当前位置:文档之家› 飞秒激光微加工技术在微加工中的应用

飞秒激光微加工技术在微加工中的应用

飞秒激光微加工技术在微加工中的应用
飞秒激光微加工技术在微加工中的应用

飞秒激光微加工技术在微加工中的应用

1飞秒激光加工微结构

基于能量高度集中、热影响区小、无飞溅无熔渣、不需特殊的气体环境、无后续工艺、双光子聚合加工精度可达0.7μm等优势,飞秒激光在诱导金属微结构加工应用方面和精细加工方面都取得了很大的进展。

(1)孔加工在1mm厚的不锈钢薄片上,飞秒激光进行了具有深孔边缘清晰、表面干净等特点的纳米级深孔加工(如图1a);在金属薄膜上,钛宝石飞秒激光加工制备出了微纳米级阵列孔(如图1b),孔径最小达2.5μm,孔直径在2.5~10μm间可调,最小间距可达10μm,很容易实现10-50μm间距调整。

(2)金属材料表面改性1999年,德国汉诺威激光中心Nolte S等人首次报道了结合钛宝石飞秒激光三倍频光(260 nm)和SNOM(扫描近场光学显微镜)在金属镉层制出了线宽仅200 nm的凹槽。为以后的无孔径近场扫描光学显微镜(ANSOM)取代SNOM奠定了基础,获得了高达70 nm的空间分辨率,开拓了远场技术在纳米范围下的物理化学特性以及输运机制的研究。

(3)金属纳米颗粒加工自1993年Henglein A等人首次利用激光消融法制备金属纳米颗粒以来,许多研究小组制备出高纯度、粒度分布均匀的金属纳米颗粒。Link H等人进一步控制飞秒激光的能流密度和照射时间,将金属纳米棒完全融化为金属纳米点。与其它激光脉冲相比,飞秒激光改变的金属颗粒尺寸大小和特定形状,使金属纳米颗粒特别是贵金属(Au、Hg、Pt、Pd等)在催化、非线性光学、医用材料科学等领域具有广阔的应用前景。

(4)金属掩模板加工新加坡南洋科技大学Venkatakrishnan K等人利用飞秒激光直写方法制作了以金属薄膜为吸收层、石英为基底的金属掩模板,并将前入射与后入射两种方案作了比较,发现采用前入射的方法能够得到更小的特征尺寸和好的边缘质量。并且利用飞秒激光超衍射极限加工有效地修补了金属镉掩模板的缺陷,修复的线宽达到小于100 nm的精度。目前构建的飞秒激光修正光掩模板工具已在IBM的柏林顿、佛蒙特州的掩模制作设备中运行。这对微电子技术的发展将具有重要意义。

(5)复杂的微结构加工①耐热玻璃上的水渠道结构(图2),边缘质量较好。但结构的精确性、表面和底端形态还有待改进;②光敏树脂里面制作的世界上最小的人造动物模型:10μm长,7μm高的公牛;③ScR500树脂内制备的约10μm的微型金字塔和房子模型;④光刻胶上飞秒双光子聚合(Two- Photon

P01ymerization:TPP)的微型蜘蛛和恐龙模型(图3)等。

这些都为飞秒激光加工将在高密度内联接印刷电路板、MEMS制造、微纳米过滤技术中具有良好的工业应用前景奠定了基础。

2光通信领域

光通信的高速率、大容量和宽带宽的发展方向,要求光电器件的高度集成化。而集成化的前提是光电器件的微型化。因此,光电器件的微型化是当前光通信领域研究的前沿和热点。近年来,相比传统的光电技术,飞秒激光微加工技术将成为新一代光电器件的制造技术。国内外学者在光波导的制备技术等诸多方面进行了有益的探索,取得了很大的进展。

(1)光波导的制备光波导易于和光纤通信系统耦合且损耗小,在频域中呈现出丰富的传输特性,成为光纤器件的研究热点。与离子注入法和热扩散型离子交换法等目前常用的制作方法相比,飞秒激光制作波导在室温环境下进行,过程简单,波导结构在高温时仍能保持良好的质量和稳定性。美国学者用飞秒激光制备的增益光波导长1 cm,可产生3 dB/cm的信号增益。大阪大学的Watanabe W等用85 fs、重复频率l kHz、单脉冲能量1.5 μJ的钛蓝宝石激光制作的多模干涉波导阵列,实现了高阶模输出。目前,利用计算机精密控制飞秒激光加工平台,可以在材料内部的任意位置制得任意形状的二维、三维或单模光波导。

(2)光栅的制备光栅在光通讯、色散补偿、光纤传感等领域中发挥着不可替代的作用。光产业的发展,对光栅提出了更高的要求:①不同几何形状排列,如六角阵列光栅;②在光纤内部刻划,如Bragg(布拉格)光纤光栅。传统加工方法工序繁杂、制作的光栅稳定性差、寿命短。而飞秒激光微加工克服了这些缺点,永久性改变折射率,改变量高达0.05,实现直接刻划,顺应了现代光栅微型化和多样化的发展趋势。Mihailov S等人采用钛宝石飞秒激光在掺锗通信光纤纤芯上获得的反射Bragg光栅,具有折射率调制范围广,温度稳定性高的特点。

(3)光子晶体的制备光子禁带和光子局域是光子晶体的两大特征,使其极有可能取代大多数传统的光学产品。但是微米甚至亚微米级三维复杂光子晶体的制备技术是急需解决的关键问题。飞秒激光双光子聚合法灵活,加工精度高,是制备光子晶体的理想选择。Sun H B等人采用飞秒激光制出任意晶格的光子晶体,它能单独地为单个原子选址。serbin J等人采用飞秒激光双光子聚合得到结构尺寸小于200 nm,周期为450 nm的三维微结构和光子晶体㈣J。Markus Deubel采用飞秒激光直接扫描法制出应用于无线电通信的三维光子晶体。国内的戴起勋等制出杆、层间距均5μm,共4层,分辨率为1.1μm的层状木堆型光子晶体(如图4)。

(4)光存储使用高分辨率存储材料无疑会增加记录密度,而采用超短激光进行亚微米级操作会得到更好的效果。飞秒激光多光子吸收作用引起材料的永久性光致还原现象,为超高密度三维立体光存储提供了一个全新的思路,存储密度可达1013bits/cm3。其特点:①快速的数据读、写、擦写、重写;②并行数据随机存取;③相邻数据位层间串扰小;④存储介质成本低。飞秒激光三维立体光存储技术成为当前海量存储技术发展的一个新研究方向。

(5)微通道的制备聚合物力学性能好,具有生物相容性,而且飞秒激光光束几乎可以毫无衰减地到达透明材料内部的聚焦点,入射激光唯有在该点位置才能获得较高的功率密度,发生非线性多光子吸收和电离,实现材料内任意部位三维微结构的直写。采用150 fs钛蓝宝石脉冲激光在聚甲基丙烯酸甲脂(Polymethyl Methacrylate:PMMA)内制备出最小直径2μm、最长达10 mm的微通道(如图5),道壁光滑且没有裂纹,没有损坏透明材料表面,这种微通道将广泛用于生物医学技术如DNA拉伸、微统计分析系统等。

3生物医疗领域

飞秒激光具有"冷"加工、能量消耗低、损伤小、准确度高、三维空间上严格定位的优点,最大限度地满足了生物医疗的特殊要求:①手术风险低,可对同一患处进行多次手术,治疗愈合周期短;②相比传统手术刀,医源性感染少;③"全激光"手术,无刀胜有刀,精确度高;④无痛,无并发症。

目前,在此方面取得的研究进展有:①在牙齿、隐形眼镜上钻孔,边缘干净、无损伤;②非热性手术切割烧蚀脑组织样品b51;③纳米切割人体染色体;④制作血管支架,力学性能好,可望解决血管再狭窄问题,即治疗冠心病;⑤飞秒激光飞行质谱DNA排序;⑥飞秒激光激发的荧光显微术对小鼠植入前胚胎内细胞中的钙信号和染色体实现真正的三维、四维实时成像。等。最具有现实意义的是美国INTRALASE公司的Intmlase飞秒激光,可以按任何角度、形状设计制作光滑而且厚度均匀一致的角膜瓣,精确到±10μm。至今Intralase飞秒激光的LASIK手术已经超过30万例,临床统计它的精度要超过传统角膜刀 100多倍。IntraLase"飞秒激光"的出现,使人类第一次在眼角膜手术上离开了手术刀,真正实现了"全程无刀手术"。现在科研者正努力将其用于青光眼及白内障等手术中。在生物医学中,飞秒激光仅局限为一种外科手术工具,要想将其广泛用于医学诊断、生物活体检测、蛋白质分析等方面,还有许多技术层面上的问题需要研究和解决。

此外,飞秒激光微加工技术在一些特殊领域具有广阔的应用前景:①钻孔、切割高热导性、高熔点金属 (如铼、钛等)和高硬度金刚石。②安全切割一些高爆危险物品如:LX-16、TNT、PETN、PBx等,避免了长脉冲激光线性吸收、能量转移和扩散等的影响,断面处没有炸药熔化和反应的痕迹。但在研究切割雷管时,由于热感度较高,处理过程中发生了爆炸H1|,应该深入研究分析,使之能够被安全切割。③利用飞秒激光观测分析物理化学反应本质,有望控制核聚变,以获得可控的无污染核聚变能源。④将光频与波频联系起来的飞秒光梳技术,为更精确的频率机构一光钟的诞生铺平了道路。

3 展望

飞秒激光微加工还处于起步阶段,该技术的发展和应用还需解决一系列的关键技术问题:(1)目前没有形成一套完整的理论来解释:在超快、超短、超强的极端条件下,激光与物质相互作用的物理本质;(2)加大力度投资生产飞秒激光器、微加工系统,将其体积进一步小型化;改善其微加工的工作环境,延长其寿命等;

(3)针对飞秒激光微加工的特性以及被加工材料的属性,开发模型设计的软件,对加工过程进行模拟和仿真,实现最佳参数加工;(4)飞秒激光微纳加工应用现阶段都只局限于实验室阶段,尽快探索其产业化途径,解决一些在能源、材料、环境、航天以及国防方面国家急需解决的问题;(5)降低加工成本,实现高效率生产,以满足市场需求。

可以肯定,随着工业需求的扩大和技术的进步,飞秒激光微加工技术将会变得越来越成熟,它将会不断地开辟新的研究领域,具有广阔的应用前景。

光信0803班江愿20081182091

激光微技术

1987 年美国科学家提出了微机电系统(MEMS)发展计划,这标志着人类对微机械的研究进入到一个新的时代。目前,应用于微机械的制造技术主要有半导体加工技术、微光刻电铸模造(LIGA)工艺、超精密机械加工技术以及特种微加工技术等。其中,特种微加工方法是通过加工能量的直接作用,实现小至逐个分子或原子的去除加工。特种加工是利用电能、热能、光能、声能、化学能等能量形式进行加工的,常用的方法有:电火花加工、超声波加工、电子束加工、离子束加工、电解加工等等。近年来发展起来一种可实现微小加工的新方法:光成型法,包括立体光刻工艺、光掩膜层工艺等。其中利用激光进行微加工显示出巨大的应用潜力和诱人的发展前景。 2 常用激光微加工技术 激光微加工技术具有非接触、有选择性加工、热影响区域小、高精度与高重复率、高的零件尺寸与形状的加工柔性等优点[1]。实际上,激光微加工技术最大的特点是“直写”加工,简化了工艺,实现了微型机械的快速成型制造。此外,该方法没有诸如腐蚀等方法带来的环境污染问题,可谓“绿色制造”。在微机械制造中采用的激光微加工技术有两类:1) 材料去除微加工技术,如激光直写微加工、激光LIGA 等;2)材料堆积微加工技术,如激光微细立体光刻、激光辅助沉积、激光选区烧结等。 2.1 激光直写技术 准分子激光波长短、聚焦光斑直径小、功率密度高,非常适合于微加工和半导体材料加工。在准分子激光微加工系统中,大多采用掩膜投影加工,也可以不用掩膜,直接利用聚焦光斑刻蚀工件,将准分子激光技术与数控技术相结合,综合激光光束扫描与X-Y 工作台的相对运动以及Z 方向的微进给,可以直接在基体材料上扫描刻写出微细图形,或加工出三维微细结构[2]。图1 为准分子激光加工出来的微型齿轮,最小齿轮直径为50mm。目前采用准分子激光直写方式可加工出线宽为数微米的高深宽比微细结构。另外,利用准分子激光采取类似快速成型(RP)制造技术,采用逐层扫描的方式进行三维微加工的研究也已取得较好结果[3]。 2.2 激光LIGA 技术

激光加工技术及其应用(精)

激光加工技术及其应用 概述: 激光加工(Laser Beam Machining,简称LBM是指利用能量密度非常高的激光束对工件进行加工的过程。激光几乎能加工所有材料,例如,塑料、陶瓷、玻璃、金属、半导体材料、复合材料及生物、医用材料等。 在1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 与传统加工技术相比,激光加工技术有以下特点 (1激光功率密度大,工件吸收激光后温度迅速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等也可用激光加工; (2、激光头与工件不接触,不存在加工工具磨损问题; (3、工件不受应力,不易污染; (4、可以对运动的工件或密封在玻璃壳内的材料加工; (5、激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工; (6、激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度; (7、在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。

2.基本原理 激光被广泛应用是因为它具有的单色波长、同调性和平行光束等3大特性。科学家在电管中以光或电流的能量来撞击某些晶体或原子易受激发的物质,使其原子的电子达到受激发的高能量状态。当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量。这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的连锁反应,并且都朝同一个方前进,进而形成集中的朝向某一方向的强烈光束。由此可见,激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,所以利用聚焦后的激光束可以穿透各种材料。以红宝石激光器为例,它输出脉冲的总能量不够煮熟一个鸡蛋,但却能在 3mm的钢板上钻出一个小孔。激光拥有上述特性,并不是因为它有与别不同的光能,而是它的功率密度十分高,这就是激光能够被广泛应用的主要原因。激光加工技术先进性激光的上述特性给激光加工带来一些其它加工方法所不具备的优势。由于激光加工是无接触加工,对工件无直接冲击,所以无机械变形。激光加工过程中无刀具磨损,无切削力作用于工件;激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小,因此受其热影响的工件热变形小,后续加工量少。激光束易于导向、聚焦,能够便捷地实现方向变换,使其极易与数控系统配合,对复杂的工件进行加工。因此,它是一种极为灵活的加工方法,具备生产效率高、加工质量稳定可靠、经济效益和社会效益好等优点。激光加工作为先进制造技术已广泛应用于航空、汽车、机械制造等国民经济重要部门,在提高产品质量、劳动生产率、自动化、降低污染和减少材料消耗等方面起到重要的作用。激光切割激光切割一直是激光加工领域中最为活跃一项技术,它是利用激光束聚焦形成高功率密度的光斑,将材料快速加热至汽化温度,再用喷射气体吹化,以此分割材料。脉冲激光适用于金属材料,连续激光适用于非金属材料,通过与计算机控制的自动设备结合,使激光束具有无限的仿形切割能力,切割轨迹修改十分方便。激光切割技术的出现使人类可以切割一些硬度极高的物质,包括硬质合金,甚至金刚石。高科技已经让“削铁如泥”的传说变成了现实。激光切割技术是激光加工技术应用的重要方面之一,广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质

激光加工技术的原理及应用

激光加工技术 摘要 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一种加工新技术,涉及到光、机、电、材料及检测等多门学科。由于激光加工热影响区域小,光束方向性好,几乎可以加工任何材料。常用来进行选择性加工,精密加工。由于激光加工的特殊特点,其发展前景广阔,目前已广泛应用于激光焊接、激光切割、表面改性、激光打标、切削加工,快速成形,激光钻孔和基板划片,半导体处理等。 关键词:原理、应用﹑新技术、精密加工、 引言 激光是本世纪的重大发明之一,具有巨大的技术潜力。专家们认为,现在是电子技术的全胜时期,其主角是计算机,下一代将是光技术时代,其主角是激光。激光因具有单色性、相干性和平行性三大特点,特别适用于材料加工。激光加工是激光应用最有发展前途的领域,国外已开发出20多种激光加工技术。激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。

正文 1﹑激光加工技术的原理及其特点 1.1激光加工的起源 早期的激光加工由于功率较小,大多用于打小孔和微型焊接。到20世纪70年代,随着大功率二氧化碳激光器、高重复频率钇铝石榴石激光器的出现,以及对激光加工机理和工艺的深入研究,激光加工技术有了很大进展,使用范围随之扩大。数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。各种专用的激光加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。 1.2激光加工的原理 激光加工是以激光为热源对工件进行热加工。 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 从激光器输出的高强度激光经过透镜聚焦到工件上,其焦点处的功率密度高达107~1012瓦/厘米2,温度高达1万摄氏度以上,任何材料都会瞬时熔化、气化。激光加工就是利用这种光能的热效应对材料进行焊接、打孔和切割等加工的。通常用于加工的激光器主要是固体激光器(图1)和气体激光器(图2)。使用二氧化碳气体激光器切割时,一般在光束出口处装有喷嘴,用于喷吹氧、氮等辅助气体,以提高切割速度和切口质量。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。

浅谈激光加工技术的发展及应用

浅谈激光加工技术的发展及应用 浅谈激光加工技术的发展及应用 【摘要】因为激光的加工技术的优点是生产的效率极高、加工的质量极好、适用的范围很广等,所以越来愈多的人希望在很多的领域中使用激光加工技术。本文介绍其相关的理论,重点论述其发展和应用。 【关键词】激光加工技术相关理论发展应用 一、前言 近年来重大的发明之一是激光技术。随着社会经济的快速发展,把激光器当成基础的激光加工的技术得到了快速发展。目前其正在被广泛应用在生产、通讯、医疗、军事及科研等多种领域。并且在这些领域都取得了非常好的经济与社会的效益,是我国未来经济的发展的关键。 二、激光加工技术相关理论 笔者认为,了解与应用激光加工技术需要对其相关理论深入的研究。以下笔者从其原理和特点来介绍激光加工技术。 (一)原理 激光加工能够获得极高的能量密度与极高的温度是因为采用的光学系统能够让激光聚焦成为一个非常小的光斑,在这样的高温下,每种坚硬的材料都会被瞬间熔化与气化,然后熔化物被气化而产生的蒸汽压力推动,以很高的速度喷射出来,从而实现了对工件加工的特种加工方法。 (二)特点 激光加工的技术对于加工工具与特殊环境没有要求,不会造成工具的磨损,易于使用自动控制来进行连续加工,且加工效率极高;同时激光的强度极高,聚焦后差不多能够熔化和气化全部的材料,所以能够加工所有硬度的金属与非金属的材料;加上激光加工是属于非接触的加工,及加工速度非常的快,工件没有受力与受热而产生变形;其还能聚焦成为极小的光斑(微米级),能够调节输出的功率,所以

可进行精密且细微的加工。这些均是激光加工优点。但由于其设备的投资比较大,及操作和维护技术要求比较高;且在精微加工的时候,重复的精度与表面的粗糙度难以保证等。这些缺点尽管在一定的程度上缩小了其应用规模,也限制了其发展,但是由于进一步的研究,越来越成熟的技术,激光加工技术有着非常广阔的发展前景。 三、激光加工技术的发展及应用 近年来,由于激光加工技术的快速发展,其被应用于许多的领域。以下是笔者从激光器与激光加工技术领域来介绍激光加工技术的发展,同时介绍目前激光加工技术的具体应用。 (一)激光加工技术的发展 了解激光加工技术的发展,就要研究激光器以及其应用的领域的变化。只有这样才能从根本上了解其发展。 迅速发展的激光器。我国研制出的第一台激光器是在1961年。通过几十年的努力,我国的激光器技术快速的发展起来了,从固体的激光器到气体的激光器,再到如今光纤的激光器、半导体的激光器与飞秒的激光器。光纤的激光器与传统激光器来比较,其优势是功率输出大,光束的质量较好,转换的效率较高,良好的柔性传输等。其在使用激光加工技术加工材料中有着极大的吸引力。现在应用于使用激光来打标、切割以及焊接。而飞秒的激光器则能够使超精微的加工可以实现。其在高技术的领域如微电子、光子学等应用的前景极宽广。同时半导体的激光器正在被直接用在焊接、热处理等方面。总之激光器的迅速发展导致了激光加工技术的快速发展。 广泛的应用领域。激光加工是在机械加工、力加工、火焰加工与电加工之后新产生的一种的加工技术,是借助激光束和物质相互作用的特性,对材料进行切割、焊接、表面处理、打孔以及微加工的综合性技术。激光焊接广泛应用在汽车的零件、密封的器件等多种要求焊接无污染与无变形的器件。激光切割主要应用在汽车的行业、航天的工业等领域。而激光打孔则应用在汽车的制造、化工等产业。广泛的应用领域也使得激光加工技术快速发展。 (二)激光加工技术的应用 激光加工技术在我国的许多领域里占据着重要的位置,以下是笔

激光加工技术的现状及国内外发展趋势

激光加工技术的现状及国内外发展趋势——激光英才网 作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。 激光加工是国外激光应用中最大的项目,也是对传统产业改造的重要手段,主要是kW 级到10kW级CO2激光器和百瓦到千瓦级Y AG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理等。 激光加工应用领域中,CO2激光器以切割和焊接应用最广,分别占到70%和20%,表面处理则不到10%。而Y AG激光器的应用是以焊接、标记(50%)和切割(15%)为主。在美国和欧洲CO2激光器占到了70~80%。我国激光加工中以切割为主的占10%,其中98%以上的CO2激光器,功率在1.5kW~2kW范围内,而以热处理为主的约占15%,大多数是进行激光处理汽车发动机的汽缸套。这项技术的经济性和社会效益都很高,故有很大的市场前景。 在汽车工业中,激光加工技术充分发挥了其先进、快速、灵活地加工特点。如在汽车样机和小批量生产中大量使用三维激光切割机,不仅节省了样板及工装设备,还大大缩短了生产准备周期;激光束在高硬度材料和复杂而弯曲的表面打小孔,速度快而不产生破损;激光焊接在汽车工业中已成为标准工艺,日本Toyota已将激光用于车身面板的焊接,将不同厚度和不同表面涂敷的金属板焊接在一起,然后再进行冲压。虽然激光热处理在国外不如焊接和切割普遍,但在汽车工业中仍应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理。在工业发达国家,激光加工技术和计算机数控技术及柔性制造技术相结合,派生出激光快速成形技术。该项技术不仅可以快速制造模型,而且还可以直接由金属粉末熔融,制造出金属模具。 到了80年代,Y AG激光器在焊接、切割、打孔和标记等方面发挥了越来越大作用。通常认为Y AG激光器切割可以得到好的切割质量和高的切割精度,但在切割速度上受到限制。随着Y AG激光器输出功率和光束质量的提高而被突破。Y AG激光器已开始挤进kw级CO2激光器切割市场。Y AG激光器特别适合焊接不允许热变形和焊接污染的微型器件,如锂电池、心脏起搏器、密封继电器等。Y AG激光器打孔已发展成为最大的激光加工应用。 目前,国外激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打

激光加工技术的应用研究

激光加工技术的应用研究 摘要:激光加工技术作为一门科学技术,广泛应用于许多工程领域。作为科学发展中出现的一种全新产物,该技术为国防军事、工业机械和农业商业等领域带来了诸多便利。科学技术的不断进步推动着施工质量在提高,激光技术也在不断改进。激光加工技术在工程机械制造中的应用是本文研究的重点,目的是与行业相关人员讨论如何更有效地提高机械产品的制造精度和质量。 关键词:激光加工;机械制造;应用 引言 日益提升的国民经济水平下,信息现代及激光技术也得到了进一步发展。激光技术凭借自身的多项优点,在军事、医学等相关领域之中得到了普遍认可。可以说,激光技术在各个行业之中都属于一项顶尖的技术,是各领域应用激光而产生的一系列技术,备受各国相关人员的重视。 1激光技术工作原理 激光具有单色波长、平行光束的性能特征。科学实验中,采用电管依托光或电流的能量撞击个别原子里含有易激发物质或晶体,原子所带电子在经历了撞击之后处于高能量状态,而高能量电子逐渐朝着平和低能量转化并完成之后,原子会有更大能量产生,进而有光子发出;该状态下,释放出来的光子会继续撞击原子,而原子在撞击下会有光子继续产生,重复撞击、释放这一循环过程,且是以同一运行方向进行的,会集中形成一束具有极强能量的该方向的光,即为激光原理。聚集之后形成的激光具有强大的能量,各类材质即可穿透。如红宝石激光输出脉冲尽管不具备能让冷水沸腾的能量,然而却能将5mm钢板穿透。而激光虽然具有一般的光能,但却具备极高的功率密度和强大的穿透力,是一般光束根本无法达成的,也正是因为激光的该优势,因此在各个行业领域之中得到了广泛地应用。 2激光加工概述 激光的全称是受激辐射光放大,如何从技术上实现数反转是激光产生的必要条件,当高能粒子与特定频率的光子发生入射时,高能级的粒子会有一定的概率跃至低能级。除此之外,粒子会辐射出与外光子频率、相位、偏振和传播方向相同的光子,上述过程就是受激辐射。受激辐射就意味着原始光信号会被放大,受激光辐射过程中衍生出的光被称为激光。激光的显著特点主要有:亮度极高、指向性强、色度比较单一、相干度较高等。随着工业技术近年来的技术改革逐步深入,激光切割、激光焊接、激光熔覆、激光材料制造等激光加工技术在制造业中扮演着越来越重要的角色。 2.1激光切割 激光切割是借助高能量密度的激光束对器件进行强光照射,目的是使照射温度迅速上升。物料气化后,蒸汽会在短时间内被迅速排出或熔化,而辅助气体会为液体的顺利排出提供一定的帮助,进而形成相应的狭缝。激光切割通常会被用于加工钢、铝合金、钛合金等常见金属材料,玻璃、陶瓷、塑料等非金属材料也是激光切割的切割对象。值得一提的是,激光切割是一种非接触加工工艺,切割过程中工件并不会出现机械变形,激光束不会对不受激光照射的工件产生影响,其热冲击面积小,工件的热变形校激光切割快速灵活,节省投资和生产成本。在汽车工业中,三维激光切割逐步取代冲切模和切边模成为生产车身板件的主要切割技术,相较于传统技术节省了大量的切割时间。在工程机械行业,日本以激光

飞秒激光超微细加工技术简介

飞秒激光超微细加工技术简介 摘要:本文首先简单地介绍了飞秒激光和超微细加工技术飞秒激光加工技术的技术背景,然后较为详细地介绍了飞秒激光超微细加 工技术及其特点与应用,结合飞秒激光超微细加工技术的特点 将其与其它的微机械加工技术进行了比较,最后分析飞秒激光 超微细加工技术的发展趋势和应用前景。 关键词:飞秒激光超微细加工技术飞秒激光超微细加工 Femtosecond laser micro machining technology Introduction Abstract: This paper first briefly describes the technical background of the femtosecond laser and micro machining technology and femtosecond laser micro machining technology, then a more detailed description the femtosecond laser micro machining technology and its features and applications, combined with the femtosecond laser micro machining technology will be characterized by with other micro-machining technology, the final analysis of the femtosecond laser micro machining technology trends and application prospects. Keywords:femtosecond laser micro machining technology femtosecond laser ultra-fine processing 0引言 激光(Laser,即Light Amplification by stimulated Emission of Radiation的缩写),意思是利用辐射受激得到的加强光,激光加工(Laser Beam Machining)就是把激光的方向性好和输出功率高的特性应用到材料的加工领域中去。【1】用聚焦的方法,把激光束汇聚在面积很小的一个区域,从而在该区域提供足够的热量使该区域的材料荣华或者气化从而达到机械加工的目的,显然激光加工是一种非接触式的加工,可以用于各种材料的微细加工。知道了什么是激光加工,那么飞秒激光超微细加工和普通的激光加工又有什么区别呢?

激光加工技术发展的研究

激光加工技术发展的探究 摘要:激光加工是将激光束照射到工件的外表,以激光的高能量来切除、熔化质料以及转变物体外表性能。由于激光束的能量和光束的移动速率均可调治,因此激光加工可应用于任意层面和领域上。本文分别从激光加工技术的原理及其应用综合品评了激光加工较传统加工技术的良好性,说明其在制造行业中不行替换的作用.结合我国激光加工制造现状与国际的差距,对我国激光加工业发展做了良好的预测.在阐发外国研究动向的基础上,指出激光制造技术的发展趋向,将重点定位在微结构、微刻蚀、微工具以及多功效性微技术、微工程的研究与开发上。可以预测,三维微纳尺度的激光微制造技术必将成为新世纪的主流制造技术。 关键词:激光加工激光制造体系技术发展 1.前言 激光的研究及其在各个领域的应用得到了迅速的发展。其高相干性在高细密丈量、物质结构阐发、信息存储及通讯等领域得到了普遍应用。激光的高单色性,可在光化学领域对一些相距很近的能级作选择引发,进行重金属的同位素疏散;激光的高偏向性和高亮度可普遍应用于加工制造业(大到航天器、飞机、汽车工业,小到微电子、信息、生物细胞疏散等微技术)。随着激光器件、新型受激辐射光源,以及相应工艺的不停改造与优化,尤其是近20年来,激光制造技术已渗透到诸多高新技术领域和产业,并开始取代或革新某些传统的加工行业。 2.正文 激光制造技术包括两方面的内容,一是制造激光光源的技术,二是使用激光作为工具的制造技术。前者为制造业提供性能优良、稳固可靠的激光器以及加工体系,后者使用前者进行各种加工和制造,为激光体系的不停发展提供广阔的应用空间。两者是激光制造技术中不可或缺的部分,不行偏废。激光制造技术具有许多传统制造技术所没有的优点,是一种切合可持续发展战略的绿色制造技术。比如,质料浪费少,在大规模生产中制造资本低;凭据生产流程进行编程控制(自动化),在大规模制造中生产屈从高;可靠近或到达“冷”加工状态,实现通例技术不能实验的高细密制造;对加工工具的顺应性强,且不受电磁干扰,对制造工具和生产情况的要求低;噪声低,不孕育发生任何有害的射线与剩余,生产历程对情况的污染小等等。因此,为顺应21世纪高新技术的产业化、满足宏观与微观制造的需要,研究和开发高性能光源势在必行。现在正在积极研制超紫外、超短脉冲、超大功率、高光束质量等特性的激光,尤其是能顺应微制造技术要求的激光光源更是倍受关注,并已形成国际性竞争。可以

研究方向---飞秒激光微加工技术

飞秒激光微加工技术国内外的研究现状 超短、超强和高聚焦能力是飞秒激光的3大特点。飞秒激光脉宽可短至4 fs(1 fs=10-15 s)以内…,峰值功率高达拍瓦量级(1 Pw=1015w)聚焦功率密度达到1020-1022 W/cm2。飞秒激光可以将其能量全部、快速、准确地集中在限定的作用区域,实现对玻璃、陶瓷、半导体、塑料、聚合物、树脂等材料的微纳尺寸加工,具有其它激光加工无法比拟的优势:①耗能低,无热熔区,"冷"加工;②可加工的材料广泛:从金属到非金属再到生物细胞组织,甚至是细胞内的线粒体;③高精度、高质量、高分辨率,加工区域可小于焦斑尺寸,突破衍射极限; ④对环境没有特殊要求,无污染。飞秒激光微加工是当今世界激光、光电行业中极为引人注目的前沿研究方向。世界各国学者在飞秒激光与材料相互作用机理研究方面已取得重大的进展,开发出以钛宝石激光器为主的飞秒激光微加工系统,开展了飞秒激光微纳加工的工艺研究,促进了多学科的融合,推动着飞秒激光微纳加工技术向着低成本、高可靠性、多用途、产业化的方向发展。飞秒激光微加工技术将在超高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用和潜在的市场前景。本文旨在综述飞秒激光微加工技术国内外的研究状况,介绍飞秒激光微加工的重要应用,展望其今后的发展趋势。 1 国内外飞秒激光微加工技术研究状况 1.1飞秒激光微加工基础理论的研究 飞秒激光加工机理的研究、试验大多是探索陛的,多与长脉冲情形相比较而确定飞秒激光的烧蚀特性,在一定程度上解释了飞秒激光与物质相互作用的物理本质。目前理论研究较系统的材料有金属和透明介质。 (1)金属前苏联Anisimov SI等人于1975年第一次提出了超短脉冲烧蚀金属材料的双温模型。该模型从一维非稳态热传导方程出发,考虑到超短脉冲作用时,存在光子与电子、电子与晶格两种不同的相互作用过程,列出了电子与晶格的温度变化微分方程,即双温方程。一些学者以该模型为基础,在不同的激光脉宽下对双温方程进行约化,求得解析解"-。发现当激光脉宽远远小于晶格的受热时间时,烧蚀时间不依赖于激光脉宽。试验得到的金属铜材料的烧蚀速率与双温模型基本一致。1999 年,Falkovsky L A和Mishchenko E G基于玻尔兹曼方程和费米狄拉克配分函数提出热电子爆炸模型来描述金属材料中的超快形变。2002年,chen J K等人综合双温模型及电子爆炸模型,假定单轴应变三维高压条件,提出了一系列相关联的瞬时热弹性变形方程。数值结果表明,超短激光脉冲烧蚀过程中,非熔融态损伤占支配地位,这种非熔融态损伤的主要动力来源于热电子爆炸力。 (2)透明介质1990年,Hand D P和RusseU P St J根据K-K(Kmmers-Kronig)因果关系提

激光微细加工技术及其在MEMS微制造中的应用讲解

SpecialReports 2002年第3期 综述 激光微细加工技术及其在MEMS微制造中的应用LaserMicromachiningandItsApplicationintheMicrofabricationofMEMS 潘开林①②陈子辰②傅建中① (①浙江大学生产工程研究所②桂林电子工业学院) 摘要:文章综述了当前MEMS各类微制造技术,阐述了各种激光微细加工技术的原理、特点,主要包括准 分子激光微细加工技术、激光LIGA技术、激光微细立体光刻技术等,以及它们在MEMS微制造中的应用。 关键词:激光微细加工微机电系统激光LIGA1所示[5]。 表1MEMS主要微制造技术对比 技术 LIGA 1MEMS及其微制造技术概述 微机电系统(ME,,知功能和执行功能,在此基础上可开发出高度智能、高功能密度的新型系统。MEMS器件与系统未来将成为多个领域的核心,其作用与以CPU为代表的集成电路构成当今电子系统的核心一样。鉴于MEMS技术的重要技术经济潜力和战略地位,引起了世界各国的高度重视。MEMS主要是美国学者的称谓,在日本称为微机械,在欧洲称为微系统。此外,微技术在不同的学科与应用领域,还有类似的不同的专业或行业术语,如生物技术领域的基因芯片(DNA芯片)、生物芯片(Bio-Chip),分析化学领域的微全流体分析系统(uTAS)、芯 最小尺寸 +++--(+)-(+)+++ 精度 +++--(+)++-+ 高宽比粗糙度 ++-+-+++++++

++--+-++ 几何自 由度 +-++++++-- 材料范围金属、聚合物、 陶瓷金属、聚合物金属、聚合物、 陶瓷聚合物金属、半导体、 陶瓷金属、半导体非铁金属、聚合物 技术准分子激光微细立体光刻微细电火化 LCVD 金刚石片实验室(LabonChip),与光学集成形成微光机电系统(MOEMS)等。MEMS是从微电子技术发展而来,其微制造技术 注:表中++、+、-、--分别表示很好、好、较差、很差,+-表示不同应用条件下的相对效果,括号内的“+”表示最新研究有所进展。 在目前MEMS微细加工技术的研究与应用中,激光微细加工技术得到了广泛的关注与研究。激光微细加工制造商宣称激光微细加工技术具有:非接触工艺、有选择性加工、热影响区域小、高精度与高重复率、高的零件尺寸与形状的加工柔性等优点。 实际上,激光微细加工技术最大的特点是“直写”加工,简化了工艺,实现了MEMS的快速原型制造。此外,该方法没有诸如腐蚀等方法带来的环境污染问题,可谓“绿色制造”。 在MEMS微制造中主要采用的激光微细加工技术有:激光直写微细加工、激光LIGA、激光微细立体光刻等,下面分别加以介绍。 主要沿用微电子加工技术与设备。微电子加工技术与设备价格昂贵,适合批量生产。由于微电子工艺是平面工艺,在加工MEMS三维结构方面有一定的难度。目前,通过与其它学科的交叉渗透,已研究开发出以下一些特定的MEMS微制造技术。 (1)LIGA技术LIGA和准LIGA技术最大的特点是可制出高径比很大的微构件,但缺点同样突出,成本高。 (2)材料去除加工技术这类技术主要包括准分 子激光微细加工[1~4]、微细电火花加工[5]、以牺牲层技术为代表的硅表面微细加工、以腐蚀技术为主体的体硅加工技术、电子束铣、聚焦离子束铣等。(3)材料淀积加工技术这类技术主要包括激光 7] 辅助淀积(LCVD)、微细立体光刻[6、、电化学淀积等。

激光切割技术的原理及应用

1. 激光切割技术简介 (2) 1.1激光切割技术概述 (2) 1.2激光切割技术的原理 (4) 1.3激光切割技术的发展历史 (5) 2.激光切割的特点 (6) 2.1激光切割的总体特点 (6) 2.2 CO2激光切割技术的特点 (7) 2.3半导体激光切割机 (8) 2.4光纤激光切割机 (8) 3. 激光切割技术的应用及发展前景 (10) 3.1激光切割技术的市场现状 (10) 3.2激光切割技术的应用 (12) 结论 (13)

材料12A文修曜 摘要 激光加工技术是一种先进制造技术,而激光切割是激光加工应用领域的一部分,激光切割是当前世界上先进的切割工艺。由于它具备精密制造、柔性切割、异型加工、一次成形、速度快、效率高等优点,所以在工业生产中解决了许多常规方法无法解决的难题。激光能切割大多数金属材料和非金属材料。 Abstract The laser processing technology is a kind of advanced manufacturing technology, and laser cutting is part of the laser processing applications, laser cutting is the current advanced cutting technology in the world.Because it has flexible cutting, stone processing, precision manufacturing, a forming, fast speed, higher efficiency, so in industrial production solved many conventional methods cannot solve the problem.Can laser cutting most of the metal materials and nonmetal materials. 关键词:激光切割的原理;激光切割的分类及特点;激光切割技术的应用 1.激光切割技术简介 1.1激光切割技术概述 激光切割是激光加工行业中最重要的一项应用技术。它占整个激光加工业的70%以上。激光切割与其他切割方法相比,最大区别是它具有高速、高精度及高适应性的特点。同时还具有割缝细、热影响区小、切割面质量好、切割时无噪声、切割过程容易实现自动化控制等优点。激光切割板材时,不需要模具,可以替代

激光加工技术-教学基本要求

高等职业教育激光加工技术专业教学基本要求 专业名称激光加工技术 专业代码580114 招生对象 普通高中毕业生、中职毕业生 学制与学历 三年制,专科 就业面向 本专业覆盖激光加工技术等职业领域的岗位群。 1.毕业生可适应的初始职业岗位有: (1)激光加工设备制造企业的各加工工种岗位、激光加工设备装配、调试、使用、维护、维修等岗位; (2)光电设备、机电设备及相关成套设备的安装、调试、使用与维护。 2.毕业生在获得一定工作经验(进修)后发展职业岗位有: (1) 激光及数控加工设备制造企业的产品营销、生产管理、技术管理、质量控制等企业管理岗位群; (2) 升迁的职业岗位及预计平均获得的时间为三年。 培养目标与规格 一、培养目标 本专业培养德、智、体、美、劳全面发展,适应现代制造业需要,主要面向激光加工设备制造和使用行业,培养从事大功率激光加工设备操作及维护,小功率激光加工设备组装、调试及售后服务等岗位,兼顾光电设备、机电设备及相关成套设备的安装、调试、使用、数控加工设备操作等岗位的高端技能型专门人才。 激光加工设备装配调试、操作使用、销售及售后服务各工种岗位主要包括激光美容仪、激光打标机、激光雕刻机、激光焊接机、激光切割机等设备的生产制造、销售服务、使用维护等岗位构成本专业毕业生初始就业岗位群。 毕业生经过三年左右的工作经验累积或进修,可升迁至激光及数控加工设备制造企业的生产管理(计划员、统计员、调度员、采购员、对外协作员等)、技术管理(工艺师、工装夹具设计师等)、质量控制(对产品质量的控制、检验、分析)、产品营销等企业管理岗位群。 二、培养规格 本专业的职业核心能力主要有: 在掌握激光加工设备本体的装配与调试工艺的基础上,重点掌握激光器光路装置的装配与调试工艺。

激光加工技术应用领域研究(通用版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 激光加工技术应用领域研究(通 用版)

激光加工技术应用领域研究(通用版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 激光加工技术作为一项高新技术一直是国家重点支持和推动的,在国家制定中长期发展规划时,也将激光加工列为关键支撑技术,这就给激光加工技术应用带来前所未有的发展机遇。本文就对激光加工技术的在快速制造应用领域进行简单的探讨。 激光快速制造技术弥补了激光烧结工艺中的不足。现代激光技术的应用,采用了专门研发的、申请了专利保护的激光照射方案,使用了标准钢材粉末为原料的技术,获得了巨大的成功,可制造出无收缩的、几乎是百分之百密实的零部件。现在,在使用正品原材料的情况下可以制作大型的零件,如强力冷却的模具型芯。所用材料的特性与大批量生产时所用的钢材相同,使制造出来的零件满足了大批量生产的条件。铝合金铸造厂采用这种工艺技术为汽车生产厂制造铝合金材料的压铸模具。 激光快速制造技术是一种“常规的”生产制造工艺,它使得所有可以焊接的金属材料,如不锈钢、耐热钢和调质钢,按照一层层焊接

材料工程新工艺新技术论文——激光切割的原理及应用

激光切割的原理及应用 【摘要】 激光加工技术是一种先进制造技术,而激光切割是激光加工应用领域的一部分,激光切割是当前世界上先进的切割工艺。由于它具备精密制造、柔性切割、异型加工、一次成形、速度快、效率高等优点,所以在工业生产中解决了许多常规方法无法解决的难题。激光能切割大多数金属材料和非金属材料 【关键词】激光切割的原理 激光切割的分类及特点 激光切割技术的应用 1.概述 激光切割是激光加工行业中最重要的一项应用技术。它占整个激光加工业的70%以上。激光切割与其他切割方法相比,最大区别是它具有高速、高精度及高适应性的特点。同时还具有割缝细、热影响区小、切割面质量好、切割时无噪声、切割过程容易实现自动化控制等优点。激光切割板材时,不需要模具,可以替代一些需要采用复杂大型模具的冲切加工方法,能大大缩短生产周期和降低成本。 因此,目前激光切割已广泛地应用于汽车、机车车辆制造、航空、化工、轻工、电器与电子、石油和冶金等工业部门中。 2.激光切割的原理 在激光束能量作用下(氧助切割机制下,还要加上喷氧气与到达燃点的金属发生放热反应放出的热量),材料表面被迅速(ms 范围)加热到几千乃至上万度(℃)而熔化或汽化,随着汽化物逸出和熔融物体被辅助高压气体(氧气或氮气等惰性气体)吹走,切缝便产生了(原理图见图2)[1]。脉冲激光适用于金属材料, 连续激光适用于非金属材料, 后者是激光切割技术的重要应用领域。与计算机控制的自动设备结合, 激光束具有无限的仿形切割能力, 切割轨迹修改方便通过预先在计算机内设计, 进行众多复杂零件整张板排料, 可实现多零件同时切割 , 图 2激光切割的原理图 图 1 激光切割

激光加工技术要求

激光加工技术要求 1.加工件所用材料应严格按照我方要求采购,不应有以次充好等现 象发生。 2.应提供每个批次加工件所用材料的材质单。 3.每个批次加工件所用材料的表面不得有锈蚀点、氧化皮等缺陷。 4.每个批次加工件的平面度不应大于0.05%。 5.每个批次加工件所用材料的规格应满足图纸要求(尤其是厚度不 应小于图纸、要求厚度0.3mm)。 6.加工件的轮廓尺寸误差不得大于0.5mm。 7.加工件的穿孔直径误差不得大于0.2mm。 8.加工件的穿孔孔距误差不得大于0.4mm。 9.加工件的切口表面粗糙度应控制在Ra12.5—25μm(切缝一般不需 要再加工即可焊接等)。 10.加工件的切口表面垂直度应控制在2%。 11.加工件所有螺纹处要求激光划线“十”字标记;直径小于板厚的 光孔处要求激光划线“十”字标记;特殊要求标记处要求激光划线按图纸要求标记。 12.加工件所有划线标记处要清晰,但不要划线太深。 13.加工件划线标记处数量、穿孔处数量、特殊标记处数量应准确, 不应多做标记和漏划标记处。 14.每次交付加工件时要求有贵公司的质量检验报告单。

报价要求 1.每次报价应把该批次加工件的详细排版图使用电子邮件形式发至 我公司。 2.首次加工的加工件加工详细情况,贵公司应与我公司按图纸要求 共同协商加工。例如:图纸上哪些孔是按穿孔计算价格,哪些孔是按切割延米计算价格。 3.报价单应注明加工件的图号;板厚及外形尺寸;加工数量;净重; 切割长度;穿孔数量;标记出数量;材料损耗;加工每一项的单价、合计;材料单价、合计;总计价格等。 报价补充 1.如果报价按照每次加工数量排版的实际使用材料数量报价,那么 每个批次的加工件排版的余料、损耗等由贵公司按照当时的市场价格自行处理,并适当减少加工部分费用。 2.如果报价按照每件的材料价格和单件加工费用总和报价,那么每 个批次加工后的余料、损耗等由贵公司自行处理,并适当减少加工部分费用。 3.部分加工件中切割后剩余的材料还很整齐,还可以充分利用切割 其它零件,不应按废钢计算。只有切割后完全不能再利用的材料才能按废钢计算。

激光微细加工技术的研究与应用

激光微细加工技术的研究与应用

激光微细加工技术的研究与应用 摘要 激光加工的实质是激光将能量传递给被加工材料,被加工材料发生物理或 化学变化,使其达到加工的目的。激光微细加工技术是指加工精度O.1mm_lμm 的激光加工技术。激光微加工的应用范围十分广泛,尤其在集成电路芯片的制造、计算机外设以及通讯等方面的应用推动了信息产业革命,在电子、仪表、 航空航天工业中,激光微细加工可以高效率高质量地完成微细小孔、划片微调、切割、焊接以及标记等加工,其中以准分子激光的应用最为广泛,准分子激光 除做常规的钻、切、划加工外,还可用掩模法直接在工件上生成图案。目前的 研究进展已经显示,激光微技术是有发展潜力的三维微制造技术,将可能成为 微系统制造的主流技术之一,并已是激光加工技术及产业发展研究开发的重点 之一。激光微技术将是21世纪高新技术发展的主要标志和现代信息社会光电子技术的支柱之一。 关键词:激光微细加工;制造技术;优点;应用;孔加工;发展趋势 一、激光微细加工技术简介 激光加工是将激光束作用于物体表面而引起物体形状或性能改变的加工过程,其实质是激光将能量传递给被加工材料,被加工材料发生物理或化学变化,使其达到加工的目的。加工技术可以分为4个层次:一般加工、微细加工(加工精度O.1mm_lμm)、精密加工(加工精度1μm -O.1μm)和超精密加工(加工精度 高于O.1pm)。激光具有高单色性、高方向性和高亮度的优点 . 在理论上将相 干光聚焦后形成直径为亚微米级的光点 , 温度高达 10000 ℃以上 , 可在千 分之几秒内急剧熔化和汽化各种材料。激光加工技术是利用激光束与物质相互作用的特性对材料 ( 包括金属与非金属) 进行切割、焊接、表面处理、打 孔及微加工等的一门加工技术。激光加工技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术。其工作原理:激光器由激光工作物质、激励 能源、全反射镜和部分反射镜构成的光谐振腔组成,当工作物质被光或放电 电流等能源激发后 , 在一定的条件下可以使光得到放大 , 并通过光谐振腔的 作用产生光的振荡 , 由光谐振腔的部分反射镜输出激光,由激光器发射的激 光束通过透镜聚焦到工件的待加工表面 , 对工件进行各种加工。激光加工技 术不仅可以方便地加工硅、金刚石、石英、人造金刚石、玻璃、陶瓷和硬金属 等材料,也可以对容易产生塑性流动的低硬度聚合物材料进行精确的加工。激 光加工同样也适合于精密和形状复杂的零件的加工,同时,激光加工还适用于 表面的亚微米加工,能够加工传统方法难以实现的孔或空腔。

激光加工专业技术有哪些【详情】

激光加工技术有哪些【详情】

————————————————————————————————作者:————————————————————————————————日期:

激光加工技术有哪些 内容来源网络,由深圳机械展收集整理! 更多激光加工设备技术展示,就在深圳机械展! 激光加工技术是利用激光束与物质相互作用的特性,对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一门加工技术。激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。 激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为以下9个方面: 1.激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统; 2.激光加工工艺。包括焊接、表面处理、打孔、打标、微调等各种加工工艺; 3.激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器; 4.激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器; 5.激光打标:在各种材料和几乎所有行业均得到广泛应用,使用的激光器有YAG激光器、CO2激光器和半导体泵浦激光器; 6.激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打孔的迅速发展,主要体打孔用YAG激光器的平均输出功率已由400w提高到了800w至1000w。国内比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉丝模的生产及钟表和仪表的宝石轴承、飞机叶片、多层印刷线路板等行业的生产中。使用的激光器多以YAG激光器、CO2激光器为主,也有一些准分子激光器、同位素激光器和半导体泵浦激光器; 7.激光热处理:在汽车工业中应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理,同时在航空航天、机床行业和其它机械行业也应用广泛。我国的激光热处理应用远比国外广泛得多。使用的激光器多以YAG激光器,CO2激光器为主; 8.激光快速成型:将激光加工技术和计算机数控技术及柔性制造技术相结合而形成,多用于模具和模型行业。使用的激光器多以YAG激光器、CO2激光器为主; 9.激光涂敷:在航空航天、模具及机电行业应用广泛。使用的激光器多以大功率YAG激光器、CO2激光器为主。 激光加工为工业制造提供了一个清洁无污染的环境及生产过程,而这也是当下激光加工的优势。 技术特性

相关主题
文本预览
相关文档 最新文档