当前位置:文档之家› 氧化镁在PVC中的应用

氧化镁在PVC中的应用

氧化镁在PVC中的应用
氧化镁在PVC中的应用

M g (O H ) 2 复合型阻燃剂在PV C 中的应用

研究了氢氧化镁(M g (O H ) 2 ) 、硬制三氧化二锑(Sb 2O 3 ) 、十溴联苯醚、氧化锌(ZnO ) 为主的复合阻燃体系对PV C 软、品的阻燃作用, 开发了复合型阻燃剂。通过正交试验设计、方差分析和回归分析表明, 各种阻燃剂之间都存在着交互作用, 在本阻燃体系中表现非常突出的为M g (O H ) 2 与Sb 2O 3、由于存在着协同作用, 添加适当的ZnO 与十溴联苯醚之间。量即可达到阻燃效果。在热失重分析中, 复合型阻燃剂热降解温度区间在343. 4 429. 5℃, 失重率为19. 2% , 而纯M g ~(O H ) 2 热降解温度区间在326. 4 418. 7℃, 失重率为23. 9% 。~该复合阻燃剂用于PV C 软、硬制品中, 除阻燃性能优良( 氧指数分别为28 38和65) 外, 其机械性能均达到国家标准, 解决了因添加M g (O H ) 2 而产生的阻燃性能与机械性能相矛盾~的问题, 其电性能和加工性能良好, 且具有一定的抑烟效果。该复合阻燃剂在PV C 软制品中推荐的用量为15 25质量份~( 以100质量份PV C 树脂为基准) ; 在硬PV C 制品中推荐的用量为3 5质量份。~关键词: 氢氧化镁交互作用复合阻燃剂目前对PV C 制品阻燃主要是采用加入添加型阻燃剂。单独加入某种阻燃剂都存在各自不足之处, 尤其是加入无机A l (O H ) 3、g (O H ) 2 , 虽然无毒、抑烟阻燃M 效果好, 但常需加入很大的量, 致使制品的力学性能大幅度下降。为此, 我们经过大量试验, 研究了以软PV C 电缆料配方为基础, M g (O H ) 2 为主的复合型阻燃体系, 利用数理统计方法找出最佳配方, 开发出适用于硬制品的复合型阻燃体系。PV C 软、1实验部分 1. 1原料M g (O H ) 2 , 325 目, 辽宁锦州水镁化工厂; Sb 2O 3 , 2试验结果与讨论2. 1 采用数理统计法进行复合阻燃剂最佳配方的确工业级, 湖南益阳大正锑品有限公司; ZnO , 工业级, 市售; CaCO 3 , 工业级, 市售; 十溴联苯醚, 工业级, 青岛红旗化工厂; 四溴双酚A , 工业级, 天津有机化工二厂; 型, 河北沧州化工厂; 其它助剂, 工PV C 树脂, XS业级, 市售。1. 2性能测试燃烧性能: 氧指数按GB T 2406- 93标准测试; 水平燃烧按GB 2408- 80; 垂直燃烧按GB 4609- 84。热性能: 按A STM 03417- 82标准测试。电性能和力学性能: 按GB 8815- 88 (JR - 70 型) 标准测试。1. 3工艺流程定2. 1. 1正交试验为考察多种原料( 阻燃剂) 对PV C 制品产生的阻燃作用以及它们之间存在的交互作用, 采用两水平正交试验设计的方法设计复合阻燃剂的配合比, 选择6种原料构成五个因素, 其中因素A 为M g (O H ) 2、因素 B 为Sb 2O 3、因素C 为ZnO 、因素D 为CaCO 3 , 以上4因素各取两个用量水平进行定量分析, 因素E 作定性分析, E 1 水平为四溴双酚A 、2 水平为十溴联苯醚, 这两 E 种原料用量相同, 其目的是比较两者之间哪一个与其它原料的协同效果好。复合阻燃剂配比正交试验设计表见表1。这是一个考虑交互作用的正交试验设计, 我们认为CaCO 3 与溴类阻燃剂的交互作用不会太明显, 因此将表1 中的第7 ①α 96届毕业生作者简介: 李梅, 女, 1957年生。工科学士学位, 讲师。目前从事高分子材料加工与应用教学与科研工作。曾发表过论文数篇。? 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 第五期塑料工业?9 7 ? 列(D ×E 所在列) 作为方差分析的误差估计列。表11) 基础软PV C 制品配方( 质量份) : PV C100, DO P40; 二盐2, 三盐2, 硬脂酸0. 5, 复合阻燃剂15 2) 在M ij数据中均减去200 表2方差分析表T ab 2 A na lysis of V a riance T ab le 方差F值称为第j 列因素的极差。例如M 11 = 205. 5 表示第1列因素A 即M g (O H ) 2 的1水平对应的1、、、2 3 M 1j- M 4、、、、八个试样的O I 值之和, 又如M 23 = 214. 3表5 6 7 8 示第3列因素A 与因素B〔M g (O H ) 2 与Sb 2O 3 〕即交互列1 2 3 4 方差偏差平方和自由来源A B A ×B C Sj 度 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 A ×C 8 D△10 B ×D 11 C ×E 13 B ×E 按基础软PV C 制品配方制成16个软PV C 阻燃制品试样, 进行氧指数(O I ) 的测试, 相应结果列于表1 的最右边一列。1中M 1j行的数据表示第j 列因素1水平对应表的八个试样的O I 值之和,M 2j 行的数据表示第j 列因素 2 水平对应的八个试样的O I 值之和, 而R j = 12 C ×D △01050625 14 A ×E △01000625 15 11155625 E 7 6 B ×C △01075625 9 A ×D 误差总误差表1中共设计了16个不同配比的复合阻燃剂, 分别? 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 61630625 21030625 31330625 01275625 01180625 01050625 01390625 0. 275625 21640625 11380625 01105625 01283125 61630625 117110 F 0. 21030625 31330625 01275625 01180625 01390625 0. 275625 21640625 11380625 11155625 01056625 35186 58182 46163 24138 20141 4187 3119 6190 4. 87 F 2分

布临界值01 (1, 显著性16. 25 F 0105 (1, 5) = 6. 61 5) = 3 3 3 3 3 3 3 3 3 3 3 3 3 作用列的2 水平对应的第5、、、、、、、八个试6 7 8 9 10 11 12 样的O I 值之和, 第3列的极差R 3 = 207. 0- 214. 3 = 713。从极差R j 分析看, R j 越大, 说明该因素对O I 值的影响也越大, 通过正交试验可知, 各因素对制品O I 值的影响从大到小粗略估计的排列为: A 、×B、× A C 2. 1. 2方差分析E、、×E、、×D 、、B B E A C ……。为得到更精确的分析结果, 对表1的数据进行方差分析, 结果见表2。表2 中的偏差平方和S j = R 2 试验次数, 如因素A j 的偏差平方和S 1 = 10. 32 16= 61630625。在表2中右上角带△的因素列的偏差平方和小于误差估计列( 即第7 列) 的偏差平方和, 故将B ×C △、△、×D △和A ×D C △E 4 因素归入误差估计, 五项偏差平方和之和称为总误差偏差平方和, 其自由度为五项之和, 总误差偏差平方和= 0. 283125。对其它各因素和总误差计算其方差, 方差= 偏差平方和S j 该因素的自由度, 如A ×D 的方差= 0. 390625 1 = 0. 390625, 总误差的方差= 0. 283125 5= 0. 056625。各因素的统计量F 值( 简称F ?9 8 ? 塑料工业Y= 21. 3+ 0. 442X 1997年值) 为: F 值= 因素的方差总误差的方差, 如: A ×D 的统计量 F 值= 0. 390625 0. 056625= 6. 90。由于统计量 F 值服从分子自由度为1, 分母自由度为5 的 F —分布, 即 F ( 1, 5 ) , 所以由 F - 分布临界值表查出置信概率分别为0. 01、05 的分子自由度为1, 分母自由度0. 为5 的 F - 分布临界值: F 0. 01 ( 1, 5 ) = 16. 25, F 0. 05 ( 1, 5 ) = 6. 61。当某因素的统计量F 值> F 0. 01 ( 1, 5 ) = 16. 25 从这个回归方程可以看出, 在软PV C 制品中, 每增加1份复合阻燃剂, 其O I 值将增加0. 442。这一结果可以指导用户对不同要求的软PV C 阻燃制品添加不同量的复合阻燃剂, 既可达到一定的阻燃指标, 又可最大限度地降低成本。2. 2热性能将制好的复合阻燃剂粉料和纯M g (O H ) 2 分别使用美国Perk in 2E lm er 公司D SC 差示扫描量热计及TAD S- 3600 热分析数据站进行测试分析, 结果见图1。图1复合型阻燃剂的热重分析F ig 1 T GA resu lt of com po site flam e reta rdan ts F 值≤F 0. 01 ( 1, 5) = 16. 25时, 此因素对O I 值的影响显著, 即认为此因素对O I 值不产生影响。从方差分析的结果看出: ( 1) 各因素及其交互作用项对制品的O I 值产生影响的强弱次序为: A 、×B、A ……; ( 2 )M g (O H ) 2 的用量C ×E、、×E、、×D 、B B E A 对制品的O I 值产生极强的影响,M g (O H ) 2 和Sb 2O 3、ZnO 和溴类阻燃剂的交互作用也是很强的, 这两个交互作用对制品O I 值产生的影响都高于Sb 2O 3 的单独作用。由于因素之间存在交互作用, 为寻求最佳配合比的复合阻燃剂, 必须对各因素做效应分析( 在此略去这部分较繁琐的数学内容) , 经效应分析得到最佳复合阻燃剂的配比为: A 2B 2C 1D 1 E 1 , 即M g (O H ) 2 和Sb 2O 3 的用量均取2 水平, ZnO 和CaCO 3 的用量均取1 水平, 而溴类阻燃剂选取四溴双酚A 比选取十溴联苯醚更好, 此时的最佳O I 值为28。实际上最佳复合阻燃剂的配合比就是第13号试验的配合比, 其中M g (O H ) 2 的质量分数高于40% , Sb 2O 3 的质量分数低于15% 。在概率为95% 条件下, 制品O I 值的变动半径为0156, 故最佳配合比的复合阻燃剂在概率为95% 以及在基础软PV C 制品配方的条件下, 制品O I 值的变动范围为: ( 27144, 28156) 。211. 3回归分析时, 此因素对O I 值的影响高度显著, 在显著性一列中用3 ” ; 当 F 0. 05 ( 1, 5) = 6161< 某因素的统计量“3 表示系, 在基础软PV C 制品配方的条件下又做了4个试验, 结果见表3。表3复合阻燃剂用量与O I 的关系T ab 3R ela tion of Com po site flam e reta rdan t w ith O I 10 15 20 25 30 著, 在显著性一列中用“3 ” ; 当某因素的统计量F 表示值≤F 0. 05 ( 1, 5) = 6. 61 时, 此因素对O I 值的影响不显由图1可以看出, 复合型阻燃剂的起始与终结温度都高于纯M g (O H ) 2 , 失重率为19. 2% , 纯M g (O H ) 2 为23. 9% 。由于存在多种元素热分解匹配性, 这是其具有较好阻燃效果的一个重要原因。表4添加阻燃剂后PV C 电缆料1) 的综合性能T ab 4O vera ll p rop erties of PV C com pound added w ith flam e reta rdan t fo r cab le jacket 项目氧指数在找到以上结果的基础上, 为寻求最佳配合比的复合阻燃剂( 以下简称复合阻燃剂) 用量与O I 值的关1) 阻燃剂添加份数10 30质量份( 以100质量份PV C 为基~准) 2) 按国标GB 8815- 88, 由河南省二轻皮革研究所检测阻燃剂质量份1) OI 1) 以PV C 树脂100质量份为基准。对以上试验数据作线性回归分析, 其中复合阻燃剂用量X 与O I 值Y 的回归方程为? 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 2515 2810 3013 3217 3412 2. 3复合阻燃剂对PVC 电缆料性能的影响将上述最佳复合阻燃剂配方用于电缆料中进行各项性能测定, 其结果见表4。由表 4

数据可以看出, 电缆20℃体积电阻率8 m 拉伸强度M Pa 断裂伸长率, % 200 ℃热稳定时间m in 热老化后拉伸强度M Pa 拉伸强度热老化后最大变化率, % 热老化后断裂伸长率, % 断裂伸长率热老化后最大变化率, % 热老化后失重g m 2 ——纯M g (O H ) 2; 2222复合型阻燃剂性能值2) 28 38 ~1. 53×1013 ~7. 95×1013 国标规定值≥1. 0×1012 ≥15. 0 ≥180 ≥60 ≥15. 0 ±20 ≥180 ±20 ≤±20 ≥18. 0 ≥220 ≥60 ≥16. 0 18. 0 ~±16. 5 18. 5 ~≥180 200 ~±18 19 ~≤±15 18 ~第五期塑料工业?9 9 ? 料的各项性能全部达到国标, 可以推广使用。2. 4复合阻燃剂对PVC 硬制品性能的影响我们将复合型阻燃剂用于PV C 硬管材配方中, 添加量为3 5质量份, 制成各种阻燃试条, 由国家固定灭~火系统和耐火构件质量监督检测中心( 天津) 对其进行性能测试。试结果表明, 各项指标全部达到GB 测50222- 95B 1 级: 氧数为65. 0, 水平燃烧达级, 垂直燃烧达FV - 0 级。对其进行各项机械性能的测试结果也表明, 各项性能值均达到国标。该复合阻燃剂在郑州塑料五厂已用于硬PV C 阻燃管材中。管) , 除制品阻燃性能优良外, 其物理机械性能也均达到国标要求, 并解决了因添加M g (O H ) 2 而产生的阻燃性能与机械性能相矛盾的问题, 而且该复合阻燃剂还具有一定的抑烟效果。2. 该复合阻燃剂在PV C 软制品中使用, 推荐的用量为15 25 质量份( 以PV C 树脂100 质量份为基准) ; ~在硬制品使用, 推荐的用量为3 5质量份。~3. 该复合阻燃剂价格较低, 用量较少, 有利于降低成本, 提高经济效益。参考文献 1 李俊德应用数理统计方法. 北京: 高等教育出版社, 1989, . 161 2 日本高分子学会编. 塑料加工原理及实用技术. 吴培熙等3结论1. 利用数理统计法对以M g (O H ) 2 为主的多种阻燃剂进行复配研究的结果表明, 各阻燃剂之间具有良好的交互作用和协同效果, 用所制最佳配比的复合阻燃剂阻燃PV C 软、硬制品( PV C 电缆料和PV C 硬译. 北京: 中国轻工业出版社, 1991, 82

薄膜材料的应用与发展

薄膜材料的应用与发展 薄膜材料的发展以及应用,薄膜材料的分类,如金刚石薄膜、铁电薄膜、氮化碳薄膜、半导体薄膜复合材料、超晶格薄膜材料、多层薄膜材料等。各类薄膜在生产与生活中的运用以及展望。 1 膜材料的发展 在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。 自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。 2 膜材料的应用 人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。它的一个很重要的应用就是海水的淡化。虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%~3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。因此将浩瀚的海水转为可以饮用的淡水迫在眉睫。淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分子渗透膜,在膜的一边给海水施加高压,使水分子透过渗透膜,达到膜的另一边,而把各种盐类离子留下来,就得到了淡水。反渗透法的关键就是渗透膜的性能,目前常用有醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。 利用膜两边的浓度差不仅可以淡化海水,还可以提取多种有机物质。工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约了成本,有利于我们的生存环境。 膜的应用还体现在表面化学上面。在日常生活中,我们会发现在树叶表面,水滴总是呈圆形,是因为水不能在叶面铺展。喷洒农药时,如果在农药中加入少量的润湿剂(一种表面活性剂),农药就能够在叶面铺展,提高杀虫效果,降低农药用量。 更重要的,研究人员还将膜材料用于血液透析,透析膜的主要功能是移除体内多余水份和清除尿毒症毒素,大大降低了肾功能衰竭患者的病死率[1] 3 膜材料的分类 近年来,随着成膜技术的飞速发展,各种材料的薄膜化已经成为一种普遍趋势。 薄膜材料种类繁多,应用广泛,目前常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。目前很受人们注目的主要有一下几种薄膜。 3.1金刚石薄膜 金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。 近年来,随着科技的发展,人们发展了多种金刚石薄膜的制备方法,比如离子束沉积法、磁控溅射法、热致化学气相沉积法、等离子化学气相沉积法等.成功获得了生长速度快、具有较高质量的膜,从而使金刚石膜具备了商业应用的可能。

纳米氢氧化镁的制备

纳米氢氧化镁的制备 1 前言 氢氧化镁为新型镁质无机阻燃剂, 具有无毒、无烟、阻燃效果好等特点, 近年来已成为减烟、抑烟、阻燃等方面重要的无机阻燃剂。随着我国高分子合成材料工业快速发展及阻燃法规不断健全和完善, 对阻燃剂需求随之增加, 作为无毒、抑烟型的环保无机阻燃剂Mg( OH) 2 的需求更是十分迫切, 我国无机阻燃剂占整个阻燃剂用量的50% , 其中氢氧化镁阻燃剂 占无机阻燃剂30% 左右, 每年需要氢氧化镁阻燃剂9 万t, 但我国目前氢氧化镁阻燃剂年生产能力约为1. 3 万t , 故我国氢氧化镁发展潜力巨大[1~ 2] 。我国是镁矿资源大国, 具有得天独厚的资源优势和良好的市场前景。因此, 我国应改进Mg(OH) 2 现有生产工艺、规模化生产, 并加强Mg(OH) 2 应用研究, 以促进我国Mg ( OH) 2 阻燃剂的生产和发展。我国生产的氢氧化镁纯度低, 粒度分布较宽, 而目前国外都需要高纯微细氢氧化镁产品, 特别是 高纯纳米级的氢氧化镁产品, 用于各种高档复合材料的阻燃成分[ 3~ 4] 。纳米氢氧化镁是指颗粒粒度介于1~ 100 nm 的氢氧化镁, 作为一种纳米材料, 它具有纳米材料所具有的共性特点, 即小尺寸效应、量子尺寸效应、表面效应、宏观量子效应等, 用它充填于复合材料中能大大提高材料的阻燃性能、力学性能和其它性能。 2 氢氧化镁与其他碱类的比较 质言之,氢氧化镁毕竟是一种“碱”,与其他传统碱相比当然是一种弱碱。具有独特的缓冲能力。氢氧化镁除在作为阻燃剂领域应用外,在其他领域应用特别是作为中和剂应用都基于这种特性。现将氢氧化镁比其他传统碱类物质所具有的优点综述如下。使用Mg(OH)2做中和剂时,溶液的pH值一般不会超过9,这恰好是美国环保局的“清洁水条例(CleanwaterAet)”中允许排放物pH值的最高限度[5],而其他碱类物质一般都大于12;与用生石灰、消石灰不同,用Mg(OH)2中和含硫酸的液体时形成可溶性的硫酸镁,可作为硫镁肥代替水镁矾(Kieserite),而用前者则会形成难溶的硫酸钙;Mg(OH)2中和能力强,中和同体积和同浓度的含酸废液,Mg(OH)2用量比通常碱的用量减少30%。由于中和速度慢,形成的砖泥致密,体积小,沉降快,过滤时间缩短,龄泥的处理和排人费用也比传统的处理方法减少30%,在温度零度时不结冰,从而可降低人工和维修费用。属弱碱性物质,作业处理和使用均安全可靠[6]。关于氢氧化镁的这些优点,国外有很多议论,如美国DOW化学公司氢氧化镁市场部经理Mark Tomik说:“这种化学品正在敦促越来越多的厂家对酸性液体进行处理时加以采用,以取代传统方法。他还说,用户通过使用氢氧化镁而不用其他碱类物质,在沉淀物处理和清除方面可节省60%的费用[5]。” 3 纳米氢氧化镁的制备技术[ 7] 3. 1 直接沉淀法 直接沉淀法制备纳米氢氧化镁是向含有Mg2+的溶液中加入沉淀剂, 使生成的沉淀从溶液中析出,最常见的是氢氧化钠法和氨法[ 8- 11] , 反应过程为: Mg2+ + 2NaOH Mg(OH)2 + 2Na+ ( 1) Mg2+ + 2NH3.H2O Mg(OH)2 + 2NH4+ ( 2) 直接沉淀法操作工艺简单, 控制反应条件可制得片状、针状和球形的纳米氢氧化镁粉体。东北大学林慧博等[7]研究了用NaOH 和MgC l2.6H2O制备纳米氢氧化镁的最佳工艺条件为:反应 温度80℃, 反应时间20 min, Mg2+ 和OH- 物质的量比为1 :2 ,Mg2+ 浓度为0. 5 mol/ L, 制得产品粒径约为90nm的片状均匀分散的氢氧化镁。由于氨的挥发性较强, 所以氨法制备纳米氢氧化镁容易造成环境污染。但用氢氧化钠方法制备纳米氢氧化镁成本相对较高,而且制备分散性良好的纳米氢氧化镁所需反应条件苛刻。

无机填料的表面处理及其在导热天然橡胶复合材料中的应用

加工?应用 合成橡胶工业,2009-11-15,32(6):493~497 CH I N A SY NTHETI C RUBBER I N DUSTRY 无机填料的表面处理及其 在导热天然橡胶复合材料中的应用 王 飞 (甘肃大禹节水股份有限公司技术研发中心,甘肃酒泉735009) 摘要:用季戊四醇、丙三醇和钛酸酯偶联剂分别对氧化铝、氧化镁和高岭土进行表面改性,并将改性 填料填充天然橡胶(NR)制备了导热复合材料,考察了表面处理剂种类及其用量对无机填料的影响,并 研究了季戊四醇改性氧化铝填充NR复合材料的硫化特性、物理机械性能和导热性能。结果表明,3种 填料中季戊四醇的改性效果最好,且其用量为110~115份时对氧化铝的改性效果最佳;随着改性氧化 铝填充量的增加,复合材料的最大转矩、300%定伸应力、拉伸强度和热导率均增大,当其用量为60份 时,改性氧化铝填充NR复合材料的热导率比未填充NR复合材料提高了2319%。 关键词:无机填料;季戊四醇;表面处理;天然橡胶;复合材料;物理机械性能;热导率 中图分类号:T Q330138 文献标识码:B 文章编号:1000-1255(2009)06-0493-05 导热橡胶是侧重导热性能的一类橡胶基复合材料,导热性能的提高通常伴随着散热性能的优化。散热对产品的密集化、小型化和提高可靠性及产品使用寿命都有重要意义。导热橡胶分为本征型和填充型2种。由于合成本征型导热橡胶无论在工艺还是在操作性上都绝非易事,因此一般都通过填充高导热的填料来制备导热橡胶[1-3]。本工作选取了一些低成本无机填料氧化铝、高岭土、氧化镁,对其进行表面处理后填充天然橡胶(NR),制备了导热复合材料,考察了表面处理剂种类及其用量对无机填料的影响,并研究了导热复合材料的硫化特性、物理机械性能和导热性能。 1 实验部分 111 原材料 NR,马来西亚1#烟片胶,桂林市曙光橡胶研究所提供。氧化铝,广东汕头西陇化工厂产品。超细煅烧高岭土,湖南耒阳市超牌化工有限公司产品。氧化镁,广东汕头西陇化工厂产品。丙三醇,汕头市光华化学厂产品。季戊四醇,天津市大茂化学试剂厂产品。乙丙基三(二辛基焦磷酸酰氧基)钛酸酯(简称NDZ-201),南京曙光化工厂产品。邻苯二甲酸二丁酯,天津市北方天医化学试剂厂产品。其他原材料均为市售品。112 实验方法 无机填料的表面改性 (1)丙三醇或季戊四醇处理:将1份丙三醇或季戊四醇溶解于100份水中,在60℃下搅拌10m in,随后边搅拌边将1份填料缓慢加入醇水溶液中,继续搅拌30m in,于室温下静置24h,然后真空抽滤并在200℃烘干备用。(2)NDZ-201处理:用无水乙醇作为溶剂,在上海普申化工机械有限公司生产的JSF型搅拌砂磨分散多用机(转速700r/m in)中将015份乳化剂OP-10和2份硬脂酸加入100份无水乙醇中,待硬脂酸完全溶解后继续搅拌10m in,之后将1份填料缓慢加入溶液中,待填料完全加入后提高转速至1800r/m in,再向溶液中加入1份NDZ-201,继续高速搅拌30m in后,将溶液转移至烧杯中室温下静置24h,然后真空抽滤并在200℃烘干备用。 导热NR复合材料的制备 基本配方(质量份)为NR100,氧化锌510,硬脂酸210,防老剂4010NA110,促进剂T MT D015,促进剂CZ110,硫黄210,石蜡110,炭黑20,填料变量。 将NR置于上海橡胶机械厂生产的SK-160 3收稿日期:2008-10-29;修订日期:2009-07-13。 作者简介:王飞(1986—),男,本科。

纳米氧化镁的国内外研究现状

纳米氧化镁的国内外研究现状 目前,日、美、德等国都进行了纳米氧化镁的研究,其中日本处于领先地位。日本在80年代就己经制取了纳米氧化镁产品。日本以金属镁为原料,采用气相氧化技术,开发了纯度在99.95%以上,平均粒径为10mn的高纯纳米氧化镁,产品分散性、绝缘性耐热性、透光性等良好。在集成电路板。红外线透过材料等领域得到很好的应用。日本科学技术厅无机材质研究所采用液相滴下法开发成功纳米氧化,纯度高达99.99%。 在应用方面,日本一些化学公司开发成功纳米氧化镁材质的透明薄板陶瓷,该产品韧性好,耐热温度高达2800度,该公司己向航空、电子、光学元件等产业提供样品。2002年11月,美国Nnaosacle公司研制了一种纳米氧化镁杀菌材料,粒径为4nm-8nm,并投入小规模工业化生产,生产能力约为10吨每年,目前,该公司产品己供应市场,并在医疗、公共卫生、化学武器和生化武器(主要用于分解化学和生物毒气)等领域迅速得到推广。特别是非典在全球流行以来,该公司的产品受到了美国政府的高度重视,据悉,目前己在医院和公共场所推荐使用。 目前国内纳米氧化镁的制备和表征仍处于实验室探索阶段,尤其是由实验室向工业化的过渡方面,还无法提供完善坚实的理论基础,还有大量的研究工作要作。因此,纳米氧化镁粒子的制备和表征以及改性研究在今后一定时期内仍是国内的主要研究内容和主攻方向。我国镁资源十分丰富,是世界上生产镁化合物的主要国家之一。虽然我国矿产资源丰富、品位高,但盐湖化工行业对镁盐的利用尚很薄弱,镁盐的生产仍处于粗制初级产品的生产阶段,还远不能满足国民经济发展的需要。为开辟镁盐的新用途,要大力发展镁盐精细产品的生产,特别是开发各种不同用途的特种氧化镁产品。纳米氧化镁由于其独特的用途,成为开发镁资源的首选产品之一,它的研究开发必将大大推动我国丰富镁资源的综合利用和高附加值镁产品的开发。

减震用橡胶材料及其应用

减震用橡胶材料及其应用 随着现代工业的飞速发展,震动和噪音已经成为各个领域的严重问题:它会降低操作精度,影响产品质量;缩短产品寿命,使得高精仪器不能正常工作;危及安全性,使设备或构建物早期破坏;污染环境及影响人身健康,诸如地震之类的震动甚至还给人类的生命财产造成极大的损害。因此,研究和掌握震动控制与噪音控制技术已是各国工业发展面临的重大课题。 消除震动和噪音的最根本和最好方法是减少或者消除震动源的震动,但实际上要想完全消除震动源的震动是不可能的,因此必须采取其他控制震动的方法。实际应用中最广泛、最有效的方法是使用各种减震制品,尤其是橡胶减震制品。它能够有效地隔离震动与激发源,还可以缓和震动体的震动,因此被广泛地应用于各种机动车辆、飞机、船舰等的动力机械及风机、水泵等辅助设备和仪器的震动隔离。近年来,一些大型建筑物和桥梁等也采用了隔离地震的层压橡胶垫支撑建筑物。对于结构震动和结构噪音的阻尼处理,也广泛地使用特殊的橡胶材料,称为黏弹性高阻尼材料。 1 橡胶的减震作用及减震橡胶材料 橡胶的特点是既有高弹态又有高黏态,橡胶的弹性是由其卷曲分子构象的变化产生的,橡胶分子间相互作用会妨碍分子链的运动,又表现出黏性特点,以致应力与应变往往处于不平衡状态。橡胶的这种卷曲的长链分子结构及分子间存在的较弱的次级力;使得橡胶材料呈现出独特的黏弹性能,因而具有良好的减震、隔音和缓冲性能。橡胶部件广泛用于隔离震动和吸收冲击,就是因为其具有滞后、阻尼及能进行可逆大变形的特点。 橡胶的滞后和内摩擦特性通常用损耗因子表示,损耗因子越大,橡胶的阻尼和生热越显著,减震效果越明显。橡胶材料损耗因子的大小不仅与橡胶本身的结构有关,而且与温度和频率有关。在常温下,天然橡胶(NR)和顺丁橡胶(BR)的损耗因子较小,丁苯橡胶(SBR)、氯丁橡胶(CR)、乙丙橡胶(EPR)、聚氨酯橡胶(PU)和硅橡胶的损耗因子居中,丁基橡胶(HR)和丁腈橡胶(NBR)的损耗因子最大。 用作减震目的的橡胶材料一般分5种,即NR,SBR,BR为普通橡胶材料;NBR用于耐油硫化胶;CR用于耐天候硫化胶;IIR用于高阻尼硫化胶;EPR用于耐热硫化胶。NR虽然损耗因子较小,但其综合性能最好,具有优异的弹性,耐疲劳性好,生热低,蠕变小,与金属件黏合性能好,耐寒性、电绝缘性和加工性能也好,因此NR被广泛地用作减震目的,要求耐低温或耐天候性能时,可与BR或CR并用或共混改性。Nishiue等采用NR、BR及碳原子数大于4的含有-OH基团有机酸的金属盐制成的减震器具有较好的耐久性能,在70℃×22h和40℃×148h条件下的压缩永久变形分别为17.0%和11.7%。由于EPDM耐天候、耐臭氧老化、电绝缘性、耐热和耐寒等性能优异,近年来受到广泛关注。最近,日本三井化学公司与鬼怒川橡胶公司通过采用高相对分子质量的EPDM与低相对分子质量的EPDM

薄膜材料简介

薄膜材料简介 薄膜具有良好的韧性、防潮性和热封性能,使用非常广泛;PVDC薄膜适合包装食品,并能长时间保鲜;而水溶性PV A薄膜不必开封直接投入水中即可使用;PC薄膜无味、无毒,有类似玻璃纸的透明度和光泽,可在高温高压下蒸煮杀菌。本文将主要介绍几种塑料薄膜的性能及其使用。 从商品生产到销售,再到使用,包装件要经过储存、装卸、运输、货架陈列以及在消费者手中存放,这个过程中即可能遇到严寒、酷暑、干燥、潮湿等恶劣的自然气候条件,也要遭受振动、冲击和挤压等各种机械破坏,甚至还有微生物和虫类的侵害。要保证商品的质量,主要依靠包装材料来保护,所以包装材料非常重要。 塑料薄膜是最主要的软包装材料之一,塑料薄膜的种类繁多,特性各异,根据薄膜的不同特性,其用处也不同,下面介绍几种常见的塑料薄膜: 聚乙烯薄膜 PE薄膜使用大量最大的塑料包装薄膜,约占塑料薄膜总耗用量的40%以上。PE薄膜虽然在外观、强度等方面并不十分理想,但它具有良好的韧性、防潮性和热封性能,且加工成型方便,价格便宜,所以使用非常广泛。 1、低密度聚乙烯薄膜。LDPE薄膜主要采用挤出吹塑法和T模法生产的LDPE薄膜是一种柔韧而透明的薄膜,无毒、无嗅,厚度一

般在0.02~0.1?L之间。具有良好的耐水性、防潮性、耐旱性和化学稳定性。大量用于食品、药品、日用品及金属制品的一般防潮包装和冷冻食品的包装。但对于吸湿性大,防潮性要求较高的物品,则需要采用防潮性更好的薄膜和复合薄膜包装。LDPE薄膜的透气率大、无保香性且耐油性差,不能用于易氧化食品、风味食品和含油食品的包装。但透气性好使它能用于水果、蔬菜等新鲜物品的保鲜包装。LDPE 薄膜的热粘合性和低温热封性好,因此常用作复合薄膜的粘合层和热封层等,但由于其耐热性差,故不能用作蒸煮袋的热封层。 2、高密度聚乙烯薄膜。HDPE薄膜是一种韧性的半透明薄膜,其外观为乳白色,表面光泽度较差。HDPE薄膜的抗张强度、防潮性、耐热性、耐油性和化学稳定性均优于LDPE薄膜,也可以热封合,但透明性不如LDPE。HDPE可制成厚度为0.01?L的为薄薄膜,其外观和薄绢纸很相似,手感舒服,又称拟纸膜。它具有良好的强度、韧性和开口性,为增强拟纸感和降低成本,可加入少量的轻质碳酸钙。HDPE拟纸膜主要用于制作各种购物袋、垃圾袋,水果包装袋和各种食品包装袋等。因其气密性差,不具有保香性,因此包装食品的贮藏期不长。另外,HDPE薄膜因耐热性好,可用作蒸煮袋的热封层。 3、线型低密度聚乙烯薄膜。LLDPE薄膜是近来发展的聚乙烯薄膜新品种,和LDPE薄膜相比,LLDPE薄膜具有更高的抗拉、抗冲击强度,乃撕裂强度和耐穿刺性。在和LDPE薄膜具有同等强度和使用性能的情况下,LLDPE薄膜的厚度可减至LDPE薄膜的20~25%,因而使成本大幅度降低。即使用作重包装袋其厚度也只需0.1?L就能

纳米氧化镁的制备及进展分析

纳米氧化镁的制备及进展分析 纳米科学技术( N ano Science and Techno logy简称NST)是20世纪90年代初发展起来的一个多学科交叉的科学与技术。纳米材料是指在三维空间中至少有一维处于纳米尺度范围( 1 ~ 100nm ), 或由它们作为基本单元构成的材料。纳米材料由于其组成晶体结构和表面电子结构发生变化, 产生了普通材料所不具有的表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等, 从而使纳米材料具有特殊的光、电、磁、热及催化等性质。其中纳米氧化镁是一种新型高功能精细无机材料。由于其结构的特殊性, 决定了它具有不同于本体的电学、磁学、热学及光学性能。采用纳米氧化镁, 不使用烧结助剂便可以实现低温烧结, 制成高致密度的细晶陶瓷, 可望开发为高温、高腐蚀气氛等苛刻条件下使用的尖端材料; 它可以作为氧化锆、氧化铝、氧化铁等其它纳米粒子的烧结助剂和稳定剂而获得高质量的纳米相陶瓷。另外, 纳米氧化镁可作为油漆、纸张及化妆品的填料、塑料和橡胶的添加剂和补强剂、脂肪的分解剂、医药品的擦光剂、化学吸附剂、以及各种电子材料、催化剂、超导体、耐火材料的辅助材料等。 1 纳米氧化镁的国内外研究现状 日本在80年代就已经推出了纳米氧化镁产品日本宇部兴产公司以金属镁为原料采用气相氧化技术开发了纯度在99.95%以上平均粒径10nm的高纯纳米氧化镁产品分散性好粒度均匀能够低温烧结且绝缘性耐热性优秀透光性良好在集成电路板等电子材料特殊型的发光管红外线透过用材料等领域得到很好的应用日本科学技术厅无机材质研究所采用液相滴下法开发成功纳米氧化镁纯度高达99.99%在应用方面日本化学公司开发成功氧化镁材质的透明薄板陶瓷薄板为3厘米正方形厚0.07mm,耐热温度高达28000C最大特点是韧性好可热加工弯曲成U L S型,产品含氧化镁在99.9以上了,该公司已向航空航天电子光学元件太阳能电池原子能等产业提供样品另外日本赤穗化成旭硝子等化学公司也都拥有自己的纳米氧化镁陶瓷产品我国进入90年代以后纳米氧化镁的研制开发开始起步中国科学院固体物理研究所采用化学沉淀法制备了薄片型氧化镁超细粉末粒径在10-30nm之间陕西师范大学化学系分别采用均匀沉淀和直接沉淀法合成超细粉体氧化镁平均粒径分别为25nm和62nm这些工作目前仅处于实验室阶段在工业化及产品应用研究方面仍未见报道国内外纳米氧化镁生产及开发。目前我国纳米氧化镁的研究尚处于实验室阶段在制备技术相应应用研究及由实验室向工业化过渡方面还远远落后于世界发达国家。 2纳米氧化镁的制备方法 纳米氧化镁有其独特的制备方法, 目前国内外关于纳米级氧化镁合成的报道主要有物理法、化学法、物理化学法3种类型。也可以细分为: 物理法: 流动液面真空蒸发法、溶剂蒸发法、惰性气体蒸发法等; 化学法: 水热法、气相法、醇盐水解法、固相法、辐射合成法、均匀沉淀法、直接沉淀法、喷雾热解法、电解法; 物理化学法: 溶胶-凝胶发、微乳液和胶束法等。目前, 工业上主要有白云石碳化法和卤水- 氨法制备纳米级氧化镁。其中的几种典型方法介绍如下。 2. 1 流动液面真空蒸发法 在高真空下将原料蒸发, 再使之凝结。其优点是能获得纯净的产品, 但生产能力低, 且不能灵活控制粒子大小, 只适合制备尺度小于20 nm 的粒子。 2. 2溶剂蒸发法 该法是将金属盐溶液先分散成微小液滴, 再加热使溶剂蒸发, 析出所需的纳米粒子。溶剂蒸发法可分为喷雾干燥法、喷雾热解法和冷冻干燥法。 2. 3气相法 该法又可分为物理气相沉积法( PVD) 和化学气相沉积法( CVD ) , 根据反应类型, 化

简述薄膜材料的特征举例说明薄膜材料的用途不少于4例

简述薄膜材料的特征举例说明薄膜材料 的用途不少于4例 【篇一:简述薄膜材料的特征,举例说明薄膜材料的用途 (不少于4例)】 第四章薄膜材料与工艺 1、电子封装中至关重要的膜材料及膜技术 1.1 薄膜和厚膜 1.2 1.3成膜方法 1.4 电路图形的形成方法 1.5 膜材 料 2、薄膜材料2.1 导体薄膜材料 2.2 电阻薄膜材料 2.3 介质薄膜材 料 2.4 功能薄膜材料 1、电子封装工程中至关重要的膜材料及膜技术 薄膜和厚膜电子封装过程中膜材料与膜技术的出现及发展,源于与 电器、电子装臵设备向高性能、多功能、高速度方向发展及信息处 理能力的急速提高系统的大规模、大容量及大型化要求构成系统的 装臵、部件、材料等轻、薄、短、小化晶体管普及之前真空电子管 的板极、栅极、灯丝等为块体材料,电子管插在管座上由导管连接,当时并无膜可言 20世纪60年代,出现薄膜制备技术在纸、塑料、 陶瓷上涂刷乃至真空蒸镀、溅射金属膜,用以形成小型元器件及电 路等进入晶体管时代从半导体元件、微小型电路到大规模集成电路,膜技术便成为整套工艺中的核心与关键。 1、电子封装工程中至关重要的膜材料及膜技术薄膜和厚膜与三维块 体材料比较:一般地,膜厚度很小,可看作二维膜又有薄膜和厚膜 之分经典分类:制作方法分类:块体材料制作的(如经轧制、锤打、碾压等)——厚膜膜的构成物一层层堆积而成——薄膜。 Al特点Si基IC常用导体材料与作为IC保护膜的SiO间的 附着力大对于p型及n型Si都可以形成欧姆接触可进行引线键合 电气特性及物理特性等也比较合适价格便宜作为IC用的导体普遍 采用随环境、气氛温度上升,Al与Au发生相互作用,生成金属 间化合物,致使接触电阻增加,进而发生接触不良当Al中通过高 密度电流时,向正极方向会发生Al的迁移,即所谓电迁移在50 0以上,Al会浸入下部的介电体中在MOS元件中难以使用尽管 Al的电阻率低,与Au不相上下,但由于与水蒸气及氧等发生反应,其电阻值会慢慢升高。 al与au会形成化合物al端子与au线系统在300下放置2~3h, 或者使气氛温度升高到大约450,其间的相互作用会迅速发生, 致使键合部位的电阻升高此时,上、下层直接接触,au、al之间形

纳米级氢氧化镁阻燃剂

纳米级氢氧化镁阻燃剂的研究现状 氢氧化镁作为阻燃剂的阻燃机理为:氢氧化镁受热分解时,释放出H2O,同时吸收大量的潜热,这就降低了树脂在火焰中实际承受的温度,具有抑制高聚物分解和可燃性气体产生的冷却效应。分解后生成的MgO 是良好的耐火材料,也能帮助提高树脂抵抗火焰的能力,而且氢氧化镁的热分解温度高达340 ℃,因此,其阻燃性能十分优越。但普通氢氧化镁用于聚合物阻燃的主要缺点是阻燃效率低以及与基体的相容性差,要使材料的阻燃性能达到一定要求,氢氧化镁的添加量通常要高达50 %以上,这样会对材料的力学性能和加工性能影响很大,难以达到使用要求。为了使氢氧化镁能更好地用于塑料阻燃,国内外不少研究机构已成功地开发出了不同性能的氢氧化镁。美国Solem 公司开发出了分散性良好,加工温度可达332 ℃的优质氢氧化镁。日本协和化学工业自1973 年开始研究特殊大晶粒,低比表面积的氢氧化镁,1975 年研究成功。该机构最近又开发出了氢氧化镁薄片状粒子和纤维状结晶,但该项技术并未公开。大连理工大学也曾研制出晶粒尺寸大、比表面积小、具有优良阻燃性能的新型氢氧化镁。江苏海水综合利用研究所、兰州化学工业公司研究院以及中科院青海盐湖研究所等相继致力于研制特殊晶形的氢氧化镁阻燃剂。 应用研究表明:当加入的氢氧化物粒径减小到 1 μm 时,其阻燃聚合物体系的氧指数显著提高。不少文献报道随着粒径的减小,无机粒子对聚合物材料有增强增韧的作用。因此,超细化成为氢氧化镁阻燃剂的一个重要发展方向。在材料科学里面,人们将超细微粒子称谓纳米粒子,是一种介于固体和分子间的亚稳中间态物质。纳米氢氧化镁是指颗粒粒度介于1~100 nm 的氢氧化镁,作为一种纳米材料,它具有纳米材料所具有的共同特点,即小尺寸效应,量子尺寸效应,表面效应,宏观量子效应等,用它填充于复合材料中能大大提高材料的阻燃性能、力学性能和其它性能。研究表明,采用纳米Mg(OH)2的塑料阻燃性能优于普通Mg(OH)2填充的塑料,具有更好的机械加工性,与含磷和卤素的有机阻燃剂相比,纳米氢氧化镁无毒,无味,且具有阻燃,填充,抑烟三重功能,是开发阻燃聚合物的理想添加剂,已受到人们的广泛关注。 姚佳良等研究了纳米氢氧化镁与微米氢氧化镁填充聚丙烯(PP)体系的阻燃性能、流动性能和力学性能。实验结果表明:添加相同质量分数Mg(OH)2时,纳米Mg(OH)2填充体系的阻燃性能要好于微米Mg(OH)2填充体系,并在填充量为60 %时达到V-0 级标准,且发烟量少,流动性能和力学性能也要好于微米Mg(OH)2填充体系。 1 制备方法 液相化学法是目前广泛采用的制备纳米氢氧化镁粉体的方法,已用于制备纳米Mg(OH)2的液相法有:直接沉淀法、水热反应法等。 1.1 直接沉淀法 直接沉淀法是在金属盐溶液中加入沉淀剂,仅通过沉淀操作从溶液中直接得到某一目标金属的纳米颗粒沉淀物,将阴离子从沉淀中除去,经干燥即可得到纳米粉体。常见的沉淀剂有NaOH、NH3.H2O、CO(NH2)2等。该法操作简便易行,对设备、技术要求不高,不易引入杂质,产品纯度高,有良好的化学计量性,制备成本较低;但产品粒度较大,粒度分布较宽。邱龙臻等以氯化镁、氢氧化钠为原料,采用表面活性剂包覆的溶液沉淀法制备出了不易团聚的纳米Mg(OH)2粉体,经透射电镜表征,其形态是短轴方向尺寸为6~9 nm,长轴方向尺寸为50~100 nm 的针状粒子。随着Mg(OH)2粒径的减小,光致发光光强度显著增强。将其以1︰1 的比例与EV A 混合,能很好地均匀分散在EV A 基体中,氢氧化镁几乎没有发生团聚现象。而且,EV A/纳米Mg(OH)2复合材料也表现出了优异的阻燃性能,该材料的

防老剂在橡胶密封制品中的应用(精)

摘要:本文对橡胶密封制品用丁腈橡胶、ACM胶、三元乙丙橡胶、氯丁橡胶和制作减震耐屈挠制品的天然橡胶、顺丁橡胶、丁苯橡胶的作用,防老剂的品种、性能进行试验和论述。 关键词:防老剂;密封制品;应用 1、引言 橡胶密封制品如旋转轴密封的骨架油封,筒式减震器密封的骨架油封,往复运动活塞杆密封,液压缸密封,大都是高速运动或耐高压的密封制品,由于使用工艺的复杂和苛刻,因此配方设计中,选择应用防老剂是非常重要的,一方面在橡胶加工过程中,因高温和机械力的作用,如炼胶加工使橡胶分子过分断裂降解,性能下降;另一方面,可防止橡胶制品在使用过程中,因热、机械的作用而损害其使用性能,为达到上述目的,研究人员不断开发高效环保的防老剂,满足橡胶制品的需要。橡胶的老化主要是氧化,而橡胶的氧化反应是具有自动催化特性的热氧化反应,并按照自由基的机理进行在橡胶制品中的老化现象。一方面影响制品的表现如龟裂,另一方面使其物理性能下降,随之丧失使用价值。考虑制品的防老化要求和制品加工过程中的工艺要求,防老剂应具有以下性能:(1)较高的防老化效果;(2)迁到制品表面且不喷霜;(3)不影响硫化;(4)在胶中易分散;(5)对胶料色泽五污染货污染小;(6)无毒环保。但是现实中完全能达到上述理想的防老剂并不易见,但是第1、2、3、4、6这五条在配方设计中必须着重考虑。 2、试验 2.1原材料 防老剂RD,天津拉勃化工公司生产;防老剂MB,浙江乐清精细化工厂生产;防老剂ODA,上海澎普化工厂生产;防老剂4010NA,南京化工厂生产;防老剂445,美国康宁公司生产;防老剂KY445,江苏海化工厂生产;其他原料皆为市售产品。 2.2设备与仪器 50t平板机硫化机(用于制作试样),110t抽真空硫化机(生产产品), XK160开炼机(配合试验用),XK400开炼机(生产用),UT2080电脑控制拉力机,智慧型UR2010型无转子硫化仪,台架试验台、天平、硬度计和恒温老化箱等。

纳米氧化镁的制备及其红外吸收性能研究

纳米氧化镁的制备及其红外吸收性能研究 纳米氧化镁是一种新型高功能精细无机材料,除了具有普通氧化镁的性质和用途外,由于粒子进入纳米尺度,使纳米氧化镁因纳米粒子所共有的表面效应、量子尺寸效应、体积效应、宏观量子隧道效应,而具有一系列普通氧化镁所不具备的性质,从而开丰要辟了一系列新的应用领域。纳米氧化镁具有不同于本体材料的热、光、电、力学、化学等特殊性能,在工业上有重要的应用前景和巨大的经济潜力。 红外吸收是隐身技术的一种,红外隐身材料是当前隐身技术研究的一个热点,它具有广阔的研究前景。本文采用液相沉淀热分解法制备纳米氧化镁,以不同的镁盐与沉淀剂氢氧化钠合成前驱物氢氧化镁,通过控制反应物加入方式、反应时间及温度、机械搅拌速度等因素,控制纳米氧化镁前驱物的粒度及形貌,并通过添加晶型控制剂控制其形貌。对于前驱物,通过马弗炉煅烧后得到纳米氧化镁产品。煅烧过程中,通过控制煅烧温度及煅烧时间等因素,控制纳米氧化镁的粒度。借助于X-射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)等测试手段,对前驱物和纳米氧化镁进行检测,确定其物相组成、产品平均粒度和形貌,并最终得到制备不同粒度及不同形貌的纳米氧化镁产品的工艺流程。 论文还研究了不同粒度及不同形貌纳米氧化镁产品的红外吸收特性,通过傅里叶红外光谱仪(FTIR)测定纳米氧化镁红外吸收带,并与普通方镁石的红外吸收特性做对比,研究其特殊性能。研究结果表明:采用液相沉淀法制备纳米氧化镁时,主要的影响因素有反应时间、反应温度、晶型控制剂的种类和用量、机械搅拌速度以及煅烧时间和温度。 以上因素均在一定程度上影响纳米氧化镁产品的性能。搅拌速度的增大、反应时间的延长以及反应温度的升高均使纳米氧化镁延一定方向生长,使其形貌趋于短棒状。

纳米氧化镁制备方法及性质应用综述全解

纳米氧化镁制备方法及性质应用 冯云会高恩军* (沈阳化工大学配位化学研究室,辽宁省无机分子基化学重点实验室) 摘要:纳米氧化镁作为一种重要的无机化工产品,由于其尺寸大小而使它具有 优异的性能,因此在各个领域被广泛应用。该文章对纳米氧化镁的制备方法做了详细的介绍,包括气相法、液相法、和固相法以及物理方法等;阐述了纳米氧化镁的吸附性能、分解性能以及杀菌性能。 关键词:纳米氧化镁;吸附;分解;杀菌 随着纳米材料技术的发展,人们的研究范围不再局限于镁合金、镁盐等,而 是聚焦于更小尺寸的纳米氧化镁。于是,纳米氧化镁作为一种新型功能无机材料 应运而生。纳米氧化镁产品为白色粉末、无毒、无味,产品粒径小,一般介于 1~100nm,具有较大的比表面积。由于纳米氧化镁尺寸较小,才使得它具有量子尺寸效应、表面效应、小尺寸效应、表面效应和宏观两字隧道效应等特殊性质,这导致了它具有不同于本体材料的光、电、磁等化学性能[1],做成涂料可以起到隐身的作用[2]。另外,研究发现尺寸达到纳米级别的抗菌材料一般具有更强的抗菌活性,而且杀菌效果与纳米粒子的粒径大小,分散程度,比表面积有关,纳米氧化镁能不依赖光照产生抗菌活性[3]。例如在制备高性能的纳米相氧化铝陶瓷的时候可用纳米氧化镁作为烧结助剂,这样可以在低温的条件下烧结成致密的细晶陶瓷,降低生产成本;以纳米氧化镁和纳米氧化钇或稀土金属氧化物为复合稳定剂烧成及热处理制成的力学性能优良,抗高温老化的部分稳定氧化锆陶瓷可广泛用作高温工程部件及高级耐火材料。 1. 制备纳米氧化镁的物理方法 1.1物理方法 制备纳米氧化镁常见的物理方法分为三种,即真空蒸发法、溶剂蒸发法、惰 性气体蒸发法。其中溶剂蒸发法可细分为喷雾干燥发、喷雾热解法、冷冻干燥[4]。 基金项目:沈阳市科技基金资助,NO:F16-208-6-00 通讯作者:高恩军,男,1962年1月生,理学博士,二级教授,从事化学与材料学领域研究工作,E-mail:enjungao@https://www.doczj.com/doc/b714588288.html,

生活中的橡胶材料论文

生活中的橡胶材料 高分子材料自上世纪问世以来,因具有质量轻,加工方便,产品美观实用等特点,颇受人们青睐,广泛应用于各行各业。随着塑料制品消费量的不断增长,塑料废弃物也迅速增加,对环境的影响日趋突出。废塑料弃物的处理也成为全球性的问题。况且,高分子材料的原料是石油和天然气,都是不可再生的资源。近年来,石油原料的有效开采储量迅速下降,能源价格不断上升,更加速了废旧高分子材料的资源化进程。 70年代初,美国就开始研究塑料对环境的污染问题,制止乱丢废弃物,积极处置废弃物。他们采取的措施主要是减少来源、回收利用、焚烧作为能源利用、填埋等。西欧国家对固体废弃物的管理采取一致行动,目标一体化,但也考虑各自的地理环境、人口、工业生产能力、国民的生活习惯等因素。德国焚烧技术较为完善;英国仍以填埋为主,约占其城市固体废弃物的8%[1];但是,现在欧洲最重要的发展趋势是塑料原料的回收和再利用。意大利塑料废弃物的回收利用工作十分活跃,除了回收利用本国的废弃聚乙烯制品外,还从其他国家如德国、法国进口大量的塑料废弃物进行回收。日本是亚洲塑料废弃物回收利用工作做得较好的国家之一,日本塑料废弃物的收集、分类、处理、利用都已系列化、工业化。 我国有关部门已将废旧塑料资源化列入议事日程:国家科委已将废旧塑料资源化列入科技攻关项目;环保局将废弃塑料列为21世纪在环保领域要控制的三大重点之一,指出必须强化管理,依靠科技进步搞好回收利用;国家经委等部门也将塑料弃物的综合利用列入重点课题。 高分子废弃物的特点 (1)高增长性2)难处理性(3)价值再生性 (1)废弃塑料的逐渐积累造成垃圾堆放点增多,填埋所用耕地面积加大,费用增加,同时耕地的减少,又会引发粮食问题[5]。. (2)焚烧废弃塑料[6]虽然可以获得能量,由此而产生的二氧化碳、氯化氢、二恶英等有害物质对环境造成二次污染。 (3)大块泡沫塑料、农用地膜等进入土壤,残留时间长,特别是聚苯乙烯泡沫塑料,在土壤中可数百年不分解,影响了土地的渗透性,使土质变坏,长期影响农作物生长。 (4)江河、湖泊及海洋漂浮物中多半以上是废弃塑料,水生物误食或缠结后,大量死亡。 (5)废弃塑料中常混有各种污染物和有害物,生活垃圾主要来源于家庭及商业服务业,这类塑料夹杂着大量污染物并携带各种细菌和病原体,污染环境。医疗塑料中含有更多的细菌,象结核杆菌、肺炎球菌等。它们在收集、运输和储存的条件下,会发生细菌病原体的蔓延与繁殖,以及有机物腐败会产生恶臭气味和黑臭垃圾水,这些污染物进入环境,会造成直接或潜在的严重危害[7]。 (6)造成资源的巨大浪费,热固性塑料的高分子材料基本成分(单体)主要来自石油。一样,从长远看石油等资源不会“取之不尽,用之不竭”,因此与其它自然资源,可以通过技术手段实现再利用的废弃热固塑料也是一种再生资源。如果废弃热固塑料直接废弃,将造成巨大的资源浪费。 (7)废弃热固塑料对环境的影响,废弃热固塑料填埋处理对环境的影响一直以来,填埋是处理废弃热固塑料的主要方法。众所周知,一是填埋侵占有限耕地,严重浪费国土资源:二是热固性塑料性质稳定,填埋后经久不腐,贻害未来。它们滞留在土壤里就破坏了土壤的透气性能,降低了土壤的蓄水能力,影响了农作物对水分、养分的吸收,阻碍了禾苗根系的生长,从而造成农作物的大幅度减产,使耕地劣化。此外,塑料添加剂中的重金属离子及有毒物质会在土壤中通过扩散、渗透,直接影响地下水质和植物生长。耐腐蚀抗细菌本是塑料制品的一大优点,但它们成为垃圾后却成为科学家们头痛的难题,在无空气无光照的情况下,微生物难以分解有机物,塑料垃圾在填埋中需200年后方能分解殆尽。三是填埋后塑料垃圾经雨水长期冲刷,使大量有害物质带入人类的生活坏境,造成对子孙后代的危害。由上述所见,采用填埋法处理废弃热固塑料对环境的污染是一种长期累积效应,百害而无一利。

第六章 薄膜材料及其应用

第六章 薄膜材料及其应用(1) 主要内容 一、超硬薄膜 二、智能薄膜 三、纳米薄膜 四、三族元素氮化物薄膜 五、巨磁和庞磁薄膜 六、铁电薄膜 七、红外敏感薄膜 八、人工周期调制材料 一、超硬薄膜 材料的硬度不仅取决于材料的宏观性质(弹性和塑性),而且 也取决于材料的微观性质(原子间的相互作用力)。合成超硬材料对于了解原子间相互作用的微观特性与宏观特性间的基本关系,以及纯技术的应用都十分重要。 超硬材料(包括已有超硬材料和理论预言超硬材料)可以分为三类: 1. 由周期表中第2、3周期的轻元素所形成的共价和离子-共价化合物; 2. 特殊共价固体,包括各种结晶和无序的碳材料; 3. 与轻元素形成的部分过渡金属化合物,如:硼化物、碳化物、氮化物和氧化物。 超硬材料的特点 1. 超硬材料在正常条件下大多是亚稳相; 2. 绝大多数超硬材料都是共价型或离子型固体; 3. 过渡金属化合物超硬材料具有共价键和金属键; 4. 超硬材料在元素周期表中都由位于中间位置的主族元素组成,这些元素具有最小离子、共价或金属半径,且固态中的原子间具有最大的结合能; 5. 元素中电子壳层的周期填充使固体中的原子半径或分子体积呈规律性变化; 6. 元素固相在变化时,如具有最小摩尔体积,则具有最大的体弹性模量、最大的结合能和最高的熔点。满足Aleksandrov 关系: k 为体弹性模量,Vm 为摩尔体积,Ec 为结合能 对单一元素的固体, 绝大多数在1-4; (一)由原子序数较小的元素形成的超硬化合物 这些超硬材料由位于第2、3周期中的元素如:铍、硼、碳、氮、氧、铝、硅、磷 的化合物组成。它们能形成三维刚性点阵、原子间具有较强的共价键。典型的离子-共价化合物例子是氧化物,如:刚玉Al2O3,超石英(SiO2的高压相)。 这些超硬化合物主要有:BeO 、B6O 、P2O5、Al-B-O 系统、CNx 、SiC 、Be2C 、Si3N4及其它硼碳化合物、硼磷化物、硼硅化物等。 (二)碳材料 由于C 原子间存在不同类型的化学键合,所以C 存在大量的同素异构体和无序相。如 sp3 C 杂化键合形成的金刚石,是最硬的的已知材料。所以可将碳划到特殊材料。 单晶金刚石的维氏硬度达70-140GPa 。另一sp3 C 杂化键合形成的六方金刚石具有与金刚石类似的力学性质。近年来,利用各种沉积技术,制备了高sp3 键合度的非晶碳膜,也称类金刚石薄膜。它的显微硬度达到70GPa 。足球烯C60是有C 的sp2 原子键合形成m c V E k ∝160.5/E kV c m -≡

新型无机阻燃剂氢氧化镁

新型无机阻燃剂氢氧化镁 简介:氢氧化镁属于填加型阻燃剂,受热分解释放出水气,同时吸收了大量的热量,可以降低材料表面的温度,使得聚合物降解的速度放慢,随之小分子可燃物质的产生也减少。释放出来的水气稀释了表面的氧气,使燃烧难以进行。氢氧化镁在材料表面形成炭化层,阻止氧气和热量的进入,并且氢氧化镁分解生成的氧化镁是高级耐火材料,所以当燃烧源消失,火就自动停止,起到阻燃的效果。由于氢氧化镁阻燃作用主要发生在聚合物降解区,减少可燃物的产生,而对预燃区作用很少,可燃物的完全燃烧影响很小,产生的烟雾也减少,并且氢氧化镁可以冲淡和吸收烟雾,所以氢氧化镁具有减烟效果。 1、氢氧化镁阻燃剂的特点 氢氧化镁Mg(OH)2,白色固体粉末,不溶于碱性物质,受热分解为氧化镁和水,加热到340℃时开始分解,430℃时分解速度最快,到490℃时完全分解。氢氧化镁晶体属于2价金属水合物族,晶体结构是层状的CdI2型,形成连续的六边形,Mg2+层和OH-层互相重叠,每个镁离子被6个氢氧根离子配合从而形成Mg(OH)6八面体。标准状态下:Mg(OH)2(s)MgO(s)+H2O(g)△H=mol同样作为无机阻燃剂,氢氧化镁与氢氧化铝相比具有很多优点:①氢氧化铝热分解温度为245~320℃,与氢氧化镁分解温度340~490℃相比,有效使用范围低,适合用于加工温度比较低的树脂如ABS、丙烯酸树脂和环氧树脂等。氢氧化铝由于分解温度较低,其中部分结晶水在材料加工时已经分解,易使制品多泡、多孔,自身的阻燃效果也下降。而氢氧化镁能使得被填加的材料承受更高的加工温度,有利于加快挤塑速度,缩短模塑时间。而且氢氧化镁的分解能比氢氧化铝大、热容高,能够吸入更多的热量,阻燃效果更好[2]。②氢氧化镁的粒度比氢氧化铝小,对材料加工设备磨损小,有利于延长设备的使用寿命。③氢氧化镁的减烟效果

橡胶助剂的性能特点及其橡胶中的应用

橡胶助剂的性能特点及其橡胶中的应用 橡胶助剂在组成橡胶配方中具有重要的作用,是影响橡胶制品功能的首要要素。介绍几类橡胶助剂在组成橡胶中的运用状况: 一、硫化系统助剂 硫化系统助剂首要由硫化剂、促进剂和活性剂组成,其用量占生胶用量的10%左右。依据组成橡胶的饱满度,可选用硫黄、金属氧化物、过氧化物和胺类化合物等多种硫化系统。 1.1 硫化剂 依据胶种和橡胶制品功能要求的不同,可选用硫黄、过氧化物、醌肟、树脂、金属氧化物等不同的硫化系统。其间,硫黄硫化系统又分为一般硫化系统、有用硫化系统和半有用硫化系统等。 硫黄硫化系统在通用组成橡胶和半通用组成橡胶中运用较多,金属氧化物硫化系统首要用于氯丁橡胶(CR),醌肟和树脂硫化系统首要用于丁基橡胶(IIR),过氧化物和树脂硫化系统首要用于乙丙橡胶(EPR)、天然橡胶(NR)和丁苯橡胶(SBR)。特种橡胶[如聚硫橡胶(LP)、氯磺化聚乙烯橡胶(CSM)、氯化聚乙烯橡胶(CM)、氟橡胶( F K M )、硅橡胶(M V Q )、氟硅橡胶(FVMQ)等]根本都归于饱满橡胶,不含双键,硫黄对其不起交联作用,所以需求选用非硫黄硫化系统,如金属氧化物、过氧化物、有机胺盐硫化系统等。近年来丙烯酸酯橡胶(ACM)已根本选用硫黄硫化系统。 (1)硫黄。一般粉末硫黄是橡胶工业最常用的硫化剂。跟着子午线轮胎和彩色橡胶制品的开展,不喷霜、不影响粘合功能和产品外

观的不溶性硫黄(IS)运用广泛。IS大部分用于NR轮胎胶猜中,具有前进胶料-骨架资料粘合功能、防止喷霜、延伸胶料寄存时刻的作用,IS在顺丁橡胶(BR)轮胎胶猜中也有少数运用。 (2 )过氧化物[ 2 ]。除I I R 和卤化丁基橡胶(XIIR)之外,其他橡胶尤其是MVQ、三元乙丙橡胶(EPDM)、丁腈橡胶(NBR)、氢化丁腈橡胶(HNBR)、CM、CR和热塑性弹性体等简直都能够用过氧化物硫化。过氧化物硫化胶料的交联键是C—C键,其键能比硫黄硫化胶料的单硫键、双硫键和多硫键键能大,因而过氧化物硫化胶料的耐热氧老化功能优异、紧缩永久变形小、不易喷霜、无硫化返原现象,但其拉伸功能、应变功能和耐疲惫功能较差。 (3)树脂。为前进胶料的耐热功能和耐老化功能,许多胶种(IIR,NR,SBR和NBR等)已广泛运用树脂(如烷基酚醛树脂等)作为交联剂。树脂硫化的IIR胶料耐热功能好,紧缩永久变形小,已成为制造硫化胶囊最首要的胶料。树脂作为IIR的硫化剂,硫化速度慢,且硫化温度高。酚醛树脂硫化系统也常用于EPDM/PP等橡塑共混资料的制备。 (4)金属氧化物。CR,CM和XIIR等含卤素或含羧基的橡胶需选用金属氧化物作为硫化剂。常见的金属氧化物为氧化锌和氧化镁,以活性氧化锌和轻质氧化镁为最佳。 (5)硫黄给予体。硫黄给予体是在橡胶硫化进程中能分解出硫黄的硫化剂。其胶料的特色是耐热功能比硫黄胶料好,一起耐紧缩变形功能优异,且抗焦烧功能好,不易喷霜。但因大多硫黄给予体有毒

相关主题
文本预览
相关文档 最新文档