.

Storage of sample materials at 33%RH and 20 C for 200days did not show any signi ?cant changes in the available lysine content.This is related ?rst of all to the physical state of the lactose in the samples and the glass transition temperature,which is well above the storage temperature in this case.In other words,the

samples

Fig.3.Changes of available Lysine in freeze-dried,spray-dried and drum-dried skim milk powders during storage at 33%RH,30 C.Data points are the average of ?ve replicates and the error bars are representatives of the standard

deviations.

Fig.4.Changes of available Lysine in freeze-dried,spray-dried and drum-dried skim milk powders during storage at 33%RH,20 C.Data points are the average of ?ve replicates and the error bars are representatives of the standard deviations.

K.Aalaei et al./LWT -Food Science and Technology 73(2016)675e 682

680

Fig.5.Storage of Skim Milk Powders for 200days in four storage conditions.Available lysine is presented as percentage in the dry matter.All data points are the average of ?ve replicates and the error bars are representatives of the standard deviations.

K.Aalaei et al./LWT -Food Science and Technology 73(2016)675e 682681

are still in the glassy state during the storage time.These?ndings are consistent with the results previously reported(Jouppila, Kansikas,&Roos,1997;Ozmen&Langrish,2002).

The?ndings of the present study are important for under-standing the possible changes that occur in the available lysine in normal and mild storage conditions,especially after opening the package,when the milk powder can be more exposed to unfavor-able conditions.It should be noted that the reaction does not necessarily change the color and taste of the product.Rutherfurd& Moughan showed that approximately10%of the lysine was decreased when the packages of commercial skim milk powders were kept at30 C for six months(Rutherfurd&Moughan,2008). In the present study the decrease was22.4%when the spray-dried SMP was stored at33%RH and30 C for six months.The difference is attributed to the protective effect of the packaging in the latter case.

5.Concluding remarks

The?ndings of the current study emphasize the importance of the drying conditions and the storage quality with respect to skim milk powders.Freeze-drying had the lowest impact on the loss of available lysine among the drying technologies studied in this work,followed by spray-drying and drum-drying.The decrease in available lysine content during200days of storage follows almost the same pattern regardless of the type of skim milk powder.In order to obtain a better understanding of the extent of the Maillard reaction and its health-risk impacts,available lysine must be combined with other indicators,which will be the focus of future studies.

Acknowledgements

The authors greatly appreciate the Swedish Research Council for funding this study.

References

Aalaei,K.,Rayner,M.,Tareke,E.,&Sj€o holm,I.(2016).Application of a dye-binding method for the determination of available lysine in skim milk powders.Food Chemistry,196,815e820.https://www.doczj.com/doc/b613335864.html,/10.1016/j.foodchem.2015.10.004. Bengmark,S.(2007).Advanced glycation and lipoxidation end products e ampli?ers of in?ammation:The role of food.Journal of Parenteral and Enteral Nutrition, 31(5),430e440.

Contreras-Calder o n,J.,Guerra-Hern a ndez,E.,&García-Villanova,B.(2009).Utility of some indicators related to the Maillard browning reaction during processing of infant formulas.Food Chemistry,114(4),1265e1270.https://www.doczj.com/doc/b613335864.html,/10.1016/ j.foodchem.2008.11.004.

El,S.N.,&Kavas,A.(1997).Available lysine in dried milk after processing.Inter-national Journal of Food Sciences and Nutrition,48(2),109e111.https://www.doczj.com/doc/b613335864.html,/

10.3109/09637489709006969.

Goldberg,T.,Cai,W.,Peppa,M.,Dardaine,V.,Baliga,B.S.,Uribarri,J.,et al.(2004).

Advanced glycoxidation end products in commonly consumed foods.Journal of the American Dietetic Association,104(8),1287e1291.https://www.doczj.com/doc/b613335864.html,/10.1016/ j.jada.2004.05.214.Pereyra Gonzales,A.S.,Naranjo,G.B.,Leiva,G.E.,&Malec,L.S.(2010).Maillard reaction kinetics in milk powder:Effect of water activity at mild temperatures.

International Dairy Journal,20(1),40e45.https://www.doczj.com/doc/b613335864.html,/10.1016/ j.idairyj.2009.07.007.

Grif?n,M.(2013).Milk and milk products,market assessment.Retrieved20151015, from https://www.doczj.com/doc/b613335864.html,/?leadmin/templates/est/COMM_MARKETS_

MONITORING/Dairy/Documents/November_2013.pdf.

Henle,T.(2005).Protein-bound advanced glycation endproducts(AGEs)as bioac-tive amino acid derivatives in foods.Amino Acids,29(4),313e322.http:// https://www.doczj.com/doc/b613335864.html,/10.1007/s00726-005-0200-2.

Hurrell,R.F.,Finot,P.A.,&Ford,J.E.(1983).Storage of milk powders under adverse conditions.British Journal of Nutrition,49(03),343e354.https://www.doczj.com/doc/b613335864.html,/

10.1079/BJN19830043.

Hurrell,R.F.,Lerman,P.,&Carpenter,K.J.(1979).Reactive lysine in foodstuffs as measured by a rapid dye-binding procedure.Journal of Food Science,44(4), 1221e1227.https://www.doczj.com/doc/b613335864.html,/10.1111/j.1365-2621.1979.tb03485.x.

Jouppila,K.,Kansikas,J.,&Roos,Y.H.(1997).Glass transition,water plasticization, and lactose crystallization in skim milk powder.Journal of Dairy Science,80(12), 3152e3160.https://www.doczj.com/doc/b613335864.html,/10.3168/jds.S0022-0302(97)76286-6.

Jouppila,K.,&Roos,Y.H.(1994).Glass transitions and crystallization in milk powders.Journal of Dairy Science,77(10),2907e2915.https://www.doczj.com/doc/b613335864.html,/10.3168/ jds.S0022-0302(94)77231-3.

Malec,L.S.,Pereyra Gonzales,A.S.,Naranjo,G.B.,&Vigo,M.S.(2002).In?uence of water activity and storage temperature on lysine availability of a milk-like system.Food Research International,35(9),849e853.https://www.doczj.com/doc/b613335864.html,/10.1016/ S0963-9969(02)00088-1.

Mehta,B.M.,&Deeth,H.C.(2016).Blocked lysine in dairy Products:Formation, occurrence,analysis,and nutritional https://www.doczj.com/doc/b613335864.html,prehensive Reviews in Food Science and Food Safety,15(1),206e218.https://www.doczj.com/doc/b613335864.html,/10.1111/1541-4337.12178.

Motarjemi,Y.(1988).A study of some physical properties of water in foodstuffs:Water activity,water binding and water diffusivity in minced meat products.Lund, Sweden:Dept.of Food Engineering,Lund University.Available from:http:// https://www.doczj.com/doc/b613335864.html,/z-wcorg/database.

Murrieta-Pazos,I.,Gaiani, C.,Galet,L.,Cuq, B.,Desobry,S.,&Scher,J.(2011).

Comparative study of particle structure evolution during water sorption:Skim and whole milk powders.Colloids and Surfaces B:Biointerfaces,87(1),1e10.

https://www.doczj.com/doc/b613335864.html,/10.1016/j.colsurfb.2011.05.001.

Nguyen,H.T.,van der Fels-Klerx,H.J.,&van Boekel,M.A.J.S.(2013).Nε-(car-boxymethyl)lysine:A review on analytical methods,formation,and occurrence in processed food,and health impact.Food Reviews International,30(1),36e52.

https://www.doczj.com/doc/b613335864.html,/10.1080/87559129.2013.853774.

Ozmen,L.,&Langrish,T.A.G.(2002).Comparison of glass transition temperature and sticky point temperature for skim milk powder.Drying Technology,20(6), 1177e1192.https://www.doczj.com/doc/b613335864.html,/10.1081/DRT-120004046.

Ramírez-Jim e nez,A.,García-Villanova,B.,&Guerra-Hern a ndez,E.(2004).Effect of storage conditions and inclusion of milk on available lysine in infant cereals.

Food Chemistry,85(2),239e244.https://www.doczj.com/doc/b613335864.html,/10.1016/ j.foodchem.2003.06.017.

Rutherfurd,S.M.,&Moughan,P.J.(2008).Effect of elevated temperature storage on the digestible reactive lysine content of unhydrolyzed-and hydrolyzed-lactose milk-based products.Journal of Dairy Science,91(2),477e482.https://www.doczj.com/doc/b613335864.html,/

10.3168/jds.2007-0612.

Schmitz,I.,Gianfrancesco,A.,Kulozik,U.,&Foerst,P.(2011).In?uence of temper-ature and the physical state on available lysine in powdered infant formula.

Procedia Food Science,1(0),1031e1038.https://www.doczj.com/doc/b613335864.html,/10.1016/ j.profoo.2011.09.154.

Siciliano,R.A.,Mazzeo,M.F.,Arena,S.,Renzone,G.,&Scaloni,A.(2015).Mass spectrometry for the analysis of protein lactosylation in milk products.Food Research International.https://www.doczj.com/doc/b613335864.html,/10.1016/j.foodres.2012.10.044,0. Silalai,N.,&Roos,Y.H.(2010).Roles of water and solids composition in the control of glass transition and stickiness of milk powders.Article Journal of Food Science, 75(5),E285e E296.https://www.doczj.com/doc/b613335864.html,/10.1111/j.1750-3841.2010.01652.x. Vuataz,G.(2002).The phase diagram of milk:A new tool for optimising the drying https://www.doczj.com/doc/b613335864.html,it,82(4),485e500.https://www.doczj.com/doc/b613335864.html,/10.1051/lait:2002026.

K.Aalaei et al./LWT-Food Science and Technology73(2016)675e682 682

样品预处理大全.

检测实验室样品预处理方法汇总 普通碳钢及中低合金钢的样品溶解体系基本采用如下四种体系 (1)硝酸(1+3) (2)稀王水(硝酸+盐酸+水=50+150+200) (3)硫酸(1+19) (4)盐酸(1+1)滴加过氧化氢 其中试验显示:王水加过氧化氢对于Cr、Al测定更有利,而采用硫酸溶样对Cr、Al测定的数据偏低。因此建议采用如下方法: 准确称取样品0.1-0.5克加入王水或者(1+1)稀王水20-50毫升,缓慢加热到样品基本溶解,滴加三到五滴过氧化氢,加热赶净气泡后冷却定容到100毫升容量瓶,待测。 特殊样品测定和讨论: 钢铁中痕量硼的测定:硼在钢铁中一般以固溶体存在,因此采用王水溶样只能溶解酸溶硼。用密闭消解罐加酸微波消解可测总硼。选择B249.68nm测定。 钢中微量的砷、锡、锑的测定:0.5000克钢样用硝酸(1+3)15毫升,溶解并蒸发至近干,加5毫升浓盐酸溶解残渣,稀释至100毫升,纯铁为基体。 钢铁及高温合金中痕量硒的测定:取1克样品于烧杯中,加10毫升水,10毫升硝酸,30毫升盐酸,低温加热,加6毫升高氯酸至样品溶解,用定量滤纸过滤,于滤液中加3克抗坏血酸,盐酸55毫升,缓慢加热至微,直至出现黑色无定形炭后保持2-3分钟取下,用滤纸过滤,将沉淀连滤纸加硝酸及高氯酸硝化,稀释至10毫升用于测定。 钢中总铝的测定:钢中的铝一般以金属铝、氧化铝及氮化铝等形式存在。一般称取样品0.1-0.5克,加入12毫升王水和0.1毫升HF消解钢样,来测定总铝。王水,硝酸等都无法消解氮化铝,加入一定量HF酸可以使其消解90%以上。 高合金钢:包括不锈钢,高温合金,耐热合金及工具钢等,其共同特点是含较高的合金元素镍、铬、钼等。溶解时容易生成碳化物及其他不溶物,需要专门处理。

冷冻干燥工艺流程及其应用-

冷冻干燥工艺流程及其应用-

冷冻干燥工艺流程及其应用

目录 冷冻干燥工艺的原理及特点………………… 真空冷冻干燥机组成………………………… 冷冻干燥工艺……………………………………食品冷冻干燥技术的运用…………………… 冻干食品的特点…………………………………我国食品冻干技术面临的问题……………… 冷冻干燥工艺的应用前景…………………… 结论…………………………………………………参考文献……………………………………………

冷冻干燥工艺流程及其应用 1冷冻干燥工艺的原理及特点 1.1冷冻干燥工艺原理 冷冻干燥就是把含有大量水分的物质,预先进行降温冻结成固体。然后在真空的条件下使水蒸汽直接从固体中升华出来,而物质本身留在冻结的冰架子中,从而使得干燥制品不失原有的固体骨架结构,保持物料原有的形态,且制品复水性极好。然后在适当的温度和真空度下进行冰晶升华干燥,等升华结束后再进行解吸干燥,除去部分结合水,从而获得干燥的产品的技术。冷冻干燥过程可分为制品准备、预冻、一次干燥(升华干燥)、二次干燥(解吸干燥)、和密封保存五个步骤。利用冷冻干燥目的是为了贮存潮湿的物质,通常是含有微生物组织的水溶液,或不含微生物组织的水溶液。产品在冻结之后置于一个低水气压下,这时包含冰的升华,直接由固态在不发生熔化的情况下变成汽态。与其他干燥方式相比避免了化学、物理和酶的变化,从而确保了制品物性在保存时不易改变。实际需要的低水汽压是靠真空的状况下达到的。

图1:水的平衡相图 1.2冷冻干燥工艺存在的优缺点 1.2.1冷冻干燥工艺的优点 (1)冷冻干燥的过程中样品的结构不会被破坏,因为固体成分被在其位置上的坚冰支持着,在冰升华时会留下孔隙在干燥的剩余物质里。这样就保留了产品的生物和化学结构及其活性的完整性; (2)蛋白多肽类药物在高温下容易变性,造成干燥后生物活性的降低;冷冻干燥的过程是在低温状态下进行的,工艺过程对组分的破坏程度小,热畸变极其微弱,对不耐热药物特别是蛋白质多肽类药品非常适合[1]; (3)冷冻干燥的药剂为液体,定量分装比粉剂或片剂精度高;用无菌水溶液调配且通过除菌过滤、灌装,杂质微粒小、无污染。制品为多孔结构,质地疏松,较脆,复水性能好,重复再溶解迅速完全,便于

冷冻干燥原理

冷冻干燥原理 冷冻干燥是指通过升华从冻结的生物产品中去掉水份或其他溶剂的过程。升华指的是溶剂,比如水,像干冰一样,不经过液态,从固态直接变为气态的过程。冷冻干燥得到的产物称作冻干物(lyophilizer),该过程称任冻干(lyophilization)。 为什么要选择冷冻干燥? 传统的干燥会引起材料皱缩,破坏细胞,在冰冻干燥的过程中样品的结构不会被破坏,因为固体成份被在其位子上的坚冰支持着。在冰升华时,他会留下孔隙在干燥的剩余物质里。这样就保留了产品的生物和化学结构及其活性的完整性。 在实验室中,冻干有很多不同的用途,他在许多生物化学与制药应用中是不可缺少的,它被用获得可长时期保存的生物材料,例如微生物培养、酶、血液与药品,除长期保存的稳定性以外,还保留了其固有的生物活性与结构。为此,冻干被用于准备用做结构研究(例如电镜研究)的组织样品,冷冻干燥也应用于化学分析中,它能得到干燥态的样品,或者浓缩样品以增加化析敏感度。冻干使样品成分稳定,也不需改变化学成分,是理想的分析辅助手段。 冷冻干燥的实现 冷冻干燥可以自然发生,在自然情况下,这一过程缓慢而且不可预测。通过冷冻干燥系统,人们改进,细分了很多步骤加速了这一过程。 冷冻干燥系统 一个基本的冷冻干燥系统包括: 一个干燥室或者多歧管 一个抽真空系统克服阻碍因素和加速气体流动 一个热源提供能量 一个低温冷凝器,用于使蒸气压差最大化并捕捉蒸汽使之冻结,避免水蒸汽污染真空泵 冷冻干燥过程包含三个步骤 预冻,为接下来的升化过程准备样品。 初级干燥,在此过程中冰升化而不融化。 次级干燥,在此过程中,键和于固体物质的残留水分被除去,从而留下干燥样品,这一步骤对保存样品的稳定性非常重要。 在壳式预冻中,冻干瓶中样品浸放在低温热传导液体里旋转,液体样品沿冻干瓶圆周内壁结冻,以达到更大的表面积。这层薄的结冻层能让水份子更加容易地穿过。一旦样品结冰,就可以与冷冻干燥系统连接了。

冻干机原理

真空冷冻干燥是将含水物质先冻结成固态,然后使其中的水份从 固态升华成气态,从而除去水份而保存物质的方法。 1.冻干的优点: 冻干与通常的晒干、煮干、喷雾干燥及真空干燥相比有如下 突出的优点。 a.冻干是在低温下干燥的,不会使蛋白质产生变性,但可使微生 物等失去生物活力。这对于那些热稳定性能差的生物活性制品、生物 化学类制品、基因工程类制品和血液制品等的干燥保存特别适用。 c..在低温干燥过程中,微生物的生长和酶的作用几乎无法进行, 从而能最好地保持物质原来的性状。 d.成原来的形状。 e.因一般是在真空下干燥,故氧气极少,使易氧化的物质得到了 保护。 f.能除去物质中95%~99.5%的水分,制品的保存期长。 2.冻干的应用 冻干是一种优质的干燥方法。但是它需要比较昂贵的专用设 备,干燥过程中的能耗较大,因此加工成本较高,目前主要应用在以 下几个方面。 c.生物标本、生物组织方面:如制作各种动植物标本,干燥保存 用于动物异种或同种移植的皮肤、骨骼、主动脉、心瓣膜等边缘组织。 d.制作用于光学显微镜、电子扫描和透射显微镜的小组织片。

e.食品的干燥方面:如咖啡、茶叶、肉鱼蛋类、海藻、水果、蔬菜、调料、豆腐、方便食品等。 f.高级营养品及中草药方面:如蜂王浆、蜂蜜、花粉、中草药制剂等。 g.超细微粉的制备方面:如制取Al2O3、ZrO2、TiO2、Ba2Cu3O7~8、Ba2Ti9O20等超细微粉。 h.其他方面:如化工中的催化剂,冻干后可提高催化效率5~20倍;将植物叶子、土壤冻干保存,用以研究土壤、肥料、气候对植物生长的影响及因子的作用;潮湿的木制文物、淹坏的书籍稿件等用冻干法干燥。 3.冷冻干燥的基本过程如下: a.制品的制备(前处理):如药物的培养、灭菌、分装、洗瓶、半加塞等,食品原料的挑选、清洗、切分、灭酶、分装等。 b.制品的冻结(预冻):将制品冻结成固态。 c.第一阶段干燥(升华干燥):将制品中的冰晶以升华方式除去。 d.第二阶段干燥(解吸干燥):将残留于制品的水分在较高温度下蒸发一部分,使残余水分达到预定要求。 e.密封包装:已干制品一般应在真空或充惰性气体条件下密封包装,以利于储存。 4.制品冷冻的物理基础

离子色谱样品预处理

离子色谱样品预处理 随着离子色谱日益广泛的应用,许多样品已经无法用传统的方法采用采样、稀释、过滤后直接进样的模式来进行离子色谱的分析。对于大量复杂基体的样品,离子色谱可以采用合适的方法,通过预处理后再用离子色谱法进行分析,这样一方面可以解决样品复杂基体对离子色谱柱的污染,另一方面也可以大大提高复杂基体样品测定结果和准确性,提高分析方法的灵敏度。 有关样品预处理方法,随着国内离子色谱的用户水平的提高,出现了大量相关离子色谱的预处理方法,这些方法有如下几方面的特点: (1)大部分样品前处理方面,采用国产材料进行,预处理的成本很低,更能适合于中国国情,可以在国内广泛推广使用; (2)大部分样品预处理方法采用离线方法,不需要昂贵的在线设备;但相对而言,样品处理的时间比较长,需要的样品量也比较多一些; (3)与国际上出现的一些样品预处理方法相比较,国内出现的样品前处理绝大多数均出自于基层单位,实用性强;但相关的理论方面的探讨比较少。因此,许多国内采用样品前处理方法,一方面可以再进一步从理论角度进行讨论,另一方面也可以通过适当改进配合包括国内和国外的仪器用于在线样品的预处理。 离子色谱样品前处理遵循的原则 (1)样品处理后待测组分的含量应不低于检测器的检出限 ; (2)样品中各组分的分离必须达到色谱定量要求; (3)样品中不能含有机械杂质和微小颗粒物,以免堵塞色谱柱; (4)尽可能避免待测组分离子发生化学变化,防止和减少待测组分损失; (5)待测组分进行化学反应时其化学计量关系必须明确并且反应彻底; (6)避免和减少无关离子和化合物的引入,防止待测组分被污染并增加分离难度。 1.膜处理法 1.1.滤膜或砂芯处理法 滤膜过滤样品是离子色谱分 析最通用的水溶液样品前处 理方法,一般如果样品含颗 粒态的样品时,可以通过 0.45或0.22μm微孔滤膜过滤后直接进样。由于一般的滤膜不能耐高压,因此滤膜过滤只能用于离线样品处理。有时需要在线样品处理,或者将该方法用于仪器管路中,必须采用砂芯滤片。但滤膜过滤方法只能去除颗粒态不溶性物质,对于极小颗粒或有机大分子可溶性化合物和金属水溶性离子,照样能够进入色谱柱干扰样品的测定并沾污色谱柱。 1.2.电渗析处理法 在国内比较的特色的工作是采用电渗析法,与其它的膜处理方法相比,电渗析处理法有一定的选择性,因此不仅可以有效去除颗粒物、有机污染物,而且也可以去除重金属离子的污染物。是处理复杂基体样品最有效的方法之一。 1.3.电解中和法 强酸、强碱中微量离子的测定是离子色谱较难解决的问题,电解中和法的应用使问题迎刃而解。该方法是利用水电解产生的氢离子或氢氧根离子对高浓度

冻干机原理及说明

一、真空冷冻干燥原理 真空冷冻干燥(简称冻干)是将含水物质先冻结成固态,然后使其中的水份从固态升华成气态,从而除去水份而保存物质的方法。 1.冻干的优点: 冻干与通常的晒干、煮干、喷雾干燥及真空干燥相比有如下突出的优点。 a.冻干是在低温下干燥的,不会使蛋白质产生变性,但可使微生物等失去生物活力。这对于那些热稳定性能差的生物活性制品、生物化学类制品、基因工程类制品和血液制品等的干燥保存特别适用。 b.由于是低温干燥,使物质中的挥发性成分和受热变性的营养成分和芳香成分损失很小,因此是化学制品、药品和食品的优质干燥方法。 c..在低温干燥过程中,微生物的生长和酶的作用几乎无法进行,从而能最好地保持物质原来的性状。 d.干燥后体积、形状基本不变,物质呈海绵状,无干缩,复水时与水的接触面大,能迅速还成原来的形状。 e.因一般是在真空下干燥,故氧气极少,使易氧化的物质得到了保护。 f.能除去物质中95%~99.5%的水分,制品的保存期长。 2.冻干的应用 冻干是一种优质的干燥方法。但是它需要比较昂贵的专用设备,干燥过程中的能耗较大,因此加工成本较高,目前主要应用在以

下几个方面。 a.生物制品、药品方面:如抗菌素、抗毒素、诊断用品和疫苗的保存。 b.微生物和藻类方面:如各种细菌、酵母、酵素、原生动物、微细藻类等的长期保存。 c.生物标本、生物组织方面:如制作各种动植物标本,干燥保存用于动物异种或同种移植的皮肤、骨骼、主动脉、心瓣膜等边缘组织。 d.制作用于光学显微镜、电子扫描和透射显微镜的小组织片。 e.食品的干燥方面:如咖啡、茶叶、肉鱼蛋类、海藻、水果、蔬菜、调料、豆腐、方便食品等。 f.高级营养品及中草药方面:如蜂王浆、蜂蜜、花粉、中草药制剂等。 g.超细微粉的制备方面:如制取Al2O3、ZrO2、TiO2、Ba2Cu3O7~ 8、Ba2Ti9O20等超细微粉。 h.其他方面:如化工中的催化剂,冻干后可提高催化效率5~20倍;将植物叶子、土壤冻干保存,用以研究土壤、肥料、气候对植物生长的影响及因子的作用;潮湿的木制文物、淹坏的书籍稿件等用冻干法干燥,能最大限度地保持原状等。 3.冷冻干燥的基本过程如下: a.制品的制备(前处理):如药物的培养、灭菌、分装、洗瓶、半加塞等,食品原料的挑选、清洗、切分、灭酶、分装等。 b.制品的冻结(预冻):将制品冻结成固态。

样品预处理

徐州工程学院 论文报告 题目:样品预处理 学生:骆乃薇 指导教师:刘辉 专业:食品质量与安全 班级:12质量2 目录 1.样品预处理的目的 1 2.样品预处理的原则 1 3.样品预处理的方法 1 3.1有机物破坏法 2 3.2蒸馏法 3 3.3溶剂抽提法 5 3.4色层分离法 7 3.5化学分离法 7 3.6浓缩---------------------------------------------------------------------------9 一目的: 1、测定前排除干扰组分; 2 、对样品进行浓缩。 二原则: ①消除干扰因素; ②完整保留被测组分; ③使被测组分浓缩; 以便获得可靠的分析结果 三方法: 主要有6种。 (一)有机物破坏法 测定食品中无机成分的含量,需要在测定前破坏有机结合体,如蛋白质等。操作方法分为干法和湿法两大类。 1.干法灰化 原理:将样品至于电炉上加热,使其中的有机物脱水、炭化、分解、氧化,在置高温炉中灼烧灰化,直至残灰为白色或灰色为止,所得残渣即为无机成分。

2.湿法消化 原理:样品中加入强氧化剂,并加热消煮,使样品中的有机物质完全分解、氧化,呈气态逸出,待测组分转化为无机物状态存在于消化液中。 常用的强氧化剂有浓硝酸、浓硫酸、高氯酸、高锰酸钾、过氧化氢等。 湿法消化的优缺点 优点:(1)有机物分解速度快,所需时间短。 (2)由于加热温度低,可减少金属挥发逸散的损失。 缺点:(1)产生有害气体。 (2)初期易产生大量泡沫外溢。 (3)试剂用量大,空白值偏高。 3. 紫外光分解法 高压汞灯提供紫外光。85±5 ℃,加双氧水。 4. 微波高压消煮器。 食品样品最多只要10分钟(2.5 MPa); 其它方法: 1. 高压密封消化法——120~150℃,数小 时,要求密封条件高。 2.自动回流消化仪。 (二)蒸馏法 利用液体混合物中各种组分挥发度的不同而将其分离。 常压蒸馏 蒸减压蒸馏 馏水蒸气蒸馏 方 法 1.常压蒸馏 适用对象:常压下受热不分解或沸点不太高的物质。 蒸馏釜:平底、圆底 冷凝管:直管、球型、蛇型 注意:1. 爆沸现象。(沸石、玻璃珠、 毛细管、素瓷片) 2. 温度计插放位置。 3. 磨口装置涂油脂

冷冻干燥工艺处理步骤及其应用

冻干燥工艺流程及其应

目录冷冻干燥工艺的原理及特点…………………真空冷冻干燥机组成…………………………冷冻干燥工艺……………………………………食品冷冻干燥技术的运用……………………冻干食品的特点…………………………………我国食品冻干技术面临的问题………………冷冻干燥工艺的应用前景……………………结论…………………………………………………参考文献……………………………………………

冷冻干燥工艺流程及其应用 1冷冻干燥工艺的原理及特点 1.1冷冻干燥工艺原理 冷冻干燥就是把含有大量水分的物质,预先进行降温冻结成固体。然后在真空的条件下使水蒸汽直接从固体中升华出来,而物质本身留在冻结的冰架子中,从而使得干燥制品不失原有的固体骨架结构,保持

物料原有的形态,且制品复水性极好。然后在适当的温度和真空度下进行冰晶升华干燥,等升华结束后再进行解吸干燥,除去部分结合水,从而获得干燥的产品的技术。冷冻干燥过程可分为制品准备、预冻、一次干燥(升华干燥)、二次干燥(解吸干燥)、和密封保存五个步骤。利用冷冻干燥目的是为了贮存潮湿的物质,通常是含有微生物组织的水溶液,或不含微生物组织的水溶液。产品在冻结之后置于一个低水气压下,这时包含冰的升华,直接由固态在不发生熔化的情况下变成汽态。与其他干燥方式相比避免了化学、物理和酶的变化,从而确保了制品物性在保存时不易改变。实际需要的低水汽压是靠真空的状况下达到的。 图1:水的平衡相图 1.2冷冻干燥工艺存在的优缺点

1.2.1冷冻干燥工艺的优点 (1)冷冻干燥的过程中样品的结构不会被破坏,因为固体成分被在其位置上的坚冰支持着,在冰升华时会留下孔隙在干燥的剩余物质里。这样就保留了产品的生物和化学结构及其活性的完整性; (2)蛋白多肽类药物在高温下容易变性,造成干燥后生物活性的降低;冷冻干燥的过程是在低温状态下进行的,工艺过程对组分的破坏程度小,热畸变极其微弱,对不耐热药物特别是蛋白质多肽类药品非常适合[1]; (3)冷冻干燥的药剂为液体,定量分装比粉剂或片剂精度高;用无菌水溶液调配且通过除菌过滤、灌装,杂质微粒小、无污染。制品为多孔结构,质地疏松,较脆,复水性能好,重复再溶解迅速完全,便于临床使用; (4)冻结物干燥前后形状及体积不变化;干燥后真空密封或充氮密封,消除了氧化组分的氧化作用。 1.2.2冷冻干燥工艺的缺点 (1)设备造价高,干燥速率低,能耗高。 (2)工艺时间长(典型的干燥过程周期需要20小时左右)。 (3)生产成本高,能耗大。 (4)生物活性物质采用冻干制剂主要是为了保持活性,但配料选择不合理,工艺操作不合理,冻干设备选择不适当都可能在冻干制剂制备过程中失活,导致产品前功尽弃,这是生产冻干制剂的关键,需进行基础研究和针对特定产品反复试验。

冷冻干燥技术

绪论 冷冻干燥是将含水物质,先冻结成固态,而后使其中的水分从固态升华成气态,以除去水分而保存物质的方法。 这种干燥方法与通常的晒干、烘干、煮干、喷雾干燥及真空干燥相比有许多突出的优点,如: (1)它是在低温下干燥,不使蛋白质、微生物之类产生变性或失去生物活力。这对于那些热敏性物质,如疫苗、菌类、毒种、血液制品等的干燥保存特别适用。 (2)由于是低温干燥,使物质中的挥发性成分和受热变性的营养成分损失很小,是化学制品、药品和食品的优质干燥方法。 (3)在低温干燥过程中,微生物的生长和酶的作用几乎无法进行,能最好地保持物质原来的性状。 (4)干燥后体积、形状基本不变,物质呈海棉状,无干缩;复水时,与水的接触面大,能迅速还原成原来的性状。 (5)因系真空下干燥,氧气极少,使易氧化的物质得到了保护。 (6)能除去物质中95~99%的水分,制品的保存期长。 总之,冷冻干燥是一种优质的干燥方法。但是它需要比较昂贵的专用设备,干燥过程中的耗能较大,因此加工成本高,目前主要应用在以下一些方面: (1)生物制品、药品方面:如抗菌素、抗毒素、诊断用品和疫苗等。 (2)微生物和藻类方面:如酵母、酵素、原生物、微细藻类等。 (3)生物标本、活组织方面:如制作各种动植物标本,干燥保存用于动物异种移植或同种移植的皮层、角膜、骨骼、主动脉、心瓣膜等边缘组织。 (4)制作用于光学显微镜、电子扫描和投射显微镜的小组织片。 (5)食品的干燥:如咖啡、茶叶、鱼肉蛋类、海藻、水果、蔬菜、调料、豆腐、方便食品等。 (6)高级营养品及中草药方面:如蜂王浆、蜂蜜、花粉、中草药制剂等。 (7)其他:如化工中的催化剂,冻干后可提高催化效率5-20倍;将植物叶子、土壤冻干后保存,用以研究土壤、肥料、气候对植物生长的影响及生长因子的作用;潮湿的木制文物、淹坏的书籍 稿件等用冻干法干燥,能最大限度的保持原状等。 冷冻干燥能保存食物很早就为人们所知。古代北欧的海盗利用干寒空气的自然条件来干燥和保存食物,就是其中一列。但是,将冷冻干燥作为科学技术还是近百年来的事。1890年啊特曼(Altmann)在制作标本时,为了防止标本中的物质在有机溶剂中溶解,造成不可逆损失,改变过去用有机溶剂脱水的方法,采用冷冻干燥法冻干各种器官和组织。他的工作确立了生物标本系统的冻干程序,这是冻干在制作生物标本中的最早应用。 1909年谢盖尔(Shackell)将冻干引入细菌学和血清学领域。他采用了盐水预冻,在真空状态下,用硫酸做吸水剂,对补体、抗毒素、狂犬病毒等进行冻干,其设备虽十分简陋,但却是后世先进冻干机的雏形。 1912年卡瑞尔(Carrel)首先提出用冻干技术为外科移植保存组织。 1935年第一台商用冻干机问世。1940年冻干人血浆开始投入市场。第二次世界大战中,由于需要大量的冻干人血浆和青霉素,因而冻干在医药、血液制品等方面的应用得到迅速的发展。艾尔塞(Elser)、沸烙斯道夫(Flosdorf)、格雷夫斯(Greaves)和他们的同事们,一方面进行冻干基础理论的研究,一方面进行装置大型化、现代化的改进,使冻干技术从实验室阶段向工业生产和产品商品化发展。战后,冻干法又迅速扩展到各种疫苗、药品等领域。 1930年沸烙斯道夫进行了食品冻干的试验,1949年他在著作中展望了冻干在食品和其他疏松材料方面应用的前景。二次世界大战后,英国食品部在啊伯丁(Aberdeen)的试验工厂也进行了食品冻干的研究。他们在综合了当时的一些研究成果的基础上,于1961年公布了试验成果,证明冻干法用于食品加工是一种能获得优质食品的方法。随后在美、日、英、加等国相继建立起冻干食品的工厂,到1965年全球已有食品冻干工厂50多家,后来随着越南战争的需要,美国军需定货增多,加之冻干工艺的改进,生产成本的降低,在日、美等国食品冻干的发展就更为迅速。现在冻干食品除在宇宙航行、军队、登山、航海、探险等特殊

冻干机冻干工艺及冻干机选型参数

冷冻干燥机(冻干机)由制冷系统、真空系统、加热系统、电器仪表控制系统所组成。主要部件为干燥箱、凝结器、冷冻机组、真空泵、加热冷却装置等。冷冻干燥简称冻干,就是将含水物质,先冻结成固态,而后使其中的水分从固态升华成气态,以除去水分而保存物质的方法。冻干机起源于19世纪20年代的真空冷冻干燥技术经历了几十年的起伏和徘徊后,在最后的20年中取得了长足进展。进入21世纪,真空冻干技术凭借其它干燥方法无法比拟的优点,越来越受到人们的青睐,除了在医药、生物制品、食品、血液制品、活性物质领域得到广泛应用外,其应用规模和领域还在不断扩大中。为此,真空冷冻干燥必将成为21世纪的重要应用技术。 由于厂家制造冻干机水平食品真空冻干机是非标准设备,在我国尚处于发展初期,这一点是我们的现状。国内众多的食品冻干机(不管是进口还是国产)其品质参差不齐,冻干品产量质量及能耗各说己见,有些甚至把落后的工艺手段吹嘘成国际先进水平,其科学态度及不严肃。冻干机涉及真空、制冷、热工、微机等技术领域,它是把速冻、制冷、真空、热工、自控等工艺过程有机结合的一个整体,采用的工艺过程不同、其各工艺过程结合的不同,都关系到冻干机的性能。但不管怎样,只要冻干品质量好、产量高、设备能耗低(水电汽)、自动化程度高(操作简便:从物料放入按钮开机,速冻真空升华干燥一气呵成,提示冻干完成后关机出料)、设备可靠性高、维护成本低且方便,用户认可,就可以认为是好设备。 冻干过程:速冻(时间快慢对冻干品质量有影响,1至3小时完成)---抽真空至一定的工作点(时间5至40分钟)---升华干燥(按工艺曲线加热、保持真空度,此阶段最复杂,时间最长)---冻干结束(判断冻干结束点)出料。

冷冻干燥技术

冷冻干燥技术 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

绪论 冷冻干燥是将含水物质,先冻结成固态,而后使其中的水分从固态升华成气态,以除去水分而保存物质的方法。 这种干燥方法与通常的晒干、烘干、煮干、喷雾干燥及真空干燥相比有许多突出的优点,如: (1)它是在低温下干燥,不使蛋白质、微生物之类产生变性或失去生物活力。这对于那些热敏性物质,如疫苗、菌类、毒种、血液制品等的干燥保存特别适用。 (2)由于是低温干燥,使物质中的挥发性成分和受热变性的营养成分损失很小,是化学制品、药品和食品的优质干燥方法。 (3)在低温干燥过程中,微生物的生长和酶的作用几乎无法进行,能最好地保持物质原来的性状。 (4)干燥后体积、形状基本不变,物质呈海棉状,无干缩;复水时,与水的接触面大,能迅速还原成原来的性状。 (5)因系真空下干燥,氧气极少,使易氧化的物质得到了保护。 (6)能除去物质中95~99%的水分,制品的保存期长。 总之,冷冻干燥是一种优质的干燥方法。但是它需要比较昂贵的专用设备,干燥过程中的耗能较大,因此加工成本高,目前主要应用在以下一些方面: (1)生物制品、药品方面:如抗菌素、抗毒素、诊断用品和疫苗等。 (2)微生物和藻类方面:如酵母、酵素、原生物、微细藻类等。 (3)生物标本、活组织方面:如制作各种动植物标本,干燥保存用于动物异种移植或同种移植的皮层、角膜、骨骼、主动脉、心瓣膜等边缘组织。 (4)制作用于光学显微镜、电子扫描和投射显微镜的小组织片。 (5)食品的干燥:如咖啡、茶叶、鱼肉蛋类、海藻、水果、蔬菜、调料、豆腐、方便食品等。 (6)高级营养品及中草药方面:如蜂王浆、蜂蜜、花粉、中草药制剂等。 (7)其他:如化工中的催化剂,冻干后可提高催化效率5-20倍;将植物叶子、土壤冻干后保存,用以研究土壤、肥料、气候对植物生长的影响及生长因子的作用;潮湿的木制文物、淹坏的 书籍稿件等用冻干法干燥,能最大限度的保持原状等。 冷冻干燥能保存食物很早就为人们所知。古代北欧的海盗利用干寒空气的自然条件来干燥和保存食物,就是其中一列。但是,将冷冻干燥作为科学技术还是近百年来的事。1890年啊特曼(Altmann)在制作标本时,为了防止标本中的物质在有机溶剂中溶解,造成不可逆损失,改变过去用有机溶剂脱水的方法,采用冷冻干燥法冻干各种器官和组织。他的工作确立了生物标本系统的冻干程序,这是冻干在制作生物标本中的最早应用。 1909年谢盖尔(Shackell)将冻干引入细菌学和血清学领域。他采用了盐水预冻,在真空状态下,用硫酸做吸水剂,对补体、抗毒素、狂犬病毒等进行冻干,其设备虽十分简陋,但却是后世先进冻干机的雏形。 1912年卡瑞尔(Carrel)首先提出用冻干技术为外科移植保存组织。 1935年第一台商用冻干机问世。1940年冻干人血浆开始投入市场。第二次世界大战中,由于需要大量的冻干人血浆和青霉素,因而冻干在医药、血液制品等方面的应用得到迅速的发展。艾尔塞(Elser)、沸烙斯道夫(Flosdorf)、格雷夫斯(Greaves)和他们的同事们,一方面进行冻干基础理论的研究,一方面进行装置大型化、现代化的改进,使冻干技术从实验室阶段向工业生产和产品商品化发展。战后,冻干法又迅速扩展到各种疫苗、药品等领域。 1930年沸烙斯道夫进行了食品冻干的试验,1949年他在着作中展望了冻干在食品和其他疏松材料方面应用的前景。二次世界大战后,英国食品部在啊伯丁(Aberdeen)的试验工厂也进行了食品冻干的研究。他们在综合了当时的一些研究成果的基础上,于1961年公布了试验成果,证明冻干法用于食品加工是一种能获得优质食品的方法。随后在美、日、英、加等国相继建立起冻干食品的工厂,到1965年全球

血液样品预处理的标准操作

血液样品预处理的标准操作 一、目的 规范色谱分析中血液样品预处理的操作。 二、职责 1. 实验室分析测试人员对本规程的实施负责。 2. 对于每一项具体的研究课题,具体的操作步骤应由实验室负责人负责制定,并由实验室分析测试人员严格实施。 3. 实验室负责人负责对本规程的修订。 三、血液样品预处理的标准操作 1. 实验仪器与设备的准备 试管一般采用有盖子和刻度的尖底试管,要求密封性好,编号清楚准确,并摆放整齐。 EP管一般采用的规格有1ml、、2 ml。要求密封性好,编号清楚准确,并摆放整齐。 移液器要求定量准确,重复性好。 其它涡流混合器、离心机、真空泵、烧杯、量筒、记号笔、试管架、标签纸等。 2. 样品的均匀化 将装有血浆(血清)样品的EP管放置在冰箱冷藏室内,缓慢解冻为血浆(血清)溶液。 然后取出放置至室温,置涡流混合器上混匀或往复振摇亦可到达均匀的目的。 3. 液-液提取 提取溶剂的准备 常用的溶剂有乙酸乙酯,乙醚,环己烷等。 提取溶剂可以是一种也可以是几种溶剂的混合溶液,目的是调整提取溶液的剂性,既保证待测样品被充分萃取进入提取溶剂,同时又有很好的选择性。 根据待测样品的需要用移液器(移液枪)定量吸取血浆(血清)至试管中。 必要时调整血浆(血清)溶液的pH值,根据待测样品的性质加入酸、碱或缓冲溶液,然后涡旋混匀。用移液器定量吸取提取溶液至装有血浆(血清)的试管中,盖好试管塞。 溶液的混匀 涡流混匀将试管置于涡流混合器上进行旋涡,并保证样品溶液旋涡充分混匀,旋涡时间一般为2-3分钟。 样品的离心将试管置于离心机中,分离过程中一般采用4000r/min。离心之前注意要平衡,加速时应注意缓慢逐步加速,以防加速过快试管炸裂,离心时间一般为10分钟。 离心分离后试管中样品分为上下两层,用移液器吸取上层有机相,转移至另一试管中。 溶剂的挥发 自然挥发将样品溶液放置在室温下挥发,有时还可适当加热,加速溶液挥发。 氮气吹干氮气流能防止发生氧化,为了加快挥散速度,将样品溶液置于氮气流下吹干。 减压蒸发在密闭容器内,通过抽真空以降低液体表面的压力,使其沸点降低,样品溶液很快挥发,减少了蒸发过程中样品与空气的接触,避免由此引起的分解等副反应,适于热不稳定的样品。 样品的复溶用于样品溶液残渣复溶的溶液通常采用流动相或其它有机溶剂。用移液器准确定量吸取,并且复溶样品应充分混合均匀。

冻干机原理及说明

真空冷冻干燥(简称冻干)是将含水物质先冻结成固态,然后使 其中的水份从固态升华成气态,从而除去水份而保存物质的方法。 1.冻干的优点: 冻干与通常的晒干、煮干、喷雾干燥及真空干燥相比有如下 突出的优点。 a.冻干是在低温下干燥的,不会使蛋白质产生变性,但可使微生 物等失去生物活力。这对于那些热稳定性能差的生物活性制品、生物 化学类制品、基因工程类制品和血液制品等的干燥保存特别适用。 b.由于是低温干燥,使物质中的挥发性成分和受热变性的营养成 分和芳香成分损失很小,因此是化学制品、药品和食品的优质干燥方 法。 c..在低温干燥过程中,微生物的生长和酶的作用几乎无法进行, 从而能最好地保持物质原来的性状。 d.干燥后体积、形状基本不变,物质呈海绵状,无干缩,复水时 与水的接触面大,能迅速还成原来的形状。 e.因一般是在真空下干燥,故氧气极少,使易氧化的物质得到了 保护。 f.能除去物质中95%~99.5%的水分,制品的保存期长。 2.冻干的应用 冻干是一种优质的干燥方法。但是它需要比较昂贵的专用设 备,干燥过程中的能耗较大,因此加工成本较高,目前主要应用在以

下几个方面。 a.生物制品、药品方面:如抗菌素、抗毒素、诊断用品和疫苗的保存。 b.微生物和藻类方面:如各种细菌、酵母、酵素、原生动物、微细藻类等的长期保存。 c.生物标本、生物组织方面:如制作各种动植物标本,干燥保存用于动物异种或同种移植的皮肤、骨骼、主动脉、心瓣膜等边缘组织。 d.制作用于光学显微镜、电子扫描和透射显微镜的小组织片。 e.食品的干燥方面:如咖啡、茶叶、肉鱼蛋类、海藻、水果、蔬菜、调料、豆腐、方便食品等。 f.高级营养品及中草药方面:如蜂王浆、蜂蜜、花粉、中草药制剂等。 g.超细微粉的制备方面:如制取Al2O3、ZrO2、TiO2、Ba2Cu3O7~8、Ba2Ti9O20等超细微粉。 h.其他方面:如化工中的催化剂,冻干后可提高催化效率5~20倍;将植物叶子、土壤冻干保存,用以研究土壤、肥料、气候对植物生长的影响及因子的作用;潮湿的木制文物、淹坏的书籍稿件等用冻干法干燥,能最大限度地保持原状等。 3.冷冻干燥的基本过程如下: a.制品的制备(前处理):如药物的培养、灭菌、分装、洗瓶、半加塞等,食品原料的挑选、清洗、切分、灭酶、分装等。 b.制品的冻结(预冻):将制品冻结成固态。

《冷冻干燥技术》推荐教材与补充讲义

《冷冻干燥原理》 前 言 冷冻真空干燥也叫干燥。升华干燥或简称冻干。它是干燥方法之一,目的是为了贮存物品。 物品之所以会损坏、腐烂、变质,主要是由于外因和内因二个因素引起,外因者,空气、水、温度、生物等的作用;内因者,主要是生物物质自身的新陈代谢作用。如果能使外因和内因的作用减小到最低程度,则能达到物品在一定时间内保持不变的目的。 干燥法就是驱除物品内部所含的水份,因为水份是一切生物生长的必要条件之一。生物体水份减少到一定程度,则生物不易或不能生长繁殖。因而能较长时间的贮藏保存;另外,当有水份存在时,一些酸碱溶解其内还会发生一些化学作用而使物品变质。 干燥的方法很多,如晒干、烘干、煮干、晾干、喷雾干燥、真空干燥、冷冻干燥等。其中唯有冷冻干燥法是保存有生命生物物质的最理想方法。 冷冻干燥之后的产品,进行真空或氮气封口,以隔绝空气特别是氧气,再在低温下存放,则水份、空气、温度三个因素被控制,使产品能在较长的时间内得到有效的保存。 冷冻干燥技术是在第2次世界大战期间,因大量需要血浆和青霉素而发展起来的。现在已广泛应用于化学、制药工业、食品工业和科学研究等方面,特别是应用于含有生物活性物质的生物药品方面最为普遍。 我国在解放前就已使用冷冻干燥法制造疫苗,但数量极少,仅应用于人医,解放后我国的冷冻干燥事业得到迅速发展。1952年起开始在兽医界应用,并在国内制造了一批大、中型的冷冻干燥机,现在全国所有的省、市自治区均有各种不同型号的冷冻干燥机。 在兽医方面,主要用于各种兽用微生物的贮存,各种兽医生物药品的制造,一切用于猪、牛、马、鸡、鸭、鹅、兔、狗的各种预防疾病的药品均离不开冷冻干燥机。 冷冻干燥属于边缘科学,它涉及到物理、化学、生物学等知识,包括制冷、真空、电工、仪表等技术。因此也是一门综合性的专业科学技术。

冷冻干燥(冻干机)综述

药厂车间设计与设备 题目:冷冻干燥设备综述 学院专业 学号 学生姓名 指导教师 二〇一年月

目录 1.冻干技术原理 (2) 2.冻干设备分类 (3) 2.1.干燥搁板面积 (4) 2.2.冻结方式 (4) 2.3.干燥仓形状 (4) 3.冷冻干燥机结构 (4) 4.冻干基本过程 (4) 4.1 前处理 (5) 4.2 预冻 (5) 4.3 干燥 (5) 3.4 后处理 (6) 5.冻干技术发展历史 (6) 5.1 食品的冻干 (6) 5.2 标本、医药品的冻干 (7) 5.3 当今情况 (8) 6.冻干设备医药领域应用 (8) 6.1中药现代化 (8) 6.2西药制备 (8) 6.3生物制品的保存 (9) 7.冻干设备主要厂商 (9) 7.1国内主要厂商及产品 (9) 7.2国外主要厂商及产品 (11) 8.冻干发展现状和趋势 (11) 8.1 制冷系统的发展现状和趋势 (12) 8.2 控制系统的发展现状和趋势 (13) 8.3 整合的冻干生产线 (13) 8.4结论 (13) 9.参考文献 (14) 1.冻干技术原理 真空冷冻干燥技术,也可称之为冷冻升华干燥,它是将经过一定处理的新鲜物料或者湿物料的温度降低到物料共晶点温度以下,使物料内部的水分完全冻结,形成固态的冰,然后适当抽取干燥仓内的空气,使其达到一定的真空度,之后对加热板进行加热达到适当的温度下,使冰直接升华为水蒸气,再利用真空系统的捕水器或者制冷系统的水气凝结器将水蒸气冷凝,从而得到干制品物料的一种技术。 真空冷冻干燥技术其干燥过程是物料内部水分的物理状态变化并且逐渐移动的过程,由于这种变化和移动是发生在低温低压条件下的,因此,真空冷冻干

冷冻干燥工艺流程及其应用-.

冷冻干燥工艺流程及其应用

目录 冷冻干燥工艺的原理及特点………………… 真空冷冻干燥机组成………………………… 冷冻干燥工艺……………………………………食品冷冻干燥技术的运用…………………… 冻干食品的特点…………………………………我国食品冻干技术面临的问题……………… 冷冻干燥工艺的应用前景…………………… 结论…………………………………………………参考文献……………………………………………

冷冻干燥工艺流程及其应用 1冷冻干燥工艺的原理及特点 1.1冷冻干燥工艺原理 冷冻干燥就是把含有大量水分的物质,预先进行降温冻结成固体。然后在真空的条件下使水蒸汽直接从固体中升华出来,而物质本身留在冻结的冰架子中,从而使得干燥制品不失原有的固体骨架结构,保持物料原有的形态,且制品复水性极好。然后在适当的温度和真空度下进行冰晶升华干燥,等升华结束后再进行解吸干燥,除去部分结合水,从而获得干燥的产品的技术。冷冻干燥过程可分为制品准备、预冻、一次干燥(升华干燥)、二次干燥(解吸干燥)、和密封保存五个步骤。利用冷冻干燥目的是为了贮存潮湿的物质,通常是含有微生物组织的水溶液,或不含微生物组织的水溶液。产品在冻结之后置于一个低水气压下,这时包含冰的升华,直接由固态在不发生熔化的情况下变成汽态。与其他干燥方式相比避免了化学、物理和酶的变化,从而确保了制品物性在保存时不易改变。实际需要的低水汽压是靠真空的状况下达到的。

图1:水的平衡相图 1.2冷冻干燥工艺存在的优缺点 1.2.1冷冻干燥工艺的优点 (1)冷冻干燥的过程中样品的结构不会被破坏,因为固体成分被在其位置上的坚冰支持着,在冰升华时会留下孔隙在干燥的剩余物质里。这样就保留了产品的生物和化学结构及其活性的完整性; (2)蛋白多肽类药物在高温下容易变性,造成干燥后生物活性的降低;冷冻干燥的过程是在低温状态下进行的,工艺过程对组分的破坏程度小,热畸变极其微弱,对不耐热药物特别是蛋白质多肽类药品非常适合[1]; (3)冷冻干燥的药剂为液体,定量分装比粉剂或片剂精度高;用无菌水溶液调配且通过除菌过滤、灌装,杂质微粒小、无污染。制品为多孔结构,质地疏松,较脆,复水性能好,重复再溶解迅速完全,便于临床

真空冷冻干燥技术在生物制药方面的应用

真空冷冻干燥技术在生物制药方面的应用 发表时间:2011-06-29T08:20:17.870Z 来源:《中国健康月刊(学术版)》2011年第3期供稿作者:鲍颖张婧[导读] 真空冷冻干燥技术在功能食品和纳米材料、生物、医学等方面的大规模应用,为冻干技术开辟了广阔的前景。鲍颖张婧【关键词】真空冷冻干燥;生物制品;冻干机【中图分类号】R352【文献标识码】B【文章编号】1005-0515(2011)03-0351-01 真空冷冻干燥简称冻干,就是把含有大量水分的物质预先进行降温东结成固体,然后一定真空条件下使水蒸气直接从固体中升华出来,而物质本身留在冻结时的冰架中。它是一种现代化的干燥技术。是真空技术、制冷技术和干燥技术的结合。又是一门跨越多个学科领域的交叉科学。涉及传热传质、流体力学、自动控制、食品营养、生物工程材料等专业知识。由于在低温及真空状态下完成对制品的脱水干燥,而成为医学生物制品中首选的干燥保存方法。该技术最早于1813年由英国华莱斯顿发明,1909年沙克尔用真空升华干燥法对抗菌素、菌种、狂太病毒及其他生物制品进行冻干保存,取得较好效果。冷冻干燥是用来干燥热敏性物质和需要保持生物活性的物质的一种有效方法。该技术最大程度上防止了生物制品、药品在水和热的作用下很容易产生的性变和分解,对生物组织和细胞体损伤较少,能减少活菌体及病毒的死亡。低温干燥,物质中挥发性成分损失很小,微生物的生长和酶的作用无法进行,能保持原来性状。由于干燥在真空下进行,氧气较少,因此易氧化的物质的到了保护。干燥能排除95%~99%以上水分、使干燥后产品能长期保存而不致变质。例如,人血浆在液体状态只保存几个月,而冻干后可保存5~10年。麻疹弱毒活疫苗在液态的有效期为三个月,冻干后可延长一年。真空冷冻干燥的缺点是投资大、维护费用高、因而产品成本高。现在国内许多制药企业都用冷冻干燥法加工药物,如各种抗生素、生物提取物、疫苗、酶制品等。 1冻干机性能选择 药用冻干技术必须符合《GMP》规范,一台较完善的冻干设备除了容纳最新的冻干技术外,其性能还必须具备安全性、可靠性、适应性和经济性四个方面的综合能力。 冻干机的容量、规格,包括隔板面积、冷凝器补水量、隔板尺寸、隔板间距等,都应与生产量大小相匹配。隔板正反面都要相当平整,板温均匀,板与板之间、板的每个点温差应控制在正负1°C内,才能保证整批产品质量均一。冷凝器的温度应能在1~2小时内降至所需温度,一般为-45°C以下。箱体的真空度,空箱测定应在30min内达到2.66Pa,冻干箱体、板层和水汽凝结器、蒸汽冷凝管均属受内外压部件,它们在真空下的泄漏对药品可能造成污染,因此冻干设备中内外压部件都必须进行严格的泄露测量,使之符合安全性指标。箱体应采用优质不锈钢材质、设计合格、方便清洗、高度耐腐蚀。凡是直接和间接接触药品的冻干箱体、板层、软管、活塞杆和水汽凝结器、蒸汽冷凝管以及各类真空阀门,管道件等选用抗腐蚀性佳的进口低碳不锈钢材质sus304(L)或sus316(L)。为了便于人工清洁和CIP 自动在线清洗冻干箱体、板层和水汽凝结器,这些部件内部构造尽可能简单,以最少的零件达到同样的功能。清洗水必须是50~60°C不得重复使用的超滤水,零件容易拆装、维修方便、不允许有死角等不易清洁的结构。冻干箱体采用大圆角结构,所用的焊接结构经氩弧焊焊后修磨成圆弧角或45度角。板层连接软管sus304(L)不带网体整体螺旋管,箱内管道和箱底设计略有坡度,为了达到在高真空下最小的材质放气量和清洁的目的,冻干箱体和板层表面必须进行镜面抛光处理。 2冻干机附属装置 2.1液压装置,由于冻干后在箱内整箱轧塞,板层能上下自由移动,有利于箱内清洗,容易接近箱内各个部位。 2.2有限量泄漏装置,用于控制箱内真空度,有控制的掺入氮气或无菌空气,它将有利于二次干燥阶段制品的升温,可缩短冻干周期2~3小时。 2.3控制系统,主要控制隔板温度,可通过记录仪保存产品温度,、隔板温度、冷凝器温度、箱体真空度等,并设有连锁报警,提高操作的可靠性,避免产品在操作或配套设施出错时蒙受损失。企业应根据自己的需求选择进口冻干机或国产冻干机,并考虑价格、安装调试、维护保养、零件供应、售后服务等问题。 21世纪是以生物、材料、电子、信息科学等领域的重大发展为标志,真空冷冻干燥技术在次会发挥重要作用。在一些发达国家,冻干食品占方便食品的比例越来越大,被认为是高档的脱水食品,并广泛应用到食品各个领域,如方便食品、即时汤料、粉末蔬菜、颗粒蔬菜、速溶饮品等,国际上的冻干食品总是供不应求。在医学方面,冻干技术也为医学的发展提供依托,离体生物组织冻干保持活性的研究,从简单的精子细胞组织到复杂的人角膜细胞结构,正处于深入的发展研究阶段。 在纳料材料领域,冻干作为低温化学制粉过程,其产品品质和性能的优势,而且由于尖端领域或宇航、军事等特殊领域,因此具有良好的开发应用前景。 真空冷冻干燥技术在功能食品和纳米材料、生物、医学等方面的大规模应用,为冻干技术开辟了广阔的前景。随着冻干技术应用领域的深入和扩展,冻干设备也需要不断发展,生物制品和药用冻干机应提高自动化程度及运转的可靠性,进一部加强清洗消毒灭菌功能。食品用冻干机应提高产量,设备改进的目的是降低设备及产品成本,提高质量。参考文献 [1]曾军冷冻干燥的设备性能选择以及配方研究,冻干工艺经验,海峡药学。2001年. 第13卷.第一期99 [2]徐成海王德喜关奎之张世伟真空冷冻干燥技术在若干高新柯及领域中的应用于发展. 真空科学与技术. 2002年第22卷增刊. 31~32 作者单位:150069黑龙江江世药业

相关主题
文本预览
相关文档 最新文档