当前位置:文档之家› 视觉龙VD200机器人视觉引导控制器产品手册

视觉龙VD200机器人视觉引导控制器产品手册

视觉龙VD200机器人视觉引导控制器产品手册
视觉龙VD200机器人视觉引导控制器产品手册

VD200机器人视觉引导控制器

深圳市视觉龙科技有限公司VD200是一款高性能的机器视觉处理器,支持视觉定位、传送带跟踪和机器人引导等应用。为包括Adept,DASA Robot(Dongbu)、Denso、EPSON、HBR、Kuka、Yamaha 等多种品牌工业机器人用户提供视觉引导系统解决方案,产品采用模块化设计,稳定可靠,性价比高。

产品特点和优势

●视觉引导和传送带跟踪功能,以及机器人伺服功能

●单点引导抓取、单点引导放置以及点到点的视觉引导

●界面友好:简单标定和示教机器人

●几何特征定位技术,对非常相似的物体进行准确区分

●多模板处理:对多目标进行定位和分类

●平移重复精度:1/40亚像素,旋转重复精度:0.02度

●支持USB2.0/1394a/GigE相机

●支持Adept,Dongbu(DASA)等品牌机器人

硬件选择范围

●处理器:AX30、AX50、AX70、客制(OEM合作模式下)

●相机:1-4只,Basler以及其他品牌相机(OEM合作模式下)

●周边设备:镜头、光源等根据具体应用选配

相机工作方式及标定

●上看(Looking upward)

●固定在机械臂上下看(Looking downward)

●固定在机台上下看(Looking downward)

●飞行拍照(Vision on the fly)

●静态拍照

●传送带跟踪

配置精灵:辅助对系统功能进行设置

●第一步:选取机器人的品牌及型号

●第二步:选取相机型号、个数及工作方式

●第三步:标定

●第四步:开始工作

如果您还要做检测:

VD200软件可与龙睿DragonVision无缝连接,其中丰富的检测工具能帮助您获得机器人定位、引导及传送带跟踪以外的其他视觉功能,如测量、读码、外观检测等。

如果您有自己的机器人品牌:

VD200目前可与众多知名机器人互连,如Adept、Dasa(Dongbu)、Epson、HBR、Kuka、Yamaha等等。其他品牌机器人正在不断加进来,如果您有自己的机器人品牌,我们可以免费开发接口及通讯程序,以支持您的品牌。

移动机器人导航技术总结

移动机器人的关键技术分为以下三种: (1)导航技术 导航技术是移动机器人的一项核心技术之一[3,4]"它是指移动机器人通过传感器感知环境信息和自身状态,实现在有障碍的环境中面向目标的自主运动"目前,移动机器人主要的导航方式包括:磁导航,惯性导航,视觉导航等"其中,视觉导航15一7]通过摄像头对障碍物和路标信息拍摄,获取图像信息,然后对图像信息进行探测和识别实现导航"它具有信号探测范围广,获取信息完整等优点,是移动机器人导航的一个主要发展方向,而基于非结构化环境视觉导航是移动机器人导航的研究重点。 (2)多传感器信息融合技术多传感器信息融合技术是移动机器人的关键技术之一,其研究始于20世纪80年代18,9]"信息融合是指将多个传感器所提供的环境信息进行集成处理,形成对外部环境的统一表示"它融合了信息的互补性,信息的冗余性,信息的实时性和信息的低成本性"因而能比较完整地,精确地反映环境特征,从而做出正确的判断和决策,保证了机器人系统快速性,准确性和稳定性"目前移动机器人的多传感器融合技术的研究方法主要有:加权平均法,卡尔曼滤波,贝叶斯估计,D-S证据理论推理,产生规则,模糊逻辑,人工神经网络等"例如文献[10]介绍了名为Xavier的机器人,在机器人上装有多种传感器,如激光探测器!声纳、车轮编码器和彩色摄像机等,该机器人具有很高的自主导航能力。 (3)机器人控制器作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一"目前,国内外机器人小车的控制系统的核心处理器,己经由MCS-51、80C196等8位、16位微控制器为主,逐渐演变为DSP、高性能32位微控制器为核心构成"由于模块化系统具有良好的前景,开发具有开放式结构的模块化、标准化机器人控制器也成为当前机器人控制器的一个研究热点"近几年,日本!美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构!网络功能的机器人控制器"我国863计划智能机器人主题也已对这方面的研究立项 视觉导航技术分类 机器人视觉被认为是机器人重要的感觉能力,机器人视觉系统正如人的眼睛一样,是机器人感知局部环境的重要“器官”,同时依此感知的环境信息实现对机器人的导航。机器人视觉信息主要指二维彩色CCD摄像机信息,在有些系统中还包括三维激光雷达采集的信息。视觉信息能否正确、实时地处理直接关系到机器人行驶速度、路径跟踪以及对障碍物的避碰,对系统的实时性和鲁棒性具有决定性的作用。视觉信息处理技术是移动机器人研究中最为关键的技术之一。

安川机器人程序示例

2 *cycle 注释:循环运行 3 MOVJ C00000 VJ= point ①:距对中台大概150mm的位置 4 PULSE OT#(68) T= RB时间测量point11(取出待机位置) 5 *Loop1 abel:Loop1 6 JUMP *cyclstop IF IN#(16)=ON JUMP命令:循环停止指令IN16为ON则跳至label「CYCLESTOP」 7 JUMP *Whip_out IF IN#(18)=ON JUMP命令:可取出压机板件IN18为ON则跳至label「Whipout」 8 *Whip_out label:Whip_out (去取对中台上的板件的工序) 9 PULSE OT#(31) T= 脉冲信号(输出指定时间:开始取出OUT31 10 PULSE OT#(16) T= 脉冲信号(输出指定时间):吸取指令OUT16 ON 11 MOVJ C00001 VJ= point ②:DF对中台吸取位置上(大概50mm上) 12 PULSE OT#(57) T= RB时间测量point2 (吸取位置上) 13 MOVL C00002 V= PL=1 point ③:DF对中台上板件吸取位置 14 PULSE OT#(58) T= RB时间测量point3 (吸取位置) 15 TIMER T= 定位精度提升的时间 16 WAIT IN#(24)=ON 待输入:吸取确认ON 17 PULSE OT#(59) T= RB时间测量(吸取完毕) 18 方MOVJ C00003 VJ= point ④:DF对中台吸取位置上(Z方向上升至与point①同样位置,X方向稍微移至负方 19 PULSE OT#(60) T= RB时间测量point4 (吸取位置上) 20 TIMER T= ?定位精度提升的时间? 21 PULSE OT#(27) T= 脉冲信号:取出完毕OUT27 22 MOVJ C00004 VJ= point ⑤:压机投入待机位置 23 PULSE OT#(61) T= RB时间测量point5 (取出待机位置) 24 PULSE OT#(62) T= RB时间测量point6 (投入待机位置)

移动机器人视觉导航

移动机器人视觉导航。 0504311 19 刘天庆一、引言 智能自主移动机器人系统能够通过传感器感知外界环境和自身状态,实现在有障碍物环境中面向目标的自主运动,从而完成一定作业功能。其本身能够认识工作环境和工作对象,能够根据人给予的指令和“自身”认识外界来独立地工作,能够利用操作机构和移动机构完成复杂的操作任务。因此,要使智能移动机器人具有特定智能,其首先就须具有多种感知功能,进而进行复杂的逻辑推理、规划和决策,在作业环境中自主行动。机器人在行走过程中通常会碰到并且要解决如下三个问题:(1)我(机器人)现在何处?(2)我要往何处走?(3)我要如何到达该处?其中第一个问题是其导航系统中的定位及其跟踪问题,第二、三个是导航系统的路径规划问题。移动机器人导航与定位技术的任务就是解决上面的三个问题。移动机器人通过传感器感知环境和自身状态,进而实现在有障碍物的环境中面向目标自主运动,这就是通常所说的智能自主移动机器人的导航技术。而定位则是确定移动机器人在工作环境中相对于全局坐标的位置及其本身的姿态,是移动机器人导航的基本环节。 目前,应用于自主移动机器人的导航定位技术有很多,归纳起来主要有:安装CCD 摄像头的视觉导航定位、光反射导航定位、全球定位系统GPS(Global Positioning System)、声音导航定位以及电磁导航定位等。下面分别对这几种方法进行简单介绍和分析。 1、视觉导航定位 在视觉导航定位系统中,目前国内外应用较多的是基于局部视觉的在机器人中安装车载摄像机的导航方式。在这种导航方式中,控制设备和传感装置装载在机器人车体上,图像识别、路径规划等高层决策都由车载控制计算机完成。视觉导航定位系统主要包括:摄像机(或CCD 图像传感器)、视频信号数字化设备、基于DSP 的快速信号处理器、计算机及其外设等。现在有很多机器人系统采用CCD 图像传感器,其基本元件是一行硅成像元素,在一个衬底上配置光敏元件和电荷转移器件,通过电荷的依次转移,将多个象素的视频信号分时、顺序地取出来,如面阵CCD传感器采集的图像的分辨率可以从32×32 到1024×1024 像素等。视觉导航定位系统的工作原理简单说来就是对机器人周边的环境进行光学处理,先用摄像头进行图像信息采集,将采集的信息进行压缩,然后将它反馈到一个由神经网络和统计学方法构成的学习子系统,再由学习子系统将采集到的图像信息和机器人的实际位置联系起来,完成机器人的自主导航定位功能。 视觉导航定位中,图像处理计算量大,计算机实时处理的速度要达到576MOPS~5.76BOPS,这样的运算速度在一般计算机上难以实现,因此实时性差这一瓶颈问题有待解决; 另外,对于要求在黑暗环境中作业的机器人来说,这种导航定位方式因为受光线条件限制也不太适应。 当今国内外广泛研制的竞赛足球机器人通常都采用上面所说的视觉导航定位方式,在机器人小车子系统中安装摄像头,配置图像采集板等硬件设备和图像处理软件等组成机器人视觉系统。通过这个视觉系统,足球机器人就可以实现对球的监测,机器人自身的定位,作出相应动作和预测球的走向等功能

机器视觉基础知识详解

机器视觉基础知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+视觉自动上下料定位的应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率和设备的正常运行,提高生产效率。

安川机器人程序示例

精心整理 1NOP 程序起始命令(空指令)2*cycle 注释:循环运行 3MOVJ C00000 VJ=100.00point ①:距对中台大概150mm 的位置 4PULSE OT#(68) T=0.50RB时间测量point 11 (取出待机位置) 5*Loop1abel :Loop1 6JUMP *cyclstop IF IN#(16)=ON JUMP 命令:循环停止指令 IN16为ON 则跳至No.50 label 「CYCLESTOP 」 7JUMP *Whip_out IF IN#(18)=ON JUMP 命令:可取出压机 板件 IN18为ON 则跳至No.8 label 「Whipout 」 18方point 31PULSE OT#(63) T=0.50RB 时间测量point7 (释放位置上) 32MOVL C00007 V=1500.0 PL=3point ⑧:板件释放位置 33PULSE OT#(64) T=0.50RB 时间测量point8 (释放位置) 34TIMER T=0.10定位精度提升的时间 35 PULSE OT#(17) T=1.00OUT17脉冲信号:释放指令 36WAIT IN#(24)=OFF 待输入:时间测量point OFF 37PULSE OT#(65) T=0.50RB 时间测量 (释放完了) 38MOVJ C00008 VJ=100.00point ⑨:板件释放位置上 39PULSE OT#(66) T=0.50RB 时间测量point9 (释放位置上) 40MOVJ C00009 VJ=80.00point ⑩:返回轨迹时的RB 手柄防振减速 41MOVJ C00010 VJ=60.00point ?:point ⑤ 返回No.1压机投入待机位置

工业机器人视觉引导关键技术问题研究

工业机器人视觉引导关键技术问题研究 摘要:工业机器人因其高效灵活与精准稳定等优点,在工业中具有广泛的应用。机器视觉技术的进步,使得机器人控制引导技术的功能也更加强大。本文介绍了工业机器人视觉引导系统的组成,从视觉引导系统的标定、目标物体的识别与定位跟踪方面做了研究,为解决工业机器人视觉引导关键技术提供了理论基础。 关键词:视觉引导;标定方法;靶标绪论 高智能水平的工业机器人是我国装备制造业水平提升 的重要标志,随着工业机器人的应用领域的不断延伸,其视觉引导技术在机器人实用性技术中的重要性也突显了出来。机器人视觉涉及到人工智能、图像处理、模式识别等多领域的交叉,通过对目标进行非接触测量,为机器人提供目标物体实时的状态信息[1]。 一、工业机器人视觉引导系统的组成 机器人视觉引导系统通过非接触传感的方式,可以实现指导机器人按照工作要求对目标物体进行操作,包括零件的定位放取、工件的实时跟踪等。工程中常用的系统包括2D、2.5D 和3D工业机器人视觉引导系统[2]。 (1)2D视觉引导系统通过摄像机等数据采集工具,采

集工件几何模型信息,获取其特征位置的坐标信息,对工件平面位置进行辨识和定位,选取不同的特征点会对2D视觉 引导系统的精度产生影响 (2)2.5D视觉引导系统相较2D系统而言,增加了目标物体的高度识别,包括物体的X、Y、Z方向的移动和围绕Z 轴的转动,其原理与2D视觉引导系统相似。 (3)3D视觉引导系统通过摄像机等数据采集工具,采集空间物体的六个自由度的信息,其复杂程度相对较高。传统的3D视觉引导系统需要两个摄像机从不同的角度对空间 物体进行定位,而目前先进的视觉引导系统仅需一台摄像机,就能实现目标物体的空间定位[3]。 二、工业机器人视觉引导系统标定研究 (一)摄像机标定 摄像机标定是通过选取尺寸精度较高的已知空间物体 作为参考,建立其与成像之间的关系,所选用的标定参考物称为靶标。在摄像机的实际标定中,在靶标上制作一些圆形或棋格阵列等作为特征信息[4]。 (二)手眼标定方法 手眼系统(Eye-in-Hand)是指将摄像机装备安装于机器人末端执行机构上,并且随着机器人工作而改变位置。由于摄像机是随着机器人一起运动的,其与机器人的世界坐标系的相对关系始终在变化,而摄像机与末端执行机构的相对保

安川机器人命令一览所有指令介绍

安川机器人命令一览所有指令介绍 MOVJ功能以关节插补方式向示教位置移动。 添加项目位置数据、基座轴位置数据、 工装轴位置数据 画面中不显示 VJ=(再现速度)VJ:0.01~100.00% PL=(定位等级)PL:0~8 NWAIT UNTIL语句 ACC=(加速度调整比率)ACC:20~100% DEC=(减速度调整比率)DEC:20~100% 使用例MOVJ VJ=50.00PL=2NWAIT UNTIL IN#(16)=ON MOVL功能以直线插补方式向示教位置移动。 添加项目位置数据、基座轴位置数据、 工装轴位置数据 画面中不显示 V=(再现速度)、 VR=(姿态的再现速度)、 VE=(外部轴的再现速度) V:0.1~ 1500.0mm/秒 1~9000cm/分

R:0.1~180.0°/秒 VE:0.01~100.00% PL=(定位等级)PL:0~8 CR=(转角半径)CR:1.0~6553.5mm NWAIT UNTIL语句 ACC=(加速度调整比率)ACC:20~100% DEC=(减速度调整比率)DEC:20~100% 使用例MOVL V=138PL=0NWAIT UNTIL IN#(16)=ON MOVC功能用圆弧插补形式向示教位置移动。 添加项目位置数据、基座轴位置数据、 工装轴位置数据 画面不显示 V=(再现速度)、VR=(姿态的再现速度)、 VE=(外部轴的再现速度) 与MOVL相同。 PL=(定位等级)PL:0~8 NWAIT ACC=(加速度调整比率)ACC:20~100% DEC=(减速度调整比率)DEC:20~100%使用例MOVC V=138PL=0NWAIT 10基本命令一览

视觉引导四轴工业机器人应用实训平台

https://www.doczj.com/doc/b617850482.html, ‐ 1 ‐ 武汉筑梦科技有限公司 视觉引导四轴工业机器人应用实训平台 型号:ZM-R4-XXX-M-C-S (黑白PC 视觉系统版) 型号:ZM-R4-XXX-M-E-S (黑白嵌入式视觉版) 型号:ZM-R4-XXX-C-C-S (彩色PC 视觉系统版) 型号:ZM-R4-XXX-C-E-S (彩色嵌入式视觉版) 型号:ZM-R4-XXX-C-X-T (带传送带跟踪) XXX 表示摆臂半径,可选200、400、600 适合于高校或研究所进行机器人运动控制及机器视 觉相关应用的示教及二次应用开发

https://www.doczj.com/doc/b617850482.html, ‐ 2 ‐ 武汉筑梦科技有限公司 平台概述 视觉引导四轴Scara 工业机器人应用实训平台以工业机器人与机器视觉为核心,将机械、气动、运动控制、变频调速、编码器技术、PLC 控制技术有机地进行整合,结构模块化,便于组合,实现对高速传输线上的不同物料进行快速的检测、组装。为了方便实训教学,系统进行了专门的设计,可以完成各类机器人单项训练和综合性项目训练,可完成各类机器人单项训练和综合性项目训练。可以进行四轴机器人示教、定位、抓取、装配等训练,可以在此基础上进行产品柔性包装、零件组装、激光焊接、视觉检测、点胶、锁螺丝等实际工业应用项目。 平台适用于编程位置或者视觉引导机器人进行搬运、装配或轨迹运动的示教或进行类似应用的二次开发。平台设计目的是不仅满足于教学过程的示教,能够独立完成视觉及运动过程的全部循环(该系统代表了该行业目前最新的技术水平,该系统采用了日本EPSON 公司(可选三菱、Yamaha 、Adept 、FANUC 等其它品牌工业机器人)四轴Scara 机械手和筑梦科技自主研发的机器人视觉控制模块ZMRVS100(可选Cognex 智能相机系统);同时,能够快速有效的进行科研和项目开发(提供机械手的控制软件和机器视觉软件开发平台,并且提供现场培训和开放部分应用示范源代码,能够帮助用户快速的进行项目开发和科研成果的横向比较)。 关键核心 ★ 四轴机器人控制 ★ 嵌入式或PC 式视觉定位与检测 ★ 飞行视觉定位或检测 ★ 伺服变频控制万能上料系统 ★ 在线传送带跟踪技术(选配) ★ 在线快换手爪或夹具(选配) 平台配置: 实训平台由四自由度工业机器人系统、智能视觉系统、伺服变频控制万能上料系统、多工位位置摆放单元、传送带循环单元、工控计算机系统、各色工件、电气控制柜、实训机台等组成。 平台采用筑梦科技自主研发的万能送料器,可以自由调整小型工件的密度和位置,以便视觉定位后机械手进行抓取,然后对根据视觉定位物品的姿态对机械手进行调整放置至相应工位位置摆放单元,样机可以由皮带线随机传回万能上料系统。选配了传送带跟踪技术的平台,也可以在运动中的皮带上直接抓取随机传入的工件,将工件定位抓取并放置至相应工位位置摆放单元。

安川机器人远程控制总结 _机器人端

安川机器人远程控制总结 一、m aster程序 1、master程序的设置 单击【主菜单】—>选择屏幕上的【程序内容】—>【新建程序】,如图1-1。 图1-1 单击【选择】显示如图1-2所示的界面,单击【选择】,输入程序名,单击软键盘【ENTER】,显示如图1-3所示的界面,单击【执行】,此处程序名为“MASTER”,程序创建完毕。

图1-2 图1-3 单击【主菜单】—>选择屏幕上的【程序内容】—>【主程序】,如图1-4。 图1-4 单击【选择】,显示如图1-5所示的设置主程序界面。

图1-5 单击【选择】,出现如图1-6所示的界面,单击【向下】选择“设置主程序”。 图1-6 显示如图1-7所示的界面,单击【向下】选择“MASTER”单击【选择】。

如图1-7 主程序设置完毕。 2、MASTER程序的编辑 单击【主菜单】—>选择【程序内容】—>【选择程序】—>【选择】,出现如图1-7所示的界面,单击【向下】,选择“MSATER”,单击【选择】。在如图2-1所示的界面下编辑主程序。 图2-1 此处以2个工位,每个工位3种工件的工作站为例创建主程序内容,需要熟悉机器人示教器的基本操作(如【命令一览】【插入】【回车】【选择】)。 插入DOUT OT#(1) OFF程序举例: 光标定位在左侧行号处,如图2-2,如图单击【命令一览】,选择【I/O】,单击【选择】,选择【DOUT】,如图2-3所示的界面

图2-2 图2-3 单击【选择】,显示如图2-4所示的界面,光标定位在“DOUT”上,单击【选择】,显示如图2-5所示的界面,光标定位到“数据”行的ON,单击【选择】,切换成“OFF”,单击两次【回车】则可出入该指令。需要指出的是在光标定位处插入指令是向下插入。

一种基于单目视觉的移动机器人室内导航方法

第32卷第4期2006年7月 光学技术 OPTICAL TECHN IQU E Vol.32No.4 J uly 2006 文章编号:1002-1582(2006)04-0591-03 一种基于单目视觉的移动机器人室内导航方法Ξ 付梦印,谭国悦,王美玲 (北京理工大学信息科学技术学院自动控制系,北京 100081) 摘 要:针对室内导航的环境特点,提出了一种简单快速的、以踢脚线为参考目标的移动机器人室内导航方法。该方法从图像中提取踢脚线作为参考直线,通过两条直线在图像中的成像特征,提取角度和横向偏离距离作为移动机器人的状态控制输入,从而实现移动机器人的横向运动控制。该方法无需进行摄像机的外部参数标定,大大简化了计算过程,提高了视觉导航的实时性。 关键词:视觉导航;直线提取;Hough变换;移动机器人;踢脚线 中图分类号:TP242.6+2;TP391 文献标识码:A An indoor navigation algorithm for mobile robot based on monocular vision FU Meng-yin,T AN G uo-yue,WANG Mei-ling (Department of Automatic Control,School of Information and Science Technolo gy, Beijing Institute of Technology,Beijing 100081,China) Abstract:Considered the features of indoor environment,a sim ple fast indoor navigation algorithm for vision-guide mobile robot was presented,which used skirting lines as the reference objects to locate the mobile robot.This algorithm detected skirt2 ing lines using monocular images and analyzed the lines’parameters to provide angle and distance of the robot as in puts of robot control.Without calibrating camera parameters,this algorithm greatly reduces computation time and improves the real-time a2 bility of vision navigation. K ey w ords:vision navigation;line detection;Hough transform;mobile robot;skirt line 1 引 言 近年来,机器视觉因其含有丰富的环境信息而受到普遍的关注。随着视觉传感器价格的不断下降,视觉导航已成为导航领域研究的热点。在室外进行视觉导航时,采用视觉传感器可获取车道信息,通过摄像机的标定来实现坐标转换,通过确定车辆当前的状态来实现导航。绝大部分智能车辆都是应用视觉来完成车道检测的[1,2],例如意大利的AR2 GO[3]项目就是通过使用逆投射投影的方法[4]来确定车辆状态的,并获得了良好的实验效果。在室内进行视觉导航时,利用视觉提取室内环境特征,例如一些预先设置的引导标志就是通过图像处理进行识别并理解这些标志来完成导航任务的[5,6]。这些都需要在图像中进行大量的搜索运算来提取标志,并通过一系列的图像理解算法来理解标志的信息,因而计算量很大。当然也可以通过视觉计算室内环境,例如通过走廊中的角点特征来获取状态信息[7],以此减少图像搜索时的计算量。但这些角点信息易受移动机器人运动的影响,会模糊角点信息,为了提高计算精度需要通过光流法对背景信息进行运动补偿,计算复杂,实时性不理想。 当移动机器人在实验室走廊环境下进行导航控制时,需要视觉传感器为其提供偏航角和横向偏离距离这两个参数。通过对单目视觉图像进行处理来获取这两个参数,完成移动机器人的横向运动控制。 2 摄像机成像模型与视觉系统 2.1 摄像机成像模型 使用视觉传感器首先要考虑的是其成像模型,它是指三维空间中场景到图像平面的投影关系,不同的视觉传感器有不同的成像模型。本文采用高分辨率CCD摄像机作为视觉传感器,其成像模型为针孔模型,空间中任意一点P在图像上的成像位置可以用针孔模型近似表示。如图1所示,P点投影位置为p,它是光心O同P点的连线O P与图像平面的交点,这种关系叫投射投影。图中标出的坐标系定义如下[8]: (1)图像坐标系I(u,v)是以图像平面的左上角为坐标原点所定义的直角坐标系,以像素为单位表示图像中点的位置。 (2)像平面坐标(x,y)指的是CCD成像靶面 195 Ξ收稿日期:2005-07-12 E-m ail:guoyuetan@https://www.doczj.com/doc/b617850482.html, 基金项目:国家自然科学基金资助项目(60453001) 作者简介:付梦印(1964-),男,北京理工大学信息科学技术学院自动控制系教授,博士,主要从事导航制导、控制组合导航及智能导航技术的研究。

基于视觉导航的轮式移动机器人设计方案

基于视觉导航的轮式移动机器人设计方案第一章移动机器人 §1.1移动机器人的研究历史 机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器)。1962年,美国Unimation公司的第一台机器人Unimate。在美国通用汽车公司(GM)投入使用,标志着第一代机器人的诞生。 智能移动机器人更加强调了机器人具有的移动能力,从而面临比固定式机器人更为复杂的不确定性环境,也增加了智能系统的设计复杂度。1968年到1972年间,美国斯坦福国际研究所(Stanford Research Institute, SRI)研制了移动式机器人Shaky,这是首台采用了人工智能学的移动机器人。Shaky具备一定人工智能,能够自主进行感知、环境建模、行为规划并执行任务(如寻找木箱并将其推到指定目的位置)。它装备了电视摄像机、三角法测距仪、碰撞传感器、驱动电机以及编码器,并通过无线通讯系统由二台计算机控制。当时计算机的体积庞大,但运算速度缓慢,导致Shaky往往需要数小时的时间来分析环境并规划行动路径。 1970年前联月球17号探测器把世界第一个无人驾驶的月球车送七月球,月球车行驶0.5公里,考察了8万平方米的月面。后来的月球车行驶37公里,向地球发回88幅月面全景图。在同一时代,美国喷气推进实验室也研制了月球车(Lunar rover),应用于行星探测的研究。采用了摄像机,激光测距仪以及触觉传感器。机器人能够把环境区分为可通行、不可通行以及未知等类型区域。 1973年到1979年,斯坦福大学人工智能实验室研制了CART移动机器人,CART可以自主地在办公室环境运行。CART每移动1米,就停下来通过摄像机的图片对环境进行分析,规划下一步的运行路径。由于当时计算机性能的限制,CART每一次规划都需要耗时约15分钟。CMU Rover由卡耐基梅隆大学机

工业机器人视觉系统

工业机器人及机器人视觉系统 人类想要实现一系列的基本活动,如生活、工作、学习就必须依靠自身的器官,除脑以外,最重要的就是我们的眼睛了,(工业)机器人也不例外,要完成正常的生产任务,没有一套完善的,先进的视觉系统是很难想象的。 机器视觉系统就是利用机器代替人眼来作各种测量和判断。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推动了机器视觉的发展。 机器视觉系统的应用 在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去。一般来说,机器视觉系统包括了照明系统、镜头、摄像系统和图像处理系统。对于每一个应用,我们都需要考虑系统的运行速度和图像的

处理速度、使用彩色还是黑白摄像机、检测目标的尺寸还是检测目标有无缺陷、视场需要多大、分辨率需要多高、对比度需要多大等。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分 工作过程 ?一个完整的机器视觉系统的主要工作过程如下: ?1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。 ?2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。 ?3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。 ?4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。

基于路径识别的移动机器人视觉导航

第9卷 第7期2004年7月 中国图象图形学报Journal of Image and G raphics V ol.9,N o.7July 2004 基金项目:国家“863”计划资助项目(编号:2001AA422200)收稿日期:2004201213;改回日期:2004204206 基于路径识别的移动机器人视觉导航 张海波 原 魁 周庆瑞 (中国科学院自动化研究所高技术创新中心,北京 100080) 摘 要 跟随路径导引是自主式移动机器人广泛采用的一种导航方式,其中视觉导航具有其他传感器导航方式所无法比拟的优点,是移动机器人智能导航的主要发展方向。为了提高移动机器人视觉导航的实时性和准确性,提出了一个基于路径识别的视觉导航系统,其基本思想是首先用基于变分辨率的采样二值化和形态学去噪方法从原始场景图像中提取出目标支持点集,然后用一种改进的哈夫变化检测出场景中的路径,最后由路径跟踪模块分直行和转弯两种情况进行导航计算。实验结果表明,该视觉导航系统具有较好的实时性和准确性。关键词 自主式移动机器人 视觉导航 路径识别 中图法分类号:TP242.62 文献标识码:A 文章编号:100628961(2004)0720853205 Visual N avigation of a Mobile R obot B ased on P ath R ecognition ZH ANG Hai 2bo ,Y UAN K ui ,ZH OU Qing 2rui (Hi 2tech Innovation Centre ,Institute o f Automation ,Chinese Academy o f Sciences ,Beijing 100080) Abctract G uidance using path following is widely applied in the field of autonom ous m obile robots.C om pared with the navigation system without vision ,visual navigation has obvious advantages as rich in formation ,low cost ,quietness ,innocuity ,etc.This pa 2per describes a navigation system which uses the visual in formation provided by guide lines and color signs.In our approach ,the visual navigation is com posed of three main m odules :image 2preprocessing ,path 2recognition and path 2tracking.First ,image 2pre 2processing m odule formulates color m odels of all kinds of objects ,and establishes each object ’s support through adaptive subsam 2pling 2based binarization and mathematical m orphology.Second ,path 2recognition m odule detects the guide lines through an im 2proved H ough trans form alg orithm ,and the detected results including guide lines and color signs integrate the path in formation.Fi 2nally ,calling different functions according to the m ovement of straight 2g oing or turning ,path 2tracking m odule provides required in 2put parameters to m otor controller and steering controller.The experimental results dem onstrate the effectiveness and the robustness of our approach. K eyw ords com puter perception ,autonom ous m obile robot ,visual navigation ,path recognition 1 引 言 导航技术是移动机器人的一项核心技术,其难 度远远超出人们最初的设想,其主要原因有:一是环境的动态变化和不可预测;二是机器人感知手段的不完备,即很多情况下传感器给出的数据是不完全、不连续、不可靠的[1]。这些原因使得机器人系统在复杂度、成本和可靠性方面很难满足要求。 目前广泛应用的一种导航方式是“跟随路径导 引”,即机器人通过对能敏感到的某些外部的连续路 径参照线作出相应反应来进行导航[2]。这种方法和传统的“硬”自动化相比大大增加了系统的灵活性,其具有代表性的系统有:C ontrol Engineering 公司安装的导线引导系统,它是通过检测埋在地下的引导导线来控制行进方向,其线路分岔则通过在导线上加载不同频率的电流来实现[3];Egemin Automation 公司生产的Mailm obile 机器人则安装有主动式紫外光源,并通过3个光电探头来跟随由受激化学物质构成的发光引导路径[4];Macome 公司为自动驾驶车

安川视觉使用步骤

安川视觉使用步骤 1、启动 第一步:打开电源; 第二步:左击(注:切换摄像头),右击(注:显示存储的图像) 第三步:左右键同时长按进入主菜单选项; 2、物体有无检测 第一步:点击Object Existence Check(物体有无检测); 第二步:点击Set Parameters(设置参数); 第三步:点击Camera1 Countof Work (摄像头1工作计数个数,最多可以识别16个); 第四步:根据实际情况设定个数; 第五步:点击Exit (退出); 第六步:点击Train CheckPattem (参数登陆菜单); 第七步:点击Select Camera(选择摄像头)选择摄像头1; 第八步:点击Select Object(选择物体)选择物体1; 第九步:点击MoveL/T(左上移动)框好工件; 第十步:点击Move R/B(右下移动)框好工件; 第十一步:点击Move Entirely (整体移动) 框好工件; 第十二步:点击Run Training(执行模板登陆)每次学习完都需要试运行一下; 第十三步:点击Select Object(选择物体)选择物体2; 第十四步:点击MoveL/T(左上移动)框好工件; 第十五步:点击Move R/B(右下移动)框好工件; 第十六步:点击Move Entirely (整体移动) 框好工件; 第十七步:点击Run Training(执行模板登陆)每次学习完都需要试运行一下; 第十八步:(根据实际需要学习的个数重复以上步骤); 第十九步:点击Search Param (设定阀值); 第二十步:点击Threshold/

第二十一步:点击Exit (退出); 第二十二步:点击Tryout (试运行)检测学习是否成功; 第二十三步:点击Exsecut(执行); 3、尺寸检测 第一步:点击Dimension Check (物体尺寸检测); 第二步:点击Measure Number (检测物体个数),根据实际需要输入物体个数; 第三步:点击Training Template (转移到模板登陆菜单); 第四步:点击Select Camera (选择相机),选择1号相机; 第五步:点击Measure No.(选择几号工件); 第六步:SelectPos(选择测量的点),选择第一个点; 第七步:点击Move L/T (左上移动),框好位置; 第八步:点击Move R/B(右下移动),框好位置; 第九步:点击Run Training(执行模板登陆)每次学习完都需要试运行一下; 第十步:点击Set Locate Pos(选择方式); 第十一步:点击Cursor(光标); 第十二步:选择好位置; 第十三步:SelectPos(选择测量的点),选择第二个点; 第十四步:点击Move L/T (左上移动),框好位置; 第十五步:点击Move R/B(右下移动),框好位置; 第十六步:点击Run Training(执行模板登陆)每次学习完都需要试运行一下; 第十七步:点击Set Locate Pos(选择方式); 第十八步:点击Cursor(光标); 第十九步:选择好位置; 第二十步:点击Exit(退出); 第二十一步:点击Regist Tolerance (转移到基准状态登陆菜单)

机器人视觉系统系统基本组成:CCD、PCI、PC及其外设等

机器人视觉系统系统基本组成:CCD、PCI、PC及其外设等 1.机器人视觉 机器人研究的核心就是:导航定位、路径规划、避障、多传感器融合。定位技术有几种,不关心,只关心视觉的。视觉技术用到“眼睛”可以分为:单目,双目,多目、RGB-D,后三种可以使图像有深度,这些眼睛亦可称为VO(视觉里程计:单目or立体),维基百科给出的介绍:在机器人和计算机视觉问题中,视觉里程计就是一个通过分析处理相关图像序列来确定机器人的位置和姿态。 当今,由于数字图像处理和计算机视觉技术的迅速发展,越来越多的研究者采用摄像机作为全自主用移动机器人的感知传感器。这主要是因为原来的超声或红外传感器感知信息量有限,鲁棒性差,而视觉系统则可以弥补这些缺点。而现实世界是三维的,而投射于摄像镜头(CCD/CMOS)上的图像则是二维的,视觉处理的最终目的就是要从感知到的二维图像中提取有关的三维世界信息。 2.系统基本组成:CCD、PCI、PC及其外设等。 2.1 CCD/CMOS一行硅成像元素,在一个衬底上配置光敏元件和电荷转移器件,通过电荷的依次转移,将多个象素的视频信号分时、顺序地取出来,如面阵CCD传感器采集的图像的分辨率可以从32×32到1024×1024像素等。 2.2视频数字信号处理器图像信号一般是二维信号,一幅图像通常由512×512个像素组成(当然有时也有256×256,或者1024×1024个像素),每个像素有256级灰度,或者是3×8bit,红黄兰16M种颜色,一幅图像就有256KB或者768KB(对于彩色)个数据。为了完成视觉处理的传感、预处理、分割、描述、识别和解释,上述前几项主要完成的数学运算可归纳为: (1)点处理常用于对比度增强、密度非线性较正、阈值处理、伪彩色处理等。每个像素的输入数据经过一定关系映射成像素的输出数据,例如对数变换可实现暗区对比度扩张。(2)二维卷积的运算常用于图像平滑、尖锐化、轮廓增强、空间滤波、标准模板匹配计算等。

移动机器人视觉导航系统研究

北京交通大学 硕士学位论文 移动机器人视觉导航系统研究姓名:王红波 申请学位级别:硕士专业:信号与信息处理指导教师:阮秋琦 20080601 中文摘要 中文摘要 摘要:基于视觉的移动机器人导航是近年发展起来的一种先进导航技术。与其它的非视觉传感器导航相比,它具有信息丰富、探测范围宽、目标信息完整等优点。本文结合实际应用,提出了一个完整的移动机器人视觉导航系统解决方案。研究内容主要包括四个部分:摄像机标定、目标识别、单目测距和运动控制。分别阐述如下: 第一,摄像机标定,基于张正友的平面标定算法对摄像头进行精确标定,针对摄像头的自动变焦特性,提出了一个新的离线离散标定策略,并获得多个状态下的摄像头内外参数。 第二,目标识别,传统分割方法存在多分割问题,影响到目标物提取的精度, 这罩提出一个改进了的基于HSI模型的彩色图像分割算法,在多通道阈值分割的基础上,融入了连通区域标记和形念学开闭运算。 第三,单目测距,基于摄影测量学和立体几何理论,建立了单目视觉测距模型,并推导了基于地平面约束的单目测距算法。针对多种误差因素,在测距算法中加入了误差校币,使移动机器人能够更加准确地定位目标物体。 第四,运动控制,控制摄像机云台实现日标物搜索,调整移动机器人位姿和对夹持器的动作控制。

实验结果表明:即使在恶劣光照条件下,提出的Hs工分割算法能够对向光、背光、近处、远处物体实现快速有效提取;提出的单目测距模型和算法能够对目标物体进行精确的测距;当把这些算法集成到实验平台上时,能够快速实现移动机器人的导航控制,并成功完成物体抓取操作。 关键词:摄像机标定、彩色目标识别、单目视觉测距、移动机器人 分类号:TP 391.41 ABSTRACI' ABSTRACT ABS。I’RAC’1.. In recent years,vision attracts a lot of attention for navigating a mobile robot in dynamic https://www.doczj.com/doc/b617850482.html,pared with other sensing systems,visual navigation is excellent and effective.With a visual sensing system,wider view of field,rich and intensive data Can be obtained for a mobile robot moving in a changing environment.In this study,a visual navigation scheme is proposed for a mobile robot to realize object collection,and it comprises of camera calibration,object recognition,monocular measurement and motion control,as stated in the following. Firstly,the technique of camera calibration is presented on the basis of Zhang’S algorithm.Since a PTZ calTlera is used here,it is controlled to move up and down,from left to right,to extend the view of field.Therefore,calibration in different positions is needed,and a new discrete method is proposed here. Secondly,a

相关主题
文本预览
相关文档 最新文档