当前位置:文档之家› 筏板计算

筏板计算

筏板计算
筏板计算

筏板底板的设计荷载的计算方法

一、地下水位、地下水压

通常地质报告中提供了两个设计水位,一个是抗浮水位,一个是最高水位或设防水位,前者是确定整体建筑抗浮稳定性验算的水压,依据DBJ 15-31-2003建筑地基基础设计设计规范(广东省)第5.2.1条

地下室抗浮稳定性验算应满足下式:

W/F≥1.05

其中:F—地下水浮力,此时不须要考虑水浮托力作用的荷载分项系数,水的重度为1000kg/m3 (10KN/M3)

F=10×H (H-按照抗浮水位确定的水头)

W—地下室自重及其上作用的永久荷载标准值的总和

(其标准值意义在于此时不须乘以0.9的荷载分项系数)

用最高水位或者设防水位,确定地下室底板及外墙构件时,在地下水作用下应有足够的强度和刚度,并满足构件的裂缝宽度控制要求。

另外DBJ15-31-2003在地下水作用的章节提出,如果岩土工程勘察报告中没有提供地下水的最高水位时(或者最高水位高于室外地坪标高时),地下水设防水位可取建筑的室外地坪标高。此时,作用于地下室底板和地下室外墙水压力,是依据以上的两个设计水位为依据。

此时,作用于地下室底板上的地下水压力:

1、水位不急剧变化的水压力按永久荷载考虑

—按设防水位确定的水头

—水的重度10KN/M3

或—水压作为永久荷载时的荷载分项系数

(参见上海市地基基础规范)

时设计应取和分别作为地下室底板和外墙设计荷载, 为标准荷载,

为设计荷载,前者控制裂缝,后者控制强度,配筋取大者.

2、水位急剧变化的水压力按可变荷载考虑

其中—水压作为活荷载的荷载分项系数

—设计水位时的水头

二、筏板基础的底板设计

作用在筏板底板的荷载,一是上部结构,结构自重、水平荷载(风荷载、地震荷载)产生的基底压力。二是向上作用的人防荷载和由水浮力产生的水压力。以上几组荷载应如何组合,以保证设计的合理和保证结构的安全。其中当结构自重小于水浮力时,筏板底板的设计荷载应如何取值(特别是无上部建筑的地下车库地下水池等结构)?倘若为了抗浮,采用抗浮锚杆,此时抗浮锚杆的设计荷载如何取值?这是本文试图讨论的问题。

一)、当无地下水情况时

1、当无人防荷载作用时,底板承受上部结构传来的基底反力

○1 假定地基均匀,筏板为刚性板,基底反力按直线分布,此时筏板尺寸应符合以下要求。在竖向荷载作用下,基础底面压应力标准值按下式计算:

其中—上部结构竖向构件轴力合力的标准值,=

—竖向构件作用于基底轴力标准值

—竖向构件合力作用点沿X、Y方向对筏板形心的偏心距

—基础及基础以上填土重量之和。

此时基底土压力应满足以下两式:

,,

其中-修正后的地基承载力特征值

-风荷载引起的弯矩

○2筏板的截面设计:

依据荷载基本组合的基底平均净反力设计值确定底板厚度和抗剪、抗弯、受冲切验算和配筋。所谓净反力是指扣除基础自重和其上土重的反力设计值。

当基础与底层竖向构件混凝土强度等级差10 以上时,尚应验算局部受压承载力。

2、当有人防荷载作用时:

作用在地下室底板的人防荷载(见人民防空地下室设计规范(GB50038-94)第4.5.5条的qe3)与上部建筑自重标准值、顶板传来的静荷标准值,地下室自重标准值产生的地基反力,确定其底板的厚度和配筋。

此时应注意:a、地基反力应取标准值

b、不考虑活荷载的作用

c、结构材料在偶然荷载作用时可提高强度取用。

二)、当有地下水存在的情况

1、当无人防荷载作用时:

对于筏基和箱基基础,此时上部结构总荷载(包括基础底板自重)就等于基础板底总反力。(对于满堂红的群桩基础可以参考本节公式)

假设—上部结构竖向构件轴力合力标准值(包括基础底板自重)

—地下水对基础承托力(浮力)

—作用在基础底板上均布标准荷载(总反力的标准值)

—底板自重及作用在底板上的荷载标准值

a)验算地基承载力时

b)确定基础底板配筋和板厚时

式中(P-P水)指被水浮力抵消后剩余结构竖向合力所产生板底反力标准值。

地基反力的作用是因为上部结构竖向荷载的作用产生的反力,地下水的作用是土体内的承压水对基础的承托作用。

当地下水的承托力抵消了上部建筑部分荷载的同时,地下水压力正作用于基础底板上,两者可视为正负抵消。此时基础的总反力为上部建筑总重产生的地基反力向上,作用于地下室底板上。基础底板的总反力可以理解分为两部分,一部分由地下水上托力提供,另一部分由板底地基土承担。因此此时验算地基承载力时,可以扣除地下水的上托力。但是应注意到地下水对基础承托力是在假设有在抗浮水位时才出现的,倘若地下水下降时,该承托力将消失。因此在确定地基土承载力是否足够的时候,偏于安全的是不应考虑的地下水。

c)当地下水承托力大于结构自重的时候

当地下水承托力大于结构自重,结构将上浮。这种情况是不允许的,应采取措施增加结构的自重或者设置抗拔桩。作用在基础底板上的附加重量可视为抵抗浮力的外力。此时底板上的作用荷载可以归纳为以下两个工况:

当采用端承桩基的基础型式时,上部的重力荷载将由柱、墙直接传给桩基,而地下水的上托力必须通过底板的梁板传给柱底,此时为了抵抗上浮,墙、柱的桩基必须具有抗拔力,该抗拔力的大小,为水浮力减去结构自重的标准值。此时桩间基础底板应承受水压力,其设计荷载应为水浮力减去底板自重。

当结构采用筏板、箱基时,应均匀满布锚杆,该抗拔锚杆总的抗拔力为水浮力减去结构总自重。锚杆只在于结构有向上位移倾向时,锚杆才起作用,此时整个建筑像置于水中飘浮体。结构底板应承受全部水浮力的作用。此时锚杆的作用尤如增加结构重量,使水浮力与结构总自重平衡。

2)当有人防荷载作用时:

作用在地下室底板上的人防荷载是因为结构受到顶板荷载后往下运动而使地基产生向上的人防荷重,作用于基础底板上。

a)带桩基的防空地下室

结构自重荷载和地下室顶板的人防荷载,可认为由桩的作用直接传至深层的土层中。底板有无人防荷载与土是否为饱和及桩类型有关,具体可详人防规范第4.5.17条规定。当有人防荷载时,人防荷载与水压力共同组合成为底板反力。当水压力大于上部恒载时该桩应同时为抗拔柱。

b)不带桩基的防空地下室:

当由上部结构自重以及地下室顶板人防荷载共同作用且结构自重大于水浮力时,人防底板地基反力计入人防荷载但不计入浮力,因此底板荷载组合中可不计入水压力。

当然,当水浮力仍然是主导的时候,抗拔桩是不可缺少。

抗拔桩的抗拔力与人防荷载无关。因为地下室顶板的人防荷载和底板上的人防荷载是相应而产生的。底板的人防向上荷载是因为人防顶板上荷载作用时,结构向下位移而产生的反力。抗拔力应是水承托上部结构重量差值。此时,结构自重加上抗拔力等于水压力。底板上荷载组合,应为水压力和人防荷载。另外发生核爆动荷载的同时出现最高洪水期的最高水位是可能的,因此底板上承受上部结构产生自重反力与人防底板荷载的组合荷载来设计底板配筋应是合理的,也是可行的。

综合上述各种情况下的底板设计荷载取用归纳如下:

—上部建筑的竖向荷载产生的地基反力

—上部建筑的竖向荷载产生的地基净反力(扣除底板自重和作用于底板表面上荷载)

—作用于底板下表面的水压力(, 相应最高水位和最低水位的压力值)

—基础承受的水浮力

—抗浮锚杆的抗拔力

—基础底板自重及底板上表面的荷载(标准值)

(注:本文讨论的底板带桩基主要是指端承型桩基,对于摩擦型桩基,底板和桩共同承担上部荷载,两者有一定的荷载比例分配,可详有关文献。本文讨论的范围不包括此种类型。)

筏板基础的简化计算方法

伐板基础的简化计算方法 1.悬臂法 方法概述——就是传统的墙下钢混条基计算法。 计算特点——假定基底土反力为均匀分布,为了减小基底压力使之满足软弱地基承载力的要求而将基底加宽到互相连通的程度,但不作为连续的整板去分析。 方法缺点——基础宽度加大后,基底土的反力分布实际上是不均匀的。计算时,基底已经连成了一体却不考虑其连续性,因此很不合理,计算的结果是不经济的。 2.倒楼盖法 方法概述——假定筏板为一块倒置于地基上的连续板,由纵横墙支承。 计算特点——假定基底土反力为均匀分布,按普通的楼盖计算。 方法缺点——考虑了筏板的整体性,计算结果较悬臂法经济。但此法仍然没有考虑到基底土的反力分布实际上是不均匀的,所以各墙支座处所算得的负弯矩偏小,甚至出现小于实际弯矩而偏于不安全。 3.柔性基础简化计算法 方法概述——将在柱荷载作用下的十字交叉条形基础简化为各条单向连续条形基础的计算方法。 计算特点——将柱荷载的总值先按两个方向交叉连续的条形基础(板)的刚度比值进行分配以作为各向的柱荷载,然后分别按单向连续条形基础(板)计算。 方法缺点——此方法的一般假定为基底反力是按线性分布的,柱下最大,跨中最小,计算结果较倒楼盖法还要经济。但该方法只适用于柱下十字交叉条形基础和柱下筏板基础的简化计算,不适用于横墙承重的筏板基础。 4.弹簧地基梁法 方法概述——假定筏板沿横向被截分为单位宽的条板,置于文克尔假设的弹簧低级上,并假定板底面任一点的单位压力p与地基沉降S成正比,即p=kS。 计算特点——条板按受有一组横墙集中荷载作用的无限长梁计算。由于地基沉降S与基础挠度y接触协调相等,有p(x)=kS=ky. 方法缺点——同文克尔弹簧地基法假设。 5.弹性理论截条法 方法概述——将筏板横向截分为单位宽的条板并置于均质半空间弹性地基上。 计算特点——由于积分上的困难,基底地基反力与沉降之间的关系很难用解析函数表达。目前是利用郭尔布诺夫-波萨多夫的《弹性地基上结构物的计算》中的计算表格来简化计算。 方法缺点——虽然克服了文克尔弹簧地基法假设的基本缺点,具有能够扩散应力和变形的优点,但是,它的扩散能力往往超过实际情况。由于计算所得的沉降量和地表沉降范围较实测值为大,而实际地基压缩层厚度是有限的,压缩层范围内土质往往是非均质的,即使是同一种土层组成,变形参数也有随深度而增长的情况。按半空间弹性理论所得的地基反力分布一般呈马鞍形和集中在梁端和板的边缘处,这是半空间弹性理论所算得的梁板弯矩大的主要原因。 6.弹性地基板法

筏板基础计算

筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2 天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致; (2) 公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ] 采用的计算参数系室内有侧限固结试验测得的压缩模量ESi , 试验条件与基础底面压缩层不同深度处的实际侧限条件不同; (3) 利用公式计算的建筑物沉降量只与基础尺寸有关, 而实测沉降量已受到上部结构与基础刚度的调整. 采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽, 因而压缩层深度大,与一般多层建筑物不同, 地基不是均一持力层. 因此在地基变形计算的公式中引入了一个沉降计算经验系数7S. 通过实际沉降观测与计算沉降量的比较, 适应高层建筑物箱型基础与筏板基础的沉降计算经验系数, 主要与压力和地层条件相关, 尤其与附加压力和主要压缩层中(0. 5 倍基础宽度的深度以内) 砂、卵石所占的百分比密切相关. 由于该系数7S 仅用于对附加压力产生的地基固结沉降变形部分进行调整, 所以《建筑地基基础设计规范》规定可根据地区沉降观测资料及经验确定.计算高层建筑的地基变形时, 由于基坑开挖较深, 卸土较厚往往引起地基的回弹变形而使地基微量隆起. 在实际施工中回弹再压缩模量较难测定和计算, 从经验上回弹量约为公式计算变形量10%~ 30% , 因此高层建筑的实际沉降观测结果将是上述计算值的1. 1~ 1. 3 倍左右. 应该指出高层建筑基础由于埋置太深,地基回弹

筏板基础计算

筏板基础分为平板式筏基和梁板式筏基,平板式筏基支持局部加厚筏板类型;梁板式筏基支持肋梁上平及下平两种形式,下面就筏基的分析计算做详细阐述。 (1 )地基承载力验算 地基承载力验算方法同独立柱基,参见第17.1.1节内容。对于非矩形筏板, 抵抗矩W采用积分的方法计算。 (2 )基础抗冲切验算 按GB50007-2002第8.4.5条至第8.4.8条相关条款的规定进行验算。 ①梁板式筏基底板的抗冲切验算 底板受冲切承载力按下式计算 *50.70/认 式中: F i ——作用在图17.1.5-1中阴影部分面积上的地基土平均净反力设计值; B hp——受冲切承载力截面高度影响系数; U m ――距基础梁边h°/2处冲切临界截面的周长; f t ――混凝土轴心抗拉强度设计值。 图17.1.5-1 底板冲切计算示意 ②平板式筏基柱(墙)对筏板的冲切验算

计算时考虑作用在冲切临界截面重心上的不平衡弯矩所产生的附加剪力, 距柱边h o/2处冲切临界截面的最大剪应力T max应按下列公式计算。 石=E / %瓜 - a / l s r max^0.7(0.4 + 1.2/A)ApZ 1 式中: F i——相应于荷载效应基本组合时的集中力设计值,对内柱取轴力设计值减去筏板冲切破坏锥体内的地基反力设计值;对边柱和角柱,取轴力设计值减去筏板冲切临界截面范围内的地基反力设计值;地基反力值应扣除底板自重; U m ――距柱边h o/2处冲切临界截面的周长;M unb ――作用在冲切临界截面重心上的不平衡弯矩设计值; C A B――沿弯矩作用方向,冲切临界截面重心至冲切临界截面最大剪应力点的距离; I s ――冲切临界截面对其重心的极惯性矩; B s——柱截面长边与短边的比值,当B s<2时,B s取2;当B s>4时,B s取4 ; c i——与弯矩作用方向一致的冲切临界截面的边长; C2——垂直于C i的冲切临界截面的边长;a s ――不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配系数; ③平板式筏基短肢剪力墙对筏板的冲切验算 短肢剪力墙对筏板的冲切计算按等效外接矩形柱来计算,计算方法完全同柱对筏板的冲切,等效外接矩形柱参见图17.1.5-2。

PKPM软件JCCAD筏板基础设计步骤举例

PKPM软件JCCAD筏板基础设计步骤举例PKPM软件JCCAD筏板基础设计步骤举例 一、地质资料输入 1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。 对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。输入土的力学指标包括:压缩模量、重度。 对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。 2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示: 3、土层布置

给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示: 弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:4、输入孔点

单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对 位置。孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。如下图所示: 程序要求孔点形成的三角形网格互不交叉,互不重叠。如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。 点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、空口标高、探孔水头标高等。空口位置一般不采用绝对坐标,不必修改孔口坐标。如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。

筏板基础计算

pkpm平板筏基建模方法 目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。 具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是什么,这个流程是什么下面具体罗列: 1、首先要按地勘报告输入地质数据,用于沉降计算。非常重要。 2、在菜单2中输入筏基模型,注意筏板一般要挑出,因此首先用网格延伸命令将网格向外延伸一个悬挑长度,然后定义并布置筏板,给出厚度和埋深,并做柱和墙的冲切验算,看看板厚是否满足要求,如不满足,可以加柱帽(注:加柱帽的功能在“上部构件”的菜单中)。 3、输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。也可以不布置板带,直接定义地基梁形成梁元模型。 4、进入菜单3,按梁有限元法计算筏板。首先需要计算沉降,这里有个非常重要的概念,就是地基模型的选用。程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型,不明白看教材。一般软土取低值0~0.2,硬土取高值0.2~0.4。其它参数不难理解,不赘述。梁元法程序提供两种沉降计算模式,刚性沉降和柔性沉降。柔性沉降假定筏板为完全柔性,而刚性沉降则假定为完全刚性。计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。沉降计算是筏板计算的核心步骤。

4、基床系数k的合理性判断。沉降计算完毕后,计算数据中会给出各区格的地基刚度,即基床系数。这个系数一般要比建议值小很多。基床系数的合理性,关键看沉降计算结果。可用规范分层总和法手算地基中心点处的沉降值作比较。如出入大,应调整基床系数使其接近手算值。因此,用软件算连续基础,实际上就是对基床系数的校核。菜单5的有限元法中提供的“沉降试算”功能,就是这个思想(其实这个功能就是给懒人和初学者开发的)。 5、对于基床系数的调整,程序提供了一种方便的功能--可以按照广义文克尔地基模型进行地基梁计算,即变基床系数调整法。可以把你输入的基础系数,按照已经计算完毕的各区格的刚度变化率进行调整,作为新的基础系数用于下一步的地基梁内力计算。 6、基础计算模型一般用普通弹性地基梁就可以了,倒楼盖模型缺点较多,一般不推荐。考虑上部结构刚度可根据具体情况选择完全刚性,或等代刚度法。 筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2 天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致;

JCCAD筏板基础设计

JCCAD筏板基础设计 应用前提条件: 1.上部结构的计算可以提供荷载和凝聚到基础顶面的刚度; 2.有完整准确地地质报告输入,并成功读入到合适位置。 基本参数 基础埋置深度:一般应自室外地面标高算起。对于地下室,采用筏板基础也应自室外地面标高算起,其他情况如独基、条基、梁式基础从室内地面标高算起。 自动计算覆土重:该项用于独基、条基部分。点取该项后程序自动按20kN/m2的混合容重计算基础的覆土重。如不选该项,则对话框中出现单位面积覆土重参数需要用户填写。一般来说如条基、独基、有地下室时应采用人工填写单位面积覆土重,且覆土高度应计算到地下室室内地坪处,以保证地基承载力计算正确。 一层上部结构荷载作用点标高:即承台或基础顶标高,先进行估算,计算完成后进行修改。该参数主要是用于求出基底剪力对基础底面产生的附加弯矩作用。在填写该参数时,应输入PMCAD中确定的柱底标高,即柱根部的位置。注意:该参数只对柱下独基和桩承台基础有影响,对其他基础没有影响。 地梁筏板 该菜单定义了按弹性地基梁元法计算需要的有关参数 总信息: 结构种类:基础

基床反力系数:按默认 按广义文克尔假定计算:若此项选择后,计算模型改为广义文克尔假定,即各点的基床反力系数将在输入的反力系数附近上下变化,边角部大,中部小一些,变化幅度与各点反力与沉降的比值有关,采用广义文克尔假定的条件是要有地质资料数据,且必须进行刚性底板假定的沉降计算,否则按一般文克尔假定计算。在此处要与基础梁板弹性地基梁法计算中的沉降计算参数输入中参数相对应。 弹性基础考虑抗扭: 人防等级:不计算 双筋配筋计算压区配筋百分率:0.2% 地下水距天然地坪深度:按实际 梁的参数: 梁钢筋归并系数:0.3 梁支座钢筋放大系数:1.0 梁跨中钢筋放大系数:1.0 梁箍筋放大系数:1.0 梁主筋级别:二级或三级 梁箍筋级别:一级或二级 梁立面图比例、梁剖面图比例:按默认 梁箍筋间距:200 翼缘(纵向)分布钢筋直径、间距:8mm、200mm 梁式基础的覆土标高:当不是带地下室的梁式基础时,此值为0;否则

筏板基础模板计算书

Appendix 1附件1 Calculation of the Formworks模板计算书 1、Side Formwork Construction侧模施工 1.1、设计说明 Design description: using site processed wood formwork, face plate is plywood of 15mm, secondary keel is timber of 50mm×100mm (the material is northeast larch) with 250mm space in between. Main keel is the timber of 80mm×200mm as modeling with the min. height no less than 150mm. 2 main keel set up with spacing of 700mm, 250mm as bottom and 255mm as upper side of slab. 侧模采用现场加工木模板,面板为15厚胶合板;次龙骨为50mm×100mm木方(材质为东北落叶松),间距250mm;主龙骨使用80mm×200mm木方做造型木(材质为东北落叶松),造型木中心最小高度不小于150mm。主龙骨设置两道,间距700mm,距底部250mm和上侧255mm. 1.2、Computational Checking of Secondary Keel次龙骨验算 1)Load and Combination of Load荷载及荷载组合 a.side pressure on the form for concrete混凝土对模板的侧压力 t0=200/(25+15)=5h (即混凝土的温度按25℃计算) F1=0.22γc t0β1β2V1/2=0.22×25×5×1.2×1.15×21/2 =53.67KN/m2 F2=γc H=25×1.2=30KN/m2(取此值做强度验算) (take this value for computational checking of strength ) b.load of concrete pouring混凝土倾倒荷载:4KN/m2 c.load of concrete vibrating混凝土振捣荷载:4KN/m2 combination of load荷载组合:1.2×30+1.4×(4+4)=47.2KN/m2 line load化为线荷载:q=47.2×0.25=11.8KN/m 2)Computational Checking of Flexural Strength抗弯强度验算 M max =11.8×0.7^2×(1-4×0.252/0.72)/8=0.52KN·m (建筑施工手册表Construction Manual 2-10) W n =1/6bh2 =1/6×50×1002 =250000/3 σm = M/W n =0.52×106 /(250000/3)=6.24N/mm2≤ f m =17 N/mm2

筏板基础计算

筏板基础计算 pkpm平板筏基建模方法 目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。 具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是什么,这个流程是什么下面具体罗列: 1、首先要按地勘报告输入地质数据,用于沉降计算。非常重要。 2、在菜单2中输入筏基模型,注意筏板一般要挑出,因此首先用网格延伸命令将网格向外延伸一个悬挑长度,然后定义并布置筏板,给出厚度和埋深,并做柱和墙的冲切验算,看看板厚是否满足要求,如不满足,可以加柱帽(注:加柱帽的功能在“上部构件”的菜单中)。 3、输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。也可以不布置板带,直接定义地基梁形成梁元模型。 4、进入菜单3,按梁有限元法计算筏板。首先需要计算沉降,这里有个非常重要的概念,就是地基模型的选用。程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型,不明白看教材。一般软土取低值0~0.2,硬土取高值0.2~0.4。其它参数不难理解,不赘述。梁元法程序提供两种沉降计算模式,刚性沉降和柔性沉降。柔性沉降假定筏板为完全柔性,而刚性沉降则假定为完全刚性。计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。沉降计算是筏板计算的核心步骤。

4、基床系数k的合理性判断。沉降计算完毕后,计算数据中会给出各区格的 地基刚度,即基床系数。这个系数一般要比建议值小很多。基床系数的合理性,关键看沉降计算结果。可用规范分层总和法手算地基中心点处的沉降值作比较。如出入大,应调整基床系数使其接近手算值。因此,用软件算连续基础,实际上就是对基床系数的校核。菜单5的有限元法中提供的“沉降试算”功能,就是这个思想(其实这个功能就是给懒人和初学者开发的)。 5、对于基床系数的调整,程序提供了一种方便的功能--可以按照广义文克尔地基模型进行地基梁计算,即变基床系数调整法。可以把你输入的基础系数,按照已经计算完毕的各区格的刚度变化率进行调整,作为新的基础系数用于下一步的地基梁内力计算。 6、基础计算模型一般用普通弹性地基梁就可以了,倒楼盖模型缺点较多,一般不推荐。考虑上部结构刚度可根据具体情况选择完全刚性,或等代刚度法。 筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力 设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础 分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当 于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相 当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ? 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则 有更大的可靠度. 2 天然筏板基础的变形计算

筏板基础计算书

高层建筑地基基础 课程设计 学年学期: 2014~2015学年第2学期 院别:土木工程学院 专业:勘查技术与工程 专业方向:岩土工程 班级:勘查1201 学生: 学号: 指导教师:陈国周

《高层建筑地基基础课程设计》成绩评定表班级姓名学号

目录 一、工程概况几工程地质条件 (5) 柱位图 (5) 土层信息 (5) 上部荷载 (5) 二、基础选型 (6) 三、设计尺寸与地基承载力验算 (6) 基础底面积尺寸的确定 (6) 地基承载力验算 (7) 四、沉降验算 (8) 五、筏板基础厚度的确定 (9) 抗冲切承载力验算 (9) 抗剪承载力验算 (10) 局部受压承载力计算 (11) 六、筏板、基础梁内力计算 (13) 基础底板内力计算 (13) 基础梁内力计算 (15) 边缘横梁(JL1)计算 (15) 中间横梁(JL2)计算 (16) 边梁纵梁(JL3)计算 (17) 中间纵梁(JL4)计算 (20) 七、梁板配筋计算 (22)

底板配筋 (22) 板顶部配筋(取跨中最大弯矩) (22) 板底部(取支座最大弯矩) (23) 基础梁配筋 (25) 八、粱截面配筋图 (32) 九、心得体会 (36) 十、参考文献 (36)

一、工程概况几工程地质条件 某办公楼建在地震设防六度地区,上部为框架结构8层,每层高。地下一层,不设内隔墙,地下室地板至一楼室内地面竖向距离。地下室外墙厚300mm。柱截面 400×400,柱网及轴线如图所示。室内外高差。不考虑冻土。上部结构及基础混凝土均采用 C40。 柱位图 土层信息 上部荷载

二、基础选型 根据提供的土层信息,可知建筑物所在位置的地基土多为粘土和粉质粘土,且地下水位较高,属于软土地基,且考虑到建筑的柱间距较大并设置了地下室等因素,综合考虑决定采用梁式筏板基础,梁式筏板基础其优点在于较平板式具有低耗材、刚度大,在本次设计中决定采用双向肋梁板式筏形基础。 三、设计尺寸与地基承载力验算 基础底面积尺寸的确定 根据《建筑地基基础设计规范GB5007-2011》筏形基础底板各边自外围轴线挑出,则筏形基础的底板尺寸为× A=×=2 N P k 29667.1∑=永久 准永久荷载总组合: 2.偏心校验(荷载效应为准永久值): m 044.029667 2 .7)110016601787188716671220110016671753188716331100(m 0403.029667 15.317872100175318872093188745.9)166019801667166719401633(7.15110015601100120015331100-=?------+++++= =?---+++?---+++?---++= y x e e )()(

筏板基础设计步骤及要求

筏板基础设计的一般要求 (1)埋置深度 当采用天然地基时,筏板基础埋深不宜小于建筑物地面以上高度的1/12,当筏板下有桩基时不宜小于建筑物地面以上高度的1/15,桩长度不计入埋深。但对于非抗震设计的建筑物或抗震设防烈度为6度时,筏基的埋深可适当减小;在遇到地下水位很高的地区,筏基的埋深也可适当减小。一般情况下,为了防止建筑物的滑移,设置一层地下室是必要的,这在建筑使用上也常常需要。当基础落在岩石上,为设置地下室而需要开挖大量石方时,也允许不设地下室,但是,为了保证结构的整体稳定,防止倾覆和滑移,应采用地锚等必要的措施。 (2)选型 梁板式筏基和平板式筏基两者相比,前者所耗费的混凝土和钢筋都比较少,因而也比较经济;后者对地下室空间高度有利,施工也比较方便。因此,筏基型式的选用应根据土质、上部结构体系、柱距、荷载大小及施工等条件综合分析确定。在工程设计中,一般认为柱距变化不超过20%、柱间的荷载变化也不20%时,对于柱网均匀且间距较小和上部荷载不很大的结构,通常考虑选用平板式筏板基础;对于纵横柱网尺寸相差较大,上部结构的荷载也较大时,宜选用梁式筏板基础。对于上部结构为剪力墙体系时,如果每道剪力墙都直通到基础,

一般习惯把筏板基础做成平板式的;而对于每道剪力墙不都直通到基础的框支剪力墙,必须选用梁板式的筏板基础。 (3)筏板厚度 筏板厚度可根据上部结构开间和荷载大小确定。梁板式筏基的筏板厚度不得小于200mm,且板厚与板格的最小跨度之比不宜小于 1/20。平板式筏基的板厚度应根据冲切承载力确定,且最小厚度不宜小于300mm。 (4)筏板平面尺寸 筏板的平面尺寸,应根据地基承载力、上部结构的布置以及荷载分布等因素确定。需要扩大筏基底板面积时,扩大位置宜优先考虑在建筑物的宽度方向。对基础梁外伸的梁板式筏基,筏基底板挑出的长度,从基础梁外皮起算横向不宜大于1200mm,纵向不宜大800mm;对平板式筏基其挑出长度从柱外皮起算横向不宜大1000mm,纵向不宜大600mm。 (5)筏板混凝土 筏板混凝土强度等级不应低于C20,常用C25及其以上的混凝土。当有防水要求时的混凝土的抗渗等级不应低于S6,并应进行抗裂度验算。

浅谈筏板基础设计的方法及注意事项

浅谈筏板基础设计的方法及注意事项 摘要:建筑物地基土的类别和地基土层的分布情况决定了建筑物所采用哪一种类型的基础形式。而筏板基础能很好的将地基承载力充分的发挥的同时,又能使沉降不均匀得到良好的调整,因此筏板基础被广泛应用于诸多的结构类型中。本文就筏板基础设计的方法及筏板基础设计中的相关注意事项进行了一些浅析。 关键字:筏形基础;筏形基础设计;筏板;基础 随着我们国家经济水平的不断提高,近些年来,国家的建筑行业也蓬勃发展起来。建筑设计的推陈出新和建筑使用性能的不断扩大,无论是从建筑的数量上还是质量上都对建筑行业提出了新的要求。筏板基础也理所当然的成为人们关注的对象,越来越多的被人们所认识和研究。筏板基础从传统的应用于大型高层的建筑开始,到现今在一些纷繁复杂的小型建筑中也得到重视,其地位和分量也不断增加,所以,我们非常有必要对筏板基础设计的方法进行探讨。 一、筏板基础 由于建筑物的地基土的类别和地基土层的分布情况决定了建筑物所采用哪一种类型的基础形式。而筏板基础不仅充分发挥了地基的承载力,也使沉降不均匀得到良好的校正,这也是筏板基础能够广泛应用于诸多结构类型之中的原因。 筏板基础刚度大,整体性好,根据上部结构形式划分,筏板基础的构造形式主要可分为两种:平板式筏板基础和肋梁式筏板基础。 在柱网相对较大的大型商业建筑施工中,往往建筑的上部所要承受的荷载最大,所以我们通常会选择肋梁式筏板基础。而平板式筏板基础则被广泛的应用在小型公共建筑或者是低层住宅建筑。而近些年来,平板式筏板基础因其施工简单的特点,在高层建筑中也得到广泛的应用。高层建筑的地下室通常被拿来建造地下的车库,因为此,这样的建筑是不被允许过多的设置内墙的,从而对箱型基础,限制了其使用。而筏板基础因其能满足停车库对空间的使用要求,而成为较理想的基础型式。 二、筏板基础埋深及承载力的确定 在城市区域,基础筏板的预埋深度取决于所需建造的建筑物地下室的层数多少和每层的高度。而地下室的层数多少和层高高度则由地下室的功能属性所决定,一般为城市里用地紧张,地价昂贵且建筑密集的高层所附带的地下停车场、基础设备用房、地下水池及人防工程。

筏板基础钢筋支架计算书

钢筋支架计算书 一、工程概况 本工程由兖州市惠民城建投资有限公司投资建设,北京中联环建文建建筑设计有限公司设计,济宁市地质工程勘察院地质勘察,济宁市兴业建设监理有限公司监理,红阳建设集团有限公司组织施工。 本工程用地性质为二类住宅用地,住宅性质为商品房,本标涉及总建筑面积约17.1548万平方米。主要包括2栋11层高层住宅、2栋15层高层住宅,9栋18层高层住宅另外包括1个地下车库及其他配套建筑。 本工程地下两层为储藏室,地上为住宅,,防火等级为二级,地下室耐火等级为一级,结构形式剪力墙结构,建筑物抗震设防类别为标准设防丙类,建筑物场地类别为三类,建筑物标准层高为3米。 本工程为伐板基础,筏板钢筋为¢25@200双层双向。筏板厚度800~1200mm。 二、参数信息 钢筋支架(马凳)应用于高层建筑中的大体积混凝土基础底板或者一些大型设备基础和高厚混凝土板等的上下层钢筋之间。钢筋支架采用钢筋焊接制的支架来支承上层钢筋的重量,控制钢筋的标高和上部操作平台的全部施工荷载。 角钢支架一般按排布置,立柱和上层采用角钢,斜杆采用钢筋,焊接成一片进行布置。对水平杆,进行强度和刚度验算,对立柱和斜杆,进行强度和稳定验算。

作用的荷载包括自重和施工荷载。 钢筋支架所承受的荷载包括上层钢筋的自重、施工人员及施工设备荷载。钢筋支架的材料根据上下层钢筋间距的大小以及荷载的大小来确定,可采用钢筋或者型钢。 上层钢筋的自重荷载标准值为1.00 kN/m; 施工设备荷载标准值为1.000 kN/m; 施工人员荷载标准值为2.000 kN/m; 横梁的截面抵抗矩W= 3.130 cm3; 横梁钢材的弹性模量E=2.05×105 N/mm2; 横梁的截面惯性矩I= 11.210 cm4; 立柱的高度h= 1.20 m; 立柱的间距l= 1.30 m; 钢材强度设计值f= 360.00 N/mm2; 二、支架横梁的计算 支架横梁按照三跨连续梁进行强度和挠度计算,支架横梁在小横杆的上面。 按照支架横梁上面的脚手板和活荷载作为均布荷载计算支架横梁的最大弯矩和变形。 1.均布荷载值计算 =1.2×1.00=1.20 kN/m 静荷载的计算值 q 1 活荷载的计算值 q =1.4×2.00+1.4×1.00=4.20 kN/m 2 支架横梁计算荷载组合简图(跨中最大弯矩和跨中最大挠度)

筏板基础计算

pkpm平板筏基建模方法 ?? ??目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。 ??具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是 1 2 3 4 的时 假定为完全刚性。计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。沉降计算是筏板计算的核心步骤。 4、基床系数k的合理性判断。沉降计算完毕后,计算数据中会给出各区格的地基刚度,即基床系数。这个系数一般要比建议值小很多。基床系数的合理性,关键看沉降计算结果。可用规范分层总和法手算地基中心点处的沉

降值作比较。如出入大,应调整基床系数使其接近手算值。因此,用软件算连续基础,实际上就是对基床系数的校核。菜单5的有限元法中提供的“沉降试算”功能,就是这个思想(其实这个功能就是给懒人和初学者开发的)。 5、对于基床系数的调整,程序提供了一种方便的功能--可以按照广义文克尔地基模型进行地基梁计算,即变基床系数调整法。可以把你输入的基础系数,按照已经计算完毕的各区格的刚度变化率进行调整,作为新的基础系数用于下一步的地基梁内力计算。 6、基础计算模型一般用普通弹性地基梁就可以了,倒楼盖模型缺点较多,一般不推荐。考虑上部结构刚度可根 1 ) 某栋地上28 180kpa, 重量,,如果 2 .目 ,有时 ,造价提高, (1)与土体的 (2)公式中S=7S6ziAi-zi-1Ai-1ESi[2] 采用的计算参数系室内有侧限固结试验测得的压缩模量ESi,试验条件与基础底面压缩层不同深度处的实际侧限条件不同; (3)利用公式计算的建筑物沉降量只与基础尺寸有关,而实测沉降量已受到上部结构与基础刚度的调整. 采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽,因而压缩层深度大,与一般多层建筑物不同,地基不是均一持力层.因此在地基变形计算的公式中引入了一个沉降计算经验系数7S.通过实际沉降观测与计算沉降量的比较,适应高层建筑物箱型基础与筏板基础的沉降计算经验系数,主要与压力和地层条件相关,尤其与附加压

筏板基础计算方法和构造要求

当地基承载力很低,建筑物荷载又很大时,宜采用筏基。沉积土层不均匀,有软弱土的不规则夹层,或者有坚硬的石芽出露,亦或石灰岩层中有不规则溶洞、溶曹时,采用筏基调节不均匀沉降或者跨越溶洞。即使地基土相对较均匀时,对不均匀沉降敏感的结构也常采用筏基。 筏基的形式:等厚,局部加厚,上部加肋梁,下部加肋梁。 构造要求 筏板厚度一般不小于柱网最大跨度的1/20,并不小于200mm,且应按抗冲切验算。设置肋梁时宜取200-400mm。筏基可适当加设悬臂部分以扩大基底面积和调整基底形心与上部荷载重心尽可能一致。悬臂部分宜沿建筑物宽度方向设置。当梁肋不外伸时板挑出长度不宜大于2m。砼不低于c20,垫层100mm厚。钢筋保护层不小于35mm。地下水位以下的地下室底板应考虑抗渗,并进行抗裂度验算。 筏板配筋率一般在0.5-1.0%为宜。当板厚小于300mm时单层配置,大于300mm时双层布置。受力钢筋最小直径8mm,一般不小于12mm,间距100-200mm;分布钢筋8-10mm,间距200-300mm。筏板配筋除符合计算配筋外,纵横方向支座钢筋尚应有0.15%、0.10%(全部受拉钢筋的 1/2-1/3)的配筋率连通;跨中则按实际配筋率全部贯通。双向悬臂挑出但肋梁不外伸时宜在板底放射状布附加钢筋。平板式筏板柱下板带和跨中板带的底部钢筋应有1/2-1/3全部拉通,且配筋率不应小于 0.15%;顶部按实际全部拉通。当板厚小于250mm时分布筋为圆8间距250,板厚大于250mm时分不筋圆10间距200。 计算方法:

1.简化方法倒梁法和到楼盖法(相对刚度较大);上部结构较柔时可用静力分析法。 2.考虑地基基础共同作用的方法 2.考虑上部结构地基基础共同作用的方法

PKPM软件JCCAD筏板基础设计步骤举例解读

PKPM软件JCCAD筏板基础设计步骤举例 一、地质资料输入 1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。 对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。输入土的力学指标包括:压缩模量、重度。 对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。 2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示: 3、土层布置 给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示:

弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示: 4、输入孔点

单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对位置。孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。如下图所示: 程序要求孔点形成的三角形网格互不交叉,互不重叠。如孔点位置十分复杂,程序自动形成

的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。 点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、空口标高、探孔水头标高等。空口位置一般不采用绝对坐标,不必修改孔口坐标。如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。 “复制”用于复制参数相同的孔点,“删除孔位”用于删除多余或输入错误的孔点。 程序除完成地质资料输入外,还可以在此基础上生成孔点土层柱状图、孔点剖面图、土层剖面图、土层和水头的等高线图及孔点平面图等,还可以进行承载力和沉降计算。

广厦基础设计桩筏和筏板基础设计优选稿

广厦基础设计桩筏和筏 板基础设计 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

第5章桩筏和筏板基础设计 1快速入门 广厦建筑结构CAD安装后,在Exam子目录下有一个工程实例:基础.prj。工程师在用录入系统生成基础CAD数据并用SSW计算后,可参考如下输入要点,快速掌握桩筏和筏板基础的设计方法。 实例见:Exam\基础.prj,平面如下: 进入“广厦基础CAD”。 选择“读取墙柱底力”菜单,弹出对话框选择读取SSW计算的上部结构墙柱底内力。 选择“总体信息桩筏和筏板基础总体信息”菜单,弹出如下对话框输入地基承载力特征值200kN/m2。 1.1平板式筏基设计 点按“基础设计─桩筏和筏板基础布置和计算─角点定边”,弹出如下对话框输入边界挑出长度1000mm。 确认后,光标点选点①、②、③和④,回车结束选择角点。绘图板上出现: 点按“基础设计─桩筏和筏板基础布置和计算─划分单元”,弹出如下对话框: 确认后,绘图板上出现: 点按“基础设计─桩筏和筏板基础布置和计算─计算筏板”,光标点选所要计算的筏板。 点按“基础设计─桩筏和筏板基础布置和计算─计算简图”,光标选择“板节点正最大挠度线”,显示最大挠度等值线。 点按“基础设计─桩筏和筏板基础布置和计算─文本结果”,显示剪力墙下的地梁计算结果和柱对筏板的冲切验算结果,同时输出桩筏和筏板基础总体信息。 剪力墙下没有地梁时CAD自动布置地梁,在计算时剪力墙底各工况轴力作为梁荷载参与计算,各工况弯矩作为梁两端节点弯矩参与计算,工程师可增加梁高以考虑剪力墙刚度对筏板的影响。 柱对筏板的冲切验算不满足时,可局部加柱帽或加大板厚。 点按“基础设计─桩筏和筏板基础布置和计算─贯通板筋”,光标点选点①和②确定贯通板面筋和底筋的两端点,输入面筋D14@200和底筋D12@150,再点选点③和 ④确定标注起点和终点,最后点选点⑤指定文字标注的位置,输入标注值,回车即 可,绘图板上出现: 同理布置垂直方向的贯通板筋,绘图板上出现: 1.2梁式筏基础设计 点按“基础设计─桩筏和筏板基础布置和计算─角点定边”,弹出如下对话框输入边界挑出长度1000mm。 确认后,光标点选点①、②、③和④,回车结束选择角点。绘图板上出现: 点按“基础设计─弹性地基梁布置和计算─轴线地梁”,弹出如下对话框,选择筏板肋梁选项,输入梁肋宽200mm。 确认后,光标窗选整个平面,梁板的布置没有先后次序。绘图板上出现: 点按“基础设计─桩筏和筏板基础布置和计算─划分单元”,弹出如下对话框: 确认后,绘图板上出现:

PKPM筏板基础设计分析

PKPM筏板基础设计分析2009 筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值 f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2 天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难,计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致; (2) 公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ] 采用的计算参数系室内有侧限固结试验测得的压缩模量ESi , 试验条件与基础底面压缩层不同深度处的实际侧限条件不同; (3) 利用公式计算的建筑物沉降量只与基础尺寸有关, 而实测沉降量已受到上部结构与基础刚度的调整.

相关主题
文本预览
相关文档 最新文档