当前位置:文档之家› 电平转换电路的处理办法(上)

电平转换电路的处理办法(上)

电平转换电路的处理办法(上)

电平转换电路的处理办法(上)

电子工程师在电路设计过程中,经常会碰到处理器MCU的I/O电平与模块的I/O电平不相同的问题,为了保证两者的正常通信,需要进行电平转换。以下,我们将针对电平转换电路做出详细的分析。

对于多数MCU,其引脚基本上是CMOS结构,因此输入电压范围是:高电平不低于0.7VCC,低电平不高于0.3VCC。

但在介绍电平转换电路之前,我们需要先来了解以下几点:

1、解决电平转换问题,最根本的就是要解决电平的兼容问题,而电平兼容原则有两条:

①VOHVIH ②VOL

2、对于多电源系统,某些器件不允许输入电平超过电源电压,针对有类似要求的器件,电路上应适当做些保护。

3、电平转换电路会影响通信速度,所以使用时应当注意通信速率上的要求。

4、不同转换方式的驱动能力有所不同,在选择上应适当地加以考虑。

5、当需要转换的路数较多时,转换方式选择不当将会导致元器件较多,或布线不方便。下面通过致远电子MiniARM核心板的实例来给大家分享常用的电平转换电路方法。

电阻分压法电阻分压法是最简便的一种方法,该电路的工作方式是对逻辑电平高的进行分压。以MiniARM核心板与GPRS模块通信为例。MiniARM核心板IO电平为3.3V,而GPRS模块的IO电平为2.8V,两者之间通信时可以用图2来实现电平匹配。

对电阻分压的转换电路进行测试,转换后波形如图3所示。

二极管钳位法使用二极管来实现电平匹配,以MiniARM核心板与GPRS模块为例。

当GPRS模块TXD为高电平时,由于二极管D2的钳位作用,MiniARM的RXD会得到2.8V+VF高电平电压。当MiniARM的TXD为高电平时,由于二极管D1的钳位作用,

MAX232芯片可以完成TTL与EIA双向电平转换

TTL/CMOS INPUTS 端.这个端口是的作用是输入TLL或CMOS信号的...一般为0-5V... 低电平为零,高电平为VCC. TTL/CMOS OUTPUTS端,这个端口的作用是输出TLL或CMOS信号...输出电压一般为0-5V...低电平为零..高电平为VCC. RS232 OUTPUTS 这端口是把TTL或CMOS的信号转为RS232的信号输出...输出为正负12V...到电脑.... RS232 INPUTS 这个端口是接收到电脑发出的正负12伏...由232输出转为TTL或CMOS信号...这个信号也为正负12V... MAX232内部有二组232转换电路... 使用的时候...一般是11------ 14 13----12为一组. 10-----7 8----9为一组... 51单片机要与PC机进行串口通信,通常使用MAX232芯片来作电平转换。下面把MAX232与51单片机的接口电路贴出来供大家参考。(此电路图已经过实际验证) MAX232芯片可以完成TTL与EIA双向电平转换,MAX232提供两路串口电平转换,现在只用一路串口,所以另一路悬空不使用,MAX232与51单片机接口电路如下图所示。(单击图片可放大)

图中DB9为串口的插头(母接头),插座共有9个引线. MAX232的12脚接单片机的P3.0(RXD) MAX232的12脚接单片机的P3.1(TXD) MAX232还带有4个电容,都是容量都是104,为了减少电路板体积,可以用无极电容代替极性电容。 VCC 是5V DC 提示:串口插座有公母两种类型其中 公的串口插座是带有插针的(有针) 母的串口插座是不带有插针的(有洞) 如下图所示 由以上分析可知,DB9为母接头,而电脑PC的串口接头一般是分接头。 所以此电路与PC相连时,所用的串口线应该是一公一母的串口线。TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL 电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。这是由于可靠性和成本两面的原因。因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响;另外对于并行数据传输,电缆以及连接器的费用比起串行通信方式来也要高一些。

常见TTL电平转换电路

常见TTL电平转换电路 ------设计参考 1.二、三级管组成的TTL/CMOS电平转换电路,优点是价格非常低,缺点是要求使用在 信号频率较低的条件下。 建议上拉电阻为10K时,可使用在信号频率为几百Khz以下的环境中,曾经在960Khz 的串口通信中做过测试。上拉电阻越小,速率越高,但是电路的功耗也越高,在低功耗要求高的电路中需要慎重考虑。在选择二、三极管时,尽量选用结电容小,开关速率高的。 A ) 图1所示电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V。二极管选用高速肖特基二极管,并且V F尽量小,例如RB521S。 图1 B ) 图2电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V,否则PNP管可能关不断。如果对输出低电平电压幅度有较严格的要求,PNP管则选用饱和压降小些的管子。PNP管也不如NPN的通用。VCC_OUT是输出信号的电源电压。 图2

C ) 图3是NPN管组成的转换电路,对输入和输出电平的谁高谁低没有要求,适用性很好。其中VCC_IN是输入信号的电源电压,VCC_OUT是输出信号的电源电压。转换后输出的低电平VOL=Vin_Lmax+Vsat,Vin_Lmax为输入信号低电平的最高幅值,Vsat为NPN管的饱和压降,如果对输出低电平电压幅度有较严格的要求,NPN管则选用饱和压降小些的管子,以满足一般电路中VOL<0.8V的要求。 图3 2.OC/OD输出的反相器组成的电平转换电路。 图4,由2级反相器组成,反相器必须是OC/OD输出的。反相器的电源与输入信号的电平相同或者相匹配,最后的输出电平由上拉电阻上拉到输出信号的目标电平上。上拉电阻的取值直接影响功耗和可适用的信号频率。 图4

详解电平种类与电平转换

详解电平种类与电平转换 1. 常用的电平转换方案 (1) 晶体管+上拉电阻法 就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作3.3V→5V电平转换。 ——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。 廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表 示 TTL 兼容)。 (4) 超限输入降压法(5V→3.3V,3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压范围为0~5.5V",如果采 用 3.3V 供电,就可以实现5V→3.3V电平转换。 (5) 专用电平转换芯片 最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。

串口电平转换芯片数据手册SP3222_3232E

DESCRIPTION s Meets true EIA/TIA-232-F Standards from a +3.0V to +5.5V power supply s 235KBps Transmission Rate Under Load s 1μA Low-Power Shutdown with Receivers Active (SP3222E ) s Interoperable with RS-232 down to +2.7V power source s Enhanced ESD Specifications: ±15kV Human Body Model ±15kV IEC1000-4-2 Air Discharge ±8kV IEC1000-4-2 Contact Discharge The SP3222E/3232E series is an RS-232 transceiver solution intended for portable or hand-held applications such as notebook or palmtop computers. The SP3222E/3232E series has a high-efficiency, charge-pump power supply that requires only 0.1μF capacitors in 3.3V operation. This charge pump allows the SP3222E/3232E series to deliver true RS-232performance from a single power supply ranging from +3.3V to +5.0V. The SP3222E/3232E are 2-driver/2-receiver devices. This series is ideal for portable or hand-held applications such as notebook or palmtop computers. The ESD tolerance of the SP3222E/3232E devices are over ±15kV for both Human Body Model and IEC1000-4-2 Air discharge test methods. The SP3222E device has a low-power shutdown mode where the devices' driver outputs and charge pumps are disabled. During shutdown, the supply current falls to less than 1μA. SELECTION TABLE L E D O M s e i l p p u S r e w o P 232-S R s r D e v i r 232-S R s r e v i e c e R l a n r e t x E s t n e n o p m o C n w o d t u h S L T T a S -3e t t f o .o N s n i P 2223P S V 5.5+o t V 0.3+224s e Y s e Y 02,812 323P S V 5.5+o t V 0.3+2 2 4 o N o N 6 1

电平转换方法

5V-3.3V电平转换方法 在实际电路设计中,一个电路中会有不同的电平信号。 方案一:使用光耦进行电平转换 首先要根据要处理的信号的频率来选择合适的光耦。高频(20K~1MHz)可以用高速带放大整形的光藕,如6N137/TLP113/TLP2630/4N25等。如果是20KHz以下可用TLP521。然后搭建转换电路。如将3.3V信号转换为5V信号。电路如下图: CP是3.3V的高速信号,通过高速光耦6N137转换成5V信号。如果CP接入的是5V 的信号VCC=3.3V,则该电路是将5V信号转换成3.3V信号。优点:电路搭建简单,可以调制出良好的波形,另外光耦还有隔离作用。缺点:对输入信号的频率有一定的限制。 方案二:使用三极管搭建转换电路 三极管的开关频率很高,一般都是几百兆赫兹,但是与方案一相比,电路搭建相对麻烦,而且输出的波形也没有方案一的好。 电路如下图: 其中C1为加速电容,R1为基极限流电阻,R2为集电极上拉电阻,R3将输入端下拉到地,保证在没有输入的情况下,输出端能稳定输出高电平。同时在三极管截止时给基区过量的电荷提供泄放回路缩短三极管的退饱和时间。 优点:开关频率高,在不要求隔离,考虑性价比的情况下,此电路是很好的选择。 缺点:输出波形不是很良好。 方案三:电阻分压 这里分析TTL电平和COMS电平的转换。首先看一下TTL电平和CMOS电平的区别。 TTL电平:输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2。最小输入高电平>=2.0V,输入低电平<=0.8,噪声容限是0.4V。 CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且有很宽的噪声容限。 下面的电路是将5V的TTL电平转换成3V的TTL电平

MAX3232电平转换原理图

RS232TO TTL 通讯模块

实现RS232到TTL数据转换。芯片采用MAX3232适用电压3V-5.5V,具有ESD保护功能、支持流控制、零延时自动收发转换和波特率自适应特点,即插即用,稳定可靠。 主要资源: 一、DB9母头RS232接口带流控功能可直接接电脑 二、2.54排针RS232接口带流控功能可替代DB9接头 三、3个指示灯分别是电源指示灯、数据收指示灯、数据发指示灯 四、2.54排针TTL接口带流控功能可直接接TTL设备 淘宝网站 https://https://www.doczj.com/doc/b75375296.html,/?spm=2013.1.1000126.d21.lOnOC1

以MCU单片机TTL到PC台式机RS232数据通信为例 1、PC台式机接DB9接口 2、MCU通过杜邦线接排针P1接口 P1接口说明 1GND接GND信号流向:GND 2VCC接3V-5V信号流向:VCC<--MCU_5V/MCU_3.3V 3RX接MCU_TX信号流向:PC_RX<--MAX3232<--RX 4TX接MCU_RX信号流向:PC_TX-->MAX3232-->TX 5CTS接MCU_RTS信号流向:PC_CTS<--MAX3232<--MCU_RTS 6RTS接MCU_CTS信号流向:PC_RTS-->MAX3232-->MCU_CTS 产品附件 1、RS232-TTL小板一个 2、杜邦线十根十种颜色 3、防静电自封袋一个 4、原理图

淘宝 https://https://www.doczj.com/doc/b75375296.html,/?spm=2013.1.1000126.d21.lOnOC1产品图片

RS232接口芯片双电荷泵电平转换器原理

RS232接口芯片双电荷泵电平转换器 原理 电子工业协会Electronic Industries Association Electronic Industries Association(EIA)电子工业协会(EIA) 1924年成立的EIA是美国的一个电子制造商组织。 EIA-232,就是众所周知的RS-232,它定义了数据终端设备(DTE)和数据通信设备(DCE)之间的串行连结。这个标准被广泛采用。 EIA-RS-232C电气特性: 在TxD和RxD上:逻辑1=-3V~-15V 逻辑0=+3~+15V 在RTS、CTS、DSR、DTR和DCD等控制线上: 信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压)=-3V~-15V RS-232-C电平采用负逻辑,即逻辑1:-3~-15V,逻辑0:+3~+15V。 注意,单片机使用的CMOS电平中,高电平(3.5~5V)为逻辑1,低电平(0~0.8V)为逻辑0。 单片机的SCI口要外接电平转换电路芯片把与TTL兼容的CMOS高电平表示的1转换成RS-232的负电压信号,把低电平转换成RS-232的正电压信号。典型的转换电路给出-9V和+9V。

典型的电平转换电路MAXx2xx系列芯片因单电源+5V供电,均有电荷泵电平转换器产生±10V电源,以供RS232电平所需。 一般是接4个泵电容,采用双电荷泵进行电平转换。标准接法如下图。 图1 芯片内带振荡器驱动双电荷泵,分双相四步工作,如下图。 图2电荷泵框图

第一步:S1、S3闭合,电源+5V向C1充电(图3)。C1电压最高可至5V。 图3 第二步:S2、S4闭合,C1所储电荷经S2、S4转移至C3,C3电压最高也可至5V。 C1电荷转移充电途径如红色虚线所示。 C3电压和电源+5V迭加起来提供10V的V+电源。 这时C1负端电位应等于电源+5V,所以C1负端电压波形应是0-+5V 的方波。 第三步:S5、S7闭合,C3所储电荷和电源+5V迭加经S5、S7向C2充电。 C2电压最高可至10V。充电途径如棕色虚线所示。 第二、三步实际同时进行(图4)。

5V到3V3的电平转换-串口通信

5V到3V3的电平转换-串口通信 一、电平转换电路 下面来分析一下电路的设计思路: https://www.doczj.com/doc/b75375296.html,/BLOG_ARTICLE_244240.HTM 首先声明一下:这个电路是从3V3的角度考虑的! 1、接收通道 我们首先来明确一下数据流向(其实就是电平驱动方向),接收通道是由5V方驱动的(Source),3V3方只是取电平(Sink),因此TXD5V作为此通道的输入方,RXD3V3作为通道的输出方。 我们知道,三极管(开关型)集电极输出驱动能力不错,我们就设计为集电极输出;但是,只有一个三极管是不行的,因为集电极输出的时候,基极电平和集电极逻辑是相反的;那么,加一个反相器?没必要,那是另外一种电平转换的方法了,我们只需要再使用一个三极管,基极接前级输出就可以了。这样,逻辑转换就完成了,当输入低电平时,Q1截止,集电极输出高电平,Q2导通,集电极输出低电平。同理,高电平分析是一样的。 逻辑转换完成了,那么就是电平的问题了。这很好解决,输入方为5V逻辑,那么就给它一个VCC5,3V3逻辑高电平需要一个3V3,那么就给一个VCC3V3;OK! 2、发送通道 分析完接收通道,发送通道的原理其实也是一样的,就不详细介绍了。 3、结论 其实如果稍微熟悉电子电路知识的人看来,这个电路实在太简单,正因为如此,我才要强调,基础很重要!否则,一个系统的设计会在这些小地方卡住。 二、电平问题: 单片机手册————电气特性 常用逻辑电平:12V,5V,3.3V; 1.TTL电平: 输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

CMOS电平转换电路详解

CMOS电平转换电路详解 COMS集成电路是互补对称金属氧化物半导体(Compiementary symmetry metal oxide semicoductor)集成电路的英文缩写,电路的许多基本逻辑单元都是用增强型PMOS晶体管和增强型NMOS管按照互补对称形式连接的,静态功耗很小。 COMS电路的供电电压VDD范围比较广在+5~+15V均能正常工作,电压波动允许10,当输出电压高于VDD-0.5V时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0。CMOS电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc.当输入电压高于VDD-1.5V时为逻辑1,输入电压低于VSS+1.5V(VSS为数字地)为逻辑0。 TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑1,0V 等价于逻辑0,这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V(输入H》2V,输入L《0.8V;输出H 》2.4V(3.4V),输出L《0.4V(0.2V)。 CMOS电平是数字信号还是模拟信号?CMOS电平是数字信号,COMS电路的供电电压VDD范围比较广在+5--+15V均能正常工作,电压波动允许10,当输出电压高于VDD-0.5V 时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0,一般数字信号才是0和1 。 cmos电平转换电路1、TTL电路和CMOS电路的逻辑电平 VOH:逻辑电平1 的输出电压 VOL:逻辑电平0 的输出电压 VIH :逻辑电平1 的输入电压 VIH :逻辑电平0 的输入电压 TTL电路临界值:

3.3V转5V的双向电平转换电路

3.3V转5V的双向电平转换电路 说说所有的电平转换方法,你自己参考~ (1) 晶体管+上拉电阻法 就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟1) 类似。适用于器件输出刚好为OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作3.3V→5V 电平转换。 ——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。 廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母 T 就表示TTL 兼容)。 (4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用3.3V 供电,就可以实现5V→3.3V 电平转换。 (5) 专用电平转换芯片 最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如74HC 系列为20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种5V 逻辑器件,其输入是3.3V 电平,只要在选择器件时选择输入为TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。 (9) 比较器法 算是凑数,有人提出用这个而已,还有什么运放法就太恶搞了。 那位说的可以~但我分析你也不是非要芯片不可吧?尽量节约成本啊~ 3.3V转5V 电平转换方法参考 电平转换

电平转换电路

3.1 应用举例-应用SN74LVC2G07实行电平转换 图6显示了SN74LVC2G07一个Buffer作1.8V到5V的转换,另一Buffer 作3.3V到1.8V的转换。 器件的电源电压为1.8V。它可以保证器件将输入最低的VIH识别为有效的高电平。输出上拉电阻的最小值取决于器件开漏脚的最大灌电流能力(maximum current-sinking capability Iol max)。而最大灌电流能力是受限于输出信号的最大允许的上升时间的。 Rpu(min)=(Vpu-Vol)/ Iol(max) 对于图6中的SN74LVC2G07,假设Vpu1=5V±0.5V,Vpu2=1.8V±0.15V,而且电阻的精度为5% Rpu1(min)=((5.5V-0.45V)/4mA)×(1/0.95)=1.33kΩ 最接近的标称值为1.5kΩ。 Rpu2(min)=((1.8V-0.45V)/4mA)×(1/0.95)=394.73Ω 最接近的标称值为430Ω。 图7显示了在不同上拉电阻值的情况下具有10pF容性负载情况下的输出波形。当上拉电阻值增大后,输出信号的上升时间也增加了。

3.2 不要在CMOS 驱动的输出端加上拉电阻

在电平转换时,系统设计者不能在CMOS器件的输出端加上拉电阻。这种作法有很多弊端,应该避免使用。一个问题是在输出为低时增加了功耗。当CMOS 驱动输出为高是也会产生另一个危害。高电平的电源会通过上拉电阻对低电平电源灌电流。此时,下部的N沟道晶体管是关闭的,上部的P沟道晶体管是导通的。电流灌入低电平的电源会产生无法预料的后果。 4 FET开关 TI的CB3T,CBT,CBTD和TVC系列的总线开关可以用作Level-shifter。FET开关非常适用于不需要电流驱动并有很短传播时延的电平转换应用。 FET开关的好处: ●很短的传播时延 ●TVC器件(或者将CBT 器件配置为TVC)不用方向控制就可以实现双向电平转换 TI的CB3T系列器件可以用于5V到3.3V转换。图9显示了CB3T器件用作双向电平转换的一些应用。

电平转换电路

7.10 电平转换电路 在数字电路系统中,一般情况下,不同种类器件(如TTL、CMOS、HCMOS等)不能直接相连;电源电压不同的CMOS、HCMOS器件因输出电平不同也不能直接相连,这就涉及到电平转换问题。所幸的是目前单片机应用系统中的MCU、存储器、μP监控芯片、I/O扩展与接口电路芯片等多采用HCMOS工艺;另一方面74LS系列数字电路芯片已普遍被74HC系列芯片所取代。即数字电路系统中的门电路、触发器、驱动器尽可能采用74HC系列(或高速的74AHC系列)芯片、CD40系列或 CD45系列的CMOS器件(速度较HCMOS系列慢,但功耗比HC系列芯片低、电源电压范围宽。当电源电压大于5.5V时,CMOS数字逻辑器件就成了唯一可选的数字IC芯片),尽量不用74LS系列芯片(速度与74HC系列相同,但电源范围限制为5.0V±5%、功耗大、价格甚至比74HC系列高)与74系列(在74系列中,只有输出级可承受高压的7406、7407 OC门电路芯片仍在使用)。 根据CMOS、HCMOS芯片输出高低电平特征、输入高低电平范围,在电源电压相同,且不大于5.5V情况下,这些芯片能直接相连。因此,在现代数字电子电路中只需解决不同电源电压CMOS、HCMOS器件之间的连接问题。 7.10.1 高压器件驱动低压器件接口电路 高压器件驱动低压器件(如5V驱动3V或9V驱动5V、3V)时,一般不能直接相连,应根据高压器件输出口结构(漏极开路的OD门、准双向或CMOS互补推挽输出)选择相应的接口电路。 对于OD输出引脚,可采用图7-42(a)所示电路,上拉电阻R一般取 10K~510K之间,具体数值与前级输出信号频率有关:输出信号频率高,如1MHz以上方波信号,R取小一些;输出信号频率低,R可取大一些,以减小输出低电平时上拉电阻R的功耗。 对于CMOS互补推挽输出、准双向(如MCS-51的P1、P2、P3口)输出,须在两者之间加隔离二极管,如图7-42(b)所示,其中电阻R选择与图(a)相同,二极管D可采用小功率开关二极管,如1N4148。前级输出高电平时,二极管D截止,后级输入高电平电压接近电源电压。当前级输出低电平时,二极管D导通,后级输入低电平电压=+(二极管导通压降)。显然<1.0V,当后级电路为HCMOS、CMOS器件时,只要输入级N沟

逻辑电平转换器

逻辑电平转换器 在新一代电子产品设计中,TTL或5V CMOS电平已不再占据逻辑电路统治地位。随着低电压逻辑的引入,系统内部常常出现输入/输出逻辑不协调的问题,从而提高了系统设计的复杂性。例如,当1.8V的数字电路与工作在3.3V的模拟电路进行通信时,需要首先解决两种电平转换问题,本文介绍了不同逻辑电平之间的转换方法。 1 逻辑电平转换的必要性 型号I/O通道数单向/双向 Rx/Tx V L范围Vcc范围独立使能速率 MAX3001 8 双向,8/8 1.2V~5.5V 1.65V~5.5V Yes 4Mbps MAX3370 1 双向,1/1 1.65V~ 5.5V 2.5V~5.5V No 2Mbps MAX3371 1 双向,1/1 1.65V~ 5.5V 2.5V~5.5V Yes 2Mbps MAX3372/3 2 双向,2/2 1.2~5.5V 1.65V~5.5V Yes 230kbps MAX3374 MAX3375 MAX3376 2 单向,2/0 单向,1/1 单向,0/2 1.2~5.5V 1.65V~5.5V Yes 16Mbps MAX3377 MAX3378 4 双向,4/4 1.2~5.5V 1.65V~5.5V Yes 230kbps MAX3379 4 单向,4/0 1.2~5.5V 1.65V~5.5V Yes 16Mbps MAX3390 4 单向,3/1 1.2~5.5V 1.65V~5.5V Yes 16Mbps MAX3391 4 单向,2/2 1.2~5.5V 1.65V~5.5V Yes 16Mbps MAX3392 4 单向,1/3 1.2~5.5V 1.65V~5.5V Yes 16Mbps MAX3393 4 单向,0/4 1.2~5.5V 1.65V~5.5V Yes 16Mbps 随着不同工作电压的数字IC的不断涌现,逻辑电平转换的必要性更加突出,电平转换方式也将随逻辑电压、数据总线的形式(例如4线SPI、32位并行数据总线等)以及数据传输速率的不同而改变。现在虽然许多逻辑芯片都能实现较高的逻辑电平至较低逻辑电平的转换(如将5V电平转换至3V电平),但极少有逻辑电路芯片能够较低的逻辑电平转换成较高的逻辑电平(如将3V逻辑转换至5V逻辑)。另外,电平转换器虽然也可以用晶体管甚至电阻——二极管的组合来实现,但因受寄生电容的影响,这些方法大大限制了数据的传输速率。

1-Wire双向电平转换器(1.8V至5V)参考设计

1-Wire?双向电平转换器(1.8V至5V)参考设计 Stewart Merkel 摘要:设计人员要求1-Wire主机IO采用漏极开路架构,工作在1.8V。而多数1-Wire 从器件无法工作在1.8V。本应用笔记介绍了实现1.8V 1-Wire主机与5V 1-Wire从器件之间电平转换的参考设计(RD)。该参考设计用于驱动典型的1-Wire从器件,利用MAX3394E 电平转换器实现电平转换。 引言 FPGA、微处理器、DS2482-100和DS2480B是常见的1-Wire主机器件。1-Wire/iButton?从器件由Maxim生产,该系列器件的典型工作电压为2.8V至5.25V。过去,传统的1-Wire 主机和从器件均采用5V漏极开路逻辑。 现在,设计人员需要1-Wire主机IO提供1.8V的漏极开路逻辑。而大部分1-Wire从器件可以安全地工作在5V,它们中的绝大多数无法工作在1.8V。需要一个双向电平转换器克服这种限制。本参考设计(RD)采用Maxim?的MAX3394E双向电平转换器,用于解决这类应用中的问题。 电平转换器 MAX3394E双向电平转换器采用8引脚、3mm x 3mm TDFN封装。借助其内部摆率增强电路,可理想用于大电容负载驱动。1-Wire从器件电容负载通常大于500pF。MAX3394E的VCC I/O引脚具有±15kV HBM (人体模式)静电保护,为1-Wire主机提供保护。1-Wire总线通常用于连接外部世界,HBM保护是基本需求。推荐在上拉电阻(R3)、可选择的强上拉电路以及1-Wire从器件处使用DS9503P以增强ESD保护。 应用电路 图1所示电路利用MAX3394E实现1.8V至5V双向电平转换,系统采用漏极开路端口。 图1. 1-Wire双向电平(1.8V至5V)转换器电路原理图,注意,引脚I/O VL和I/O VCC 具有10kΩ内部上拉。 该参考设计的BOM (材料清单)如表1所示。

3.3v和5v双向电平转换芯片

3.3v和5v双向电平转换芯片 74LVC4245,8位电平转换 74LVC4245A,8位双向 NLSX4373,2位电平转换 NLSX4014,4位电平转换 NLSX4378,4位电平转换 NLSX3018,8位电平转换 max3002,8路双向 TXB0104?(她好像有一个系列?0102?0104?0106?0108), ADG3308 74HCT245:三态输出的八路总线收发器 SN74AVCH2T45 SN74AVC16T245:具有可配置电压转换和3 态输出的16 位双电源总线收发器 SN74LVC2T45DCT:双位双电源总线收发器可配置电压转换和三态输出 SN74LVC4245A:8位 德州仪器宣布推出SN74LVC1T45、SN74LVC2T45、SN74AVC8T245及SN74AVC20T245四款新型双电源电平转换收发器。该新品能够在 1.5V、1.8V、2.5V、3.3V 与5V 电压节点之间进行灵活的双向电平转换,而且可提供全面的可配置性。如果采用AVC 技术,则每条轨可从 1.4V 配置为 3.6V;而采用LVC 技术时则可从1.65V 配置为5.5V。适用于便携式消费类电子产品、网络、数据通信以及计算应用领域。 日前,德州仪器(TI)宣布推出四款新型的双电源电平转换器--AVC1T45、AVC2T45、AVC16T245及AVC32T245,从而进一步扩展其电平转换产品系列。这些转换器能够在互不兼容的I/O之间进行通信。这四款器件均支持1.2V、1.5V、1.8V、2.5V与3.3V节点之间的双向电平转换。在混合信号环境中,可以使用这些电压电平的任意组合,从而提高这些器件的灵活性。 1位AVC1T45与2位AVC2T45可根据需要在电路板上集成单或双转换器功能,而不是通过较高位宽的器件进行路由,这有助于简化电路板布线作业(board routing),可适用于便携式手持应用的转换要求。AVC16T245与AVC32T245是TI当前16位与32位双电源转换功能的改进版本。这些器件能够提供较低的功耗(AVC16T245的功耗为25μA,而AVCA164245的功耗则为40μA)。该类器件的总线控制选件无需外部上拉/下拉电阻器。TI还提供全面的IBIS模型支持。 SN74AVC1T45与SN74AVC2T45以及总线控制版本SN74AVCH1T45与SN74AVCH2T45均采用NanoStar 与NanoFree芯片级封装。这些器件现已推出,并可提供样片。批量为千套时,预计1T45器件的最低零售单价为0.24美元,而2T45器件的最低零售单价为0.35美元。 SN74AVC16T245和总线控制版本SN74AVCH16T245采用56球栅VFBGA封装。该器件现已推出,并可提

【CN109687862A】一种双向电平转换电路和双向电平转换芯片【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910115541.1 (22)申请日 2019.02.14 (71)申请人 上海艾为电子技术股份有限公司 地址 201199 上海市闵行区秀文路908弄2 号1201室 (72)发明人 董渊 王云松 黄建刚 程剑涛  孙洪军  (74)专利代理机构 北京集佳知识产权代理有限 公司 11227 代理人 王宝筠 (51)Int.Cl. H03K 19/0175(2006.01) (54)发明名称 一种双向电平转换电路和双向电平转换芯 片 (57)摘要 本发明提供了一种双向电平转换电路和双 向电平转换芯片,包括信号传输管、第一上拉管、 第二上拉管和上拉控制模块;第一上拉管的第一 端与第一电压端电连接、第二端与信号传输管的 第一端电连接,第二上拉管的第一端与第二电压 端电连接、第二端与信号传输管的第二端电连 接;上拉控制模块的第一信号输入端与信号传输 管的第一端电连接、第二信号输入端与信号传输 管的第二端电连接、输出端与第一上拉管和第二 上拉管的栅极电连接,用于在信号传输管的第一 端和第二端中任一端由第一电平翻转为第二电 平时,输出第一电平脉冲。本发明中两个上拉管 由一个上拉控制模块控制,从而不仅可以减少模 块数量和设计复杂度,而且可以减小芯片面积和 成本。权利要求书2页 说明书7页 附图3页CN 109687862 A 2019.04.26 C N 109687862 A

权 利 要 求 书1/2页CN 109687862 A 1.一种双向电平转换电路,其特征在于,包括信号传输管、第一上拉管、第二上拉管和上拉控制模块; 所述第一上拉管的第一端与第一电压端电连接,所述第一上拉管的第二端与所述信号传输管的第一端电连接,所述第二上拉管的第一端与第二电压端电连接,所述第二上拉管的第二端与所述信号传输管的第二端电连接; 所述上拉控制模块的第一信号输入端与所述信号传输管的第一端电连接,所述上拉控制模块的第二信号输入端与所述信号传输管的第二端电连接,所述上拉控制模块的输出端与所述第一上拉管和所述第二上拉管的栅极电连接; 所述上拉控制模块用于在所述信号传输管的第一端和第二端中任一端由第一电平翻转为第二电平时,输出第一电平脉冲,控制所述第一上拉管和所述第二上拉管导通,将所述第一端和第二端中另一端由第一电平拉为第二电平。 2.根据权利要求1所述的电路,其特征在于,所述上拉控制模块包括第一信号输入端、第二信号输入端、端口检测模块、双向检测触发模块和单脉冲产生模块; 所述端口检测模块与所述第一信号输入端和所述第二信号输入端电连接,用于在所述第一信号输入端和所述第二信号输入端都为第二电平时,输出第一电平,在所述第一信号输入端和所述第二信号输入端中至少一端为第一电平时,输出第二电平; 所述双向检测触发模块与所述第一信号输入端和所述第二信号输入端电连接,用于在所述第一信号输入端和所述第二信号输入端都为第一电平时,输出第二电平,在所述第一信号输入端和所述第二信号输入端中至少一端为第二电平时,输出第一电平; 所述单脉冲产生模块与所述端口检测模块和所述双向检测触发模块电连接,用于在所述端口检测模块输出第二电平、所述双向检测触发模块的输出由第二电平转换为第一电平时,输出第一电平脉冲,在其他时段输出第二电平。 3.根据权利要求2所述的电路,其特征在于,所述端口检测模块包括与非门和第一反相器至第四反相器; 所述第一反相器的输入端与所述第一信号输入端电连接,所述第二反相器的输入端与所述第一反相器的输出端电连接,所述第二反相器的输出端与所述与非门的一个输入端电连接; 所述第三反相器的输入端与所述第二信号输入端电连接,所述第四反相器的输入端与所述第三反相器的输出端电连接,所述第四反相器的输出端与所述与非门的另一个输入端电连接; 所述与非门的输出端与所述端口检测模块的输出端电连接。 4.根据权利要求3所述的电路,其特征在于,所述双向检测触发模块包括或门、第一晶体管至第五晶体管、第五反相器和第六反相器; 所述或门的一个输入端与所述第一信号输入端电连接,所述或门的另一个输入端与所述第二信号输入端电连接,所述或门的输出端与所述第一晶体管的栅极电连接; 所述第一晶体管的第一端与所述第二晶体管的第二端电连接,所述第二晶体管的第一端与电源端电连接,所述第一晶体管的第二端与第三晶体管的第二端电连接,所述第三晶体管的栅极与所述第一信号输入端电连接,所述第三晶体管的第一端与接地端电连接; 所述第一晶体管的第二端与第四晶体管的第二端电连接,所述第四晶体管的第二端通 2

txs0102 电平转换芯片

FEATURES DCT OR DCU PACKAGE (TOP VIEW)1B1827V CCB 36OE 45B2GND V CCA A2A1YZP PACKAGE (BOTTOM VIEW)A254A136OE V CCA 27V CCB GND 8B1 1B2A1B1C1D1A2B2C2D2DESCRIPTION/ORDERING INFORMATION https://www.doczj.com/doc/b75375296.html, .......................................................................................................................................................SCES640A–JANUARY 2007–REVISED MAY 2008 2-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS ?No Direction-Control Signal Needed ?ESD Protection Exceeds JESD 22 ?Max Data Rates –A Port –24Mbps (Push Pull)–2500-V Human-Body Model (A114-B) –2Mbps (Open Drain)–250-V Machine Model (A115-A) ?Available in the Texas Instruments NanoFree?–1500-V Charged-Device Model (C101) Package –B Port ? 1.65V to 3.6V on A port and 2.3V to 5.5V on –8-kV Human-Body Model (A114-B) B port (V CCA ≤V CCB )–250-V Machine Model (A115-A) ?V CC Isolation Feature –If Either V CC Input Is at –1500-V Charged-Device Model (C101) GND,Both Ports Are in the High-Impedance State ?No Power-Supply Sequencing Required – Either V CCA or V CCB Can Be Ramped First ?I off Supports Partial-Power-Down Mode Operation ?Latch-Up Performance Exceeds 100mA Per JESD 78,Class II This two-bit noninverting translator uses two separate configurable power-supply rails.The A port is designed to track V CCA .V CCA accepts any supply voltage from 1.65V to 3.6V.The B port is designed to track V CCB .V CCA must be less than or equal to V CCB .V CCB accepts any supply voltage from 2.3V to 5.5V.This allows for low-voltage bidirectional translation between any of the 1.8-V,2.5-V,3.3-V,and 5-V voltage nodes. When the output-enable (OE)input is low,all outputs are placed in the high-impedance state. To ensure the high-impedance state during power up or power down,OE should be tied to GND through a pulldown resistor;the minimum value of the resistor is determined by the current-sourcing capability of the driver. ORDERING INFORMATION T A PACKAGE (1)(2) ORDERABLE PART NUMBER TOP-SIDE MARKING (3)NanoStar?–WCSP (DSBGA) Reel of 3000TXS0102YZPR 2H_0.23-mm Large Bump –YZP Reel of 3000TXS0102DCTR NFEZ___–40°C to 85°C SSOP –DCT Tube of 250TXS0102DCTT NFEZ ___VSSOP –DCU Reel of 3000TXS0102DCUR NFE_(1) Package drawings,thermal data,and symbolization are available at https://www.doczj.com/doc/b75375296.html,/packaging .(2) For the most current package and ordering information,see the at the end of this document,or see the TI website at https://www.doczj.com/doc/b75375296.html, .(3)DCT:The marking has three additional characters that designate the year,month,and assembly/test site. DCU:The actual top-side marking has one additional character that designates the assembly/test site. YZP:The actual top-side marking has three preceding characters to denote year,month,and sequence code,and one following character to designate the assembly/test site.Pin 1identifier indicates solder-bump composition (1=SnPb,?=Pb-free). Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

相关主题
文本预览
相关文档 最新文档