当前位置:文档之家› 涂料纳米二氧化钛

涂料纳米二氧化钛

涂料纳米二氧化钛
涂料纳米二氧化钛

涂料纳米二氧化钛

应化(2)尹巧珍08206030222

1.纳米二氧化钛提出:

1988年第1届IVMRS国际会议(东京)上首先提出了环境调和材料。环境调和材料(简称环境材料)是指与生态环境和谐或能共存的材料,日本的铃木、山本等提出,环境负担最小,而再循环利用率最高的材料称为环境材料。它包括节能材料;再循环材料;净化材料;增进健康材料;调光、调温、调湿材料;调节环境材料(包括树木)。其中净化材料指可净化或吸附有害物质的材料或物质。

纳米TiO2光催化杀菌是目前环境净化的研究热点。纳米TiO2光催化技术始于1972年Fujishima和Hondar做的关于光辐照二氧化钦可持续发生氧化还原反应的研究。1985年,Matasunaga等使用Ti/Pt 催化剂在近紫外光照射下6 0 —120 min内杀灭了水中的微生物。自此二氧化钛光催化杀菌的研究日益受到重视,研究对象也逐渐扩展至水体及空气中的病毒、细菌、真菌等。

纳米TiO2光催化氧化杀菌具有显著的优点:无需昂贵的氧化试剂,空气中的氧就可作为氧化剂;而二氧化钦催化剂价格低廉,无毒,化学及光化学性质稳定;自然光中的紫外光就可作为光源激发催化剂,因此无需能源,系统维护费用低;氧化还原反应无选择性,可以杀灭大多数的微生物。

2.纳米二氧化钛的结构

2.1 晶格结构

二氧化钛有板铁矿、锐铁矿和金红石三种晶体结构,其组成结构的基本单位均是TiO6八面体,区别在于TiO6八面体通过共用顶点还是共边组成骨架。锐钛矿结构是由TiO6八面体共边组成,而金红石和板钛矿结构则是由八面体共顶点且共边组

板钛矿和锐钛矿是TiO2的低温相,金红石是TiO2的高温相。锐钛矿和板钛矿到金红石的相转化温度一般为500—600℃。金红石型TiO2有很强的遮盖力和着色力,且对紫外线有较强的屏蔽作用,锐钛矿型TiO2的光催化活性最高。

2.2表面结构

金红石型表面上存在三种典型的原子空位,分别为晶格氧、单桥氧和双桥氧空位。光电子能谱(UPS)和IPS研究结果表明:在~6eV所对应的全充满的价带是由O2P轨道组成,而空的导带由Ti的3d,4s和4p轨道组成,Ti3d决定导带的较低位置。低于费米能级~0.8eV 弱的发射峰与O原子缺位所诱导的Ti3d派生能级有关。锐钛矿二氧化钛与金红石相似,~0.8eV的发射峰被确定为Ti3+表面缺陷。Konstantin等人的研究则发现,在锐钛矿TiO2表面发现有羟基、五配位和四配位Ti4+,T3+存在。Stelhow等人的理论计算结果表明,锐钛矿型Ti02的价带主要为O2p和Ti3d轨道组成,O2p轨道贡献较大,TiO2禁带宽度大约为10eV,但实测值大约为3.0~3.5eV。

3.纳米TiO2的性质

3.1晶型的性质

TiO2存在金红石型、锐钛型、板钛型等三种主要晶型。板钛型是不稳定的晶型,在650℃时会直接转化为金红石型。板钛型只存在于自然界的矿石中,数量也不多。它不能用合成的方法来制造,在工业上没有实用价值。锐钛型在常温下是稳定的,但在高温下却要向金红石型转化。纳米TiO2有很高的化学稳定性、无毒性、非迁移性,完全可与食品接触。金红石型纳米TiO2的耐候性、热稳定性、化学稳定性均优于锐钛型。

3.2光学性质

纳米TiO2晶体的光学性质服从瑞利(Rayleigh)光散射理论,能透过可见光及散射波长更短的紫外光,表明这种粒子具有透明性和散射紫外线的能力,普通TiO2具有一定的吸收紫外线的能力。纳米TiO2粒径很小,因而活性较大,吸收紫外线的能力很强。由于TiO2纳米粒子既能散射又能吸收紫外线,故它具有很强的紫外线屏蔽性。

3.3半导体性能

由于存在着显著的量子尺寸效应,纳米TiO2具有特殊的光物理和光化学性质。当粒子尺寸与其激子玻尔半径相近时,随着粒子尺寸的减小,半导体粒子的有效带隙增加,其相应的吸收光谱与荧光光谱发生蓝移,从而在能带中形成一系列分立的能级。近年来对纳米TiO2的研究表明,纳米粒子的光催化活性明显优于相应的体相材料。

4.纳米二氧化钛应用

纳米TiO2作为一种21世纪的新型多功能材料,广泛应用于环境保护、化妆品、涂料、特殊材料的制备以及医药等方面。本文主要介绍其在有关涂料方面的应用。

4.1纳米TiO2改性建筑涂料

TiO2薄膜在光照下具有超亲水性和超永久性,因此其具有防雾功能。如在汽车后视镜上涂覆一层氧化钛薄膜,即使空气中的水分或者水蒸气凝结,冷凝水也不会形成单个水滴,而是形成水膜均匀地铺展在表面,所以表面不会发生光散射的雾。当有雨水冲过,在表面附着的雨水也会迅速扩散成为均匀的水膜,这样就不会形成分散视线的水滴,使得后视镜表面保持原有的光亮,提高行车的安全性。

纳米TiO2具有很强的“超亲水性”,在它的表面不易形成水珠,而且纳米TiO2在可见光照射下可以对碳氢化合物作用。利用这样一个效应可以在玻璃、陶瓷和瓷砖的表面涂上一层纳米TiO2薄层,利用氧化钛的光催化反应就可以把吸附在氧化钛表面的有机污染物分解为CO2和O2,同剩余的无机物一起可被雨水冲刷干净,从而实现自清洁功能。日本东京已有人在实验室研制成功自洁瓷砖,这种新产品的表面上有一薄层纳米TiO2,任何粘污在表面上的物质,包括油污、细菌在光的照射下,由于纳米TiO2的催化作用,可以使这些碳氢化合物物质进一步氧化变成气体或者很容易被擦掉的物质。纳米TiO2光催化作用使得高层建筑的玻璃、厨房容易粘污的瓷砖、汽车后视镜及前窗玻璃的保洁都可很容易地进行。

利用二氧化钛的光催化性和超亲水性,将纳米TiO2掺入建筑涂料中,可以提高涂料的防水性,防玷污性。纳米二氧化钛粉体对紫外线有很好的屏蔽能力,故纳米二氧化钛改性涂料的耐候性增强。有关专家认为,采用新技术研制出的纳米TiO2改性涂料与传统涂料相比,对人体,环境无任何伤害。

4.2纳米TiO2超亲水性机理

在纳米TiO2表面,钛原子和钛原子间通过桥氧相连,这种结构是疏水性的,在光照条件下,一部分桥氧脱离形成氧空位。此时,水吸附在氧空位中成为化学吸附水(表面羟基),在其表面形成均匀分布的纳米尺度的亲水微区。当停止光照,化学吸附的羟基被空气中的氧取代,重又回到疏水状态。

纳米TiO2的防污主要是防止有机物在涂料表面的积聚,其作用机理一是其分解作用,在光照下纳米TiO2不断分解聚积于涂料表面的有机物,使涂料表面吸附的灰尘失去和涂料之间的夹层“有机胶粘剂”,从而很容易除去;二是其超亲水性,在涂料表面产生一层水膜,将油性污染物与表面隔绝,不易在表面积聚。通过以上双重作用,使涂料具有长期耐沾污效应。

由于锐钛型纳米TiO2具有高的化学活性,因而也存在破坏涂膜,使其粉化的缺点。可通过对锐钛型Ti02进行表面处理以降低其化学活性和通过选择适当的添加量来解决这一问题。

4.3纳米TiO2缺点

纳米TiO2应用于涂料中,主要是改善传统涂料性能或制备新的功能涂料。但是。由于纳米TiO2表面极强的活性,使它们很容易团聚在一起从而形成带有若干弱连接界面的尺寸较大的团聚体,这大大降低甚至消除了纳米颗粒的实际应用效果,同时由于纳米TiO2表面亲

水疏油,在有机高分子树脂中难以均匀分散,界面上会出现空隙,当空气中的水份进入空隙中就会引起界面处高聚物的降解、脆化,导致材料性能下降。所以,必须对纳米TiO2进行表面化学改性。目前国内外采用的方法主要是利用颗粒与表面活性剂靠吸附力联结来对其表面进行改性,或者是在TiO2的前骤体氢氧化钛阶段进行处理。

4.4 纳米TiO2表面化学改性

4.4.1纳米TiO2表面化学改性常用的有三种方法:偶联剂法、表面接枝法和类酯化反应法(纳米粒子和醇反应)。本主要介绍类酯化反应的方法。实施工艺为:在反应釜中加热高沸点醇和活性添加剂并控制在一定温度,逐渐加入纳米TiO2,并搅拌,反应一段时间后,抽滤、洗涤、干燥、分级,可以制得表面化学改性的纳米TiO2

4.4.2 性能检测和分析

由TEM分析论证改性后的纳米TiO2在环己烷中分散均匀,而未改性的纳米TiO2团聚现象很严重。

用沉淀法来分析改性前后纳米TiO2粒子亲油性的改变。将改性前后的纳米TiO2分别加入极性溶剂水和非极性溶剂环己烷中,震荡后静置,观察沉淀情况。未改性的纳米TiO2全部沉淀到水底,而改性后的纳米TiO2可以较好地悬浮在环己烷中。可以认为改性后纳米粒子的亲油性增强。

4.4.3改性纳米TiO2在涂料中的应用

把改性后的纳米TiO2和未改性的纳米TiO2按质量比1:1填充到环氧树脂中,配制涂料。对两种纳米TiO2以及清漆进行综合性能测试,由实验结果可知:添加改性纳米TiO2后,涂层的结合力、耐盐雾性、抗划痕性和柔韧性能大大提高,抗冲击强度也有所增大。

环氧树脂和金属间的结合力主要有两个方面,一是氢键力;二是范德华力。在树脂中添加改性纳米TiO2粒子后,由于纳米粒子尺寸小、比表面积大、表面原子数多、表面能高、表面原子严重配位不足,具有很强的表面活性与超强吸附能力,添加在涂料中,极易与树脂中的氧起键合作用,同时又与裸露的金属原子间产生很强的类似离子键力。在单位面积内,添加纳米TiO2的环氧树脂和金属间的结合点增多,结合力增大。由试样的盐雾试验(不划叉和划叉)和抗冲击强度的试验结果也可以验证这一推测。

关于添加纳米TiO2后涂料柔韧性提高的机理,一般认为随着粒子粒度变细,粒子的比表面积增大,粒子与基体之间接触面积增大。材料受到冲击时,会产生更多的微裂纹和塑性变形,从而吸收更多的冲击能,韧性随之提高

4.4.4 结论

(1)利用类酯化反应法对纳米TiO2表面进行改性是行之有效的,可以改善纳米离子的亲油性,提高纳米粒子在有机物中的分散性;

(2)添加改性纳米TiO2后的环氧树脂涂料在耐蚀性、柔韧性、抗冲击性和耐划痕性等性能上有很大的提高。

二氧化钛及其应用

编辑本段

编辑本段应用特性 纳米TiO2的功能及用途 纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中。 2.1.杀菌功能 在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米TiO2能净化空气,具有除臭功能。 1)纳米二氧化钛抗菌特点: 1 对人体安全无毒,对皮肤无刺激性。 2 抗菌能力强,抗菌范围广。 3 无臭味、怪味,气味小。 4耐水洗,储存期长。 5热稳定性好,高温下不变色,不分解,不挥发,不变质。

6即时性好,纳米二氧化钛抗菌剂仅需1h就能发挥效果,而其他银系抗菌剂效果则需约24h。 7纳米二氧化钛是一种永久性维持抗菌效果的抗菌剂。 8具有很好的安全性,科用于食品添加剂等,与皮肤接触无不良影响。 2)纳米二氧化钛的抗菌原理: 纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。由于纳米二氧化钛的电子结构特点为一个满 TiO2的价带和一个空的导带 ,在水和空气的体系中 , 纳米二氧化钛在阳光尤其是在紫外线的照射下 ,当电 子能量达到或超过其带隙能时 ,电子就可从价带激发到导带 ,同时在价带产生相应的空穴 ,即生成电子、空穴对 ,在电场的作用下 ,电子与空穴发生分离 ,迁移到粒子表面的不同位置 ,发生一系列反应 : TiO2 + hν e —— + h H2O + h——·OH+ H O2 +e——O2 · O2 ·+ H——HO2· 2HO2· —— O2 + H2O2 H2O2 +O2 · ——·OH+OH +O2 吸附溶解在 TiO2 表面的氧俘获电子形成O2 ·, 生成的超氧化物阴离子自由基与多数有机物反应(氧化) ,同时能与细菌内的有机物反应 ,生成CO2和 H2O;而空穴则将吸附在 TiO2 表面的 OH 和H2O氧化成·OH,·OH 有很强的氧化能力 ,攻击有机物的不饱和键或抽取 H原子产生新自由基 ,激发链式反应 ,最终致使细菌分解。 TiO2 的杀菌作用在于它的量子尺寸效应 ,虽然钛白粉(普通 TiO2)也有光催化作用 ,也能够产生电子、空穴对 ,但其到达材料表面的时间在微秒级以上 ,极易发生复合 ,很难发挥抗菌效果,而达到纳米级分散程度的TiO2 ,受光激发的电子、空穴从体内迁移到表面 ,只需纳秒、皮秒、甚至飞秒的时间 ,光生电子与空穴的复合则在纳秒量级 ,能很快迁移到表面 ,攻击细菌有机体 ,起到相应的抗菌作用。 惠尔牌纳米二氧化钛具有很高的表面活性,抗菌能力强,产品易于分散。经试验表明,惠尔牌纳米二氧化钛对绿脓杆菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌和曲霉菌等具有很强的杀菌能力,已广泛应用于纺织、陶瓷、橡胶、医药等领域的抗菌产品,深受广大用户的欢迎。 3)国内外对纳米二氧化钛抗菌性的研究及应用实例 1 农田抗菌剂:日本开发了一种新型无菌杀菌剂。其主要成分为纳米二氧化硅、纳米二氧化钛和银、铜等离子,可用于土壤中,对所有的细菌都有很强的抗菌性。改杀菌剂是陶瓷类微量混合金属离子,并在含有相同离子的催化剂作用下,具有使土壤中的氧活化之功能,该功能能持续时间长达2-5年。

纳米二氧化钛的制备.docx

纳米二氧化钛的制备及其光催化活性的评价 实验报告 班级: 组别:指导老师: 小组成员:

实验目的: 1. 培养小组自主设计及完成实验的能力和合作能力。 2. 了解纳米二氧化钛的粒性和物性。 3. 掌握溶胶-凝胶法合成TiO2 的方法。 4. 研究二氧化钛光催化降解甲基橙和亚甲基蓝水溶液的过程和性质。 5. 通过实验,进一步加深对基础理论的理解和掌握,做到有目的合成,提高实验思维 与实验技能。 一、溶胶凝胶法制备二氧化钛 1 实验原理:纳米粉体是指颗粒粒径介于1?100 nm之间的粒子。由于颗粒尺寸的微 细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、 光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。 纳米Tiθ2具有许多独特的性质。比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分 散性好等。基于上述特点,纳米Tiθ2具有广阔的应用前景。利用纳米Tiθ2作光 催化剂,可处理有机废水,其活性比普通Tiθ2(约10 μm)高得多;利用其透明性 和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆 品防晒霜等;利用其光电导性和光敏性,可开发一种Tiθ2感光材料。如何开 发、应用纳米Tiθ2,已成为各国材料学领域的重要研究课题。目前合成纳米二氧 化钛粉体的方法主要有液相法和气相法。由于传统的方法不能或难以制备纳米级 二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活 性大的单组分或多组分分子级纳米催化剂[1 ?3],因此,本实验采用溶胶-凝 胶法来制备纳米二氧化钛光催化剂。 制备溶胶所用的原料为钛酸四丁脂(Ti(O-C4H9)4)、水、无水乙醇 (C2H5θH)以及冰醋酸。反应物为Ti(O-C4H9)4和水,分相介质为C2H5OH,冰 醋酸可调节体系的酸度防止钛离子水解过速。使Ti(O-C4H9)4 在C2H5OH中水解生成Ti(OH)4,脱水后即可获得TiO2。在后续的热处理过程中, 只要控制适当的温度条件和反应时间,就可以获得金红石型和锐 钛型二氧化钛。 钛酸四丁脂在酸性条件下,在乙醇介质中水解反应是分步进行的,总水解

二氧化钛纳米管的制备与应用概要

2012 /2013 学年第 2 学期环保材料课程考核试卷 A■、B□ 课程代码: 17000450 任课教师_施文健考试形式:开卷■、闭卷□ 课程性质:通识□、基础□、专业■、必修■、选修□、考试□、考查■、指选□、跨选□适用年级/专业二年级/环境工程学分/学时数 2/32 考试时间1周…………………………………………………………………………………………………………学号1117030320 姓名陈柱良专业环境工程得分 撰写小论文:环境工程材料――×××研究进展 学生通过对应用于防止、治理、修复环境污染的材料,包括净化材料、环境修复材料以及环境替代材料等材料中就某一种具体的环境工程材料的研究进展进行综述。学生的工作由国内外文献检索、阅读、归纳总结、并对该研究领域进行展望、小论文写作组成。小论文内容:题目、前言(目的意义)、国内外研究现状包括:材料的制备方法、材料表征、理化性能、在环境工程中的应用,写出学生自己的学习后的认识、观点或展望在该领域研究方向及应用前景。具体要求:查阅的中文文献≥10篇、英文文献≥5篇、小论文字数5000字左右、列出参考文献。

二氧化碳纳米管的制备与应用 前言: 纳米TiO 2是一种重要的无机功能材料,多呈颗粒状,它在环境光催化领域作为催化剂已引起广泛重视[1,2]。由于其具有无毒、气敏、湿敏、介电效应、光电转换、光致变色及催化活性高、氧化能力强、稳定性好等优点[3,4]而被广泛应用于各种光催化反应技术中,如自洁材料、介电材料、催化剂极载体、传感器、光催化太阳能电池、光裂解水制氢以及光催化降解大气和水中污染物等领域。Ti02纳米管是其又一种存在形式,纳米Ti02在光催化降解水中有机污染物方面有明显的优势[5],而且还能够解决汞、铬、铅等金属离子的污染问题。由于纳米管具有大的比表面积,因而具有较高的吸附能力,可望提高其光催化性能;特别是若能在管中填充更小的无机、有机、金属或磁性纳米级颗粒形成一维复合纳米材料,将会大大改善Ti02的光电、电磁、催化及抗菌等性能。目前,对TiO 2纳米薄膜、纳米粉体及掺杂改性的纳米TiO 2复合材料的制备、结构相变及其应用已进行了大量研究。但对于TiO 2纳米管的光电性能、催化性能及其应用的研究还处于起步阶段。TiO 2纳米管是纳米TiO 2的一种新的存在形式,与其他形态的纳米TiO 2材料相比,它具有更大的比表面积和更强的吸附能力,有望进一步提高TiO 2的光电转换效率和光催化性能,特别是若能在该纳米管中掺杂部分无机、有机、金属或者磁性材料而制备出复合纳米材料,则TiO 2纳米管的光电性能和催化活性将得到大大的改善。

纳米二氧化钛项目情况介绍

纳米二氧化钛项目情况介绍 一、产品作用原理 项目产品为纳米二氧化钛(光触媒),产品具有强大的光催化氧化还原能力、化学性质稳定、无毒、无害。在光的作用下,纳米二氧化钛(光触媒)可以产生具有极强氧化作用的超氧离子自由基、羟基自由基,能将甲醛、苯、甲苯、二甲 苯等挥发性致癌有机物以及臭气、细菌、病毒等氧化分解成无害的CO 2和H 2 O。 二、产品用途 纳米二氧化钛(光触媒)广泛应用于室内空气净化、污水处理、涂料、化妆品、塑料、纺织品、陶瓷、玻璃、脱腥嗅、消毒杀菌等领域。例如:在养殖业可用来预防各种动物传播疫病;在纺织业可制作出多种功能纤维,如抗紫外线型、抗菌除臭型、远红外线反射型、拒水防污型等多功能的纺织产品;在油漆领域可制出着色很强的轿车金属闪光面漆和防锈漆;在涂料领域通过添加该产品可制出具有消毒杀菌和空气净化等功能的涂料产品。 三、技术支撑 项目来源: 1.河南省科技攻关项目“太阳能光催化纳米复合材料的合成及净化污水性 能”(0624210001)。 2.河南省重点科技攻关项目“高效可见光光电转换材料组装太阳能电池” (07210220001)。 项目发明专利: 1.纳米掺杂二氧化钛光催化剂的制备方法(ZL 200410060567.4)。 2.高效可见光催化剂及光电转化和发光材料TiOxNyCz的制备方法 (ZL 200610107259.1)。 技术鉴定成果: 1. 《纳米二氧化钛光催化剂的简单制备方法》2005.9 2. 《可见光光电催化材料的制备》2009.5 3. 《光催化处理污水技术》2009.5

四、产品特性 1. 产品为白色粉末,自身无毒、无害、无腐蚀性、可反复使用。 2. 产品粒径在5-30nm之间,产品粒径大小可以控制。 3. 产品的光利用效率大幅度提高,在可见光的作用下,即可有效地氧化分解有害物质,杀灭细菌、病毒和除臭。用于居室、医院、禽畜养殖场的空气净化。 五、技术优势 1. 四氯化钛,氨水,尿素,甲醇,原料廉价易得。 2. 一步法制备,工艺简单,工序短,节能。 3. 粒径分布均匀可控。 4. 太阳光利用效率高,催化活性高。 5. 适合大规模工业化生产。无三废。 6. 该项生产技术已获得两项国家发明专利。

纳米二氧化钛的制备方法及形貌特征

纳米二氧化钛的制备方法及形貌特征 盛丽雯重庆交通大学应用化学08300221 摘要:纳米二氧化钛以其优异的性能成为半导体光催化剂的杰出代表,探寻优良的二氧化钛制备工艺有着重要的现实意义。本文主要介绍了近年来国内外纳米二氧化钛制备工艺的研究状况,根据反应体系的物理形态将制备工艺分成气相、液相、固相三大类进行阐述,在此基础上分析比较了不同制备工艺的优缺点,最后展望了今后的发展方向。 关键词:纳米二氧化钛、制备方法、形貌特征。 1 纳米二氧化钛的制备方法 1.1 气相法 气相水解法利用氮气、氧气或空气作载气,把TiC1 或钛醇盐蒸气和水蒸气分别导人反应器,进行瞬间混合快速水解反应。通过改变各种气体的停留时间、浓度、流速以及反应温度等来调节纳米TiO的晶型和粒径。该方法制得的产品纯度高、分散性好、表面活性大,操作温度较低,能耗小,且对材质纯度要求不是很高,可实现连续生产;但控制过程复杂,并且直接影响着产品的晶型和粒径。气相氧化法是以TiC1 为原料,氧气为氧源,氮气作为载气的氧化反应,反应经气、固分离后制得纳米TiO:。该法制得的产品纯度高、分散性好;但设备结构复杂,材料要求耐高温、耐腐蚀,自动化程度高,研究开发难度大。气相氢氧火焰法以TiC1 ,H2,O:为原料,将TiC1 气体在氢氧焰中(700~1 000℃)高温水解制得纳米TiO。产品一般是锐钛型和金红石型的混晶型,产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小,自动化程度高;但所需温度高,对设备材质要求较高,对工艺参数控制要求精确。气相热解法以TiC1 为原料,在真空或原料惰性气氛下加热至所需温度后,导入反应气体,使之发生热分解反应,最后在反应区沉积出纳米TiO。产品化学活性高、分散性好,可以通过控制反应气体的浓度和炉温来控制纳米TiO的粒径分布;但投资大、成本高。 1.2 液相法 溶胶一凝胶法以钛醇盐Ti(OR) 为原料,经水解与缩聚过程而逐渐凝胶化,再经低温干燥、烧结处理即可得到纳米TiO粒子。该法制得的产品纯度高、粒径小、尺寸均匀、干燥后颗粒自身的烧结温度低;但原料价格昂贵、生产成本高,凝胶颗粒之间烧结性差,产物干燥时收缩大。化学沉淀法将沉淀剂加入TiOSO,H TiO,或TiC1 溶液中,沉淀后进行热处理。该法工艺过程简单,易工业化,但易引入杂质,粒度不易控制,产物损失多。水解法以四氯化钛或钛醇盐为原料,经水解、中和、洗涤、烘干和焙烧制得纳米TiO。该法制得的产品纯度高、粒径均匀;但水解速度快、反应难控制、成本大、能耗高、难以工业化生产。水热法以TiOSO,TiC14或Ti(OR)4为原料,高温高压下在水溶液中合成纳米TiO。该法制得的产品纯度高、粒径分布窄、晶型好;但对设备要求高、能耗较大、操作复杂、成本偏高。在综合对比研究了纳米二氧化钛的各种制备方法后,提出了利用偏钛酸原料廉价易得的特点,简化工艺过程,采用化学沉淀法来制备纳米TiO的工艺方案,并进行了长时间的中试,现就该工艺的特点及中试过程中所遇到的问题进行阐述。 1 气相法制备二氧化钛 气相法一般是通过一些特定的手段先将反应前体气化,使其在气相条件下发生物理或化学变化,然后在冷却过程中成核、生长,最后形成纳米TiO2颗粒。 1.1 化学气相沉积法

纳米二氧化钛的制备及性质实验

南京信息工程大学综合化学实验报告 学院:环境科学与工程学院 专业:08应用化学 姓名:章翔宇 潘婷 袁成 钱勇 2010年6月25号

纳米二氧化钛的制备及性质实验 1、实验目的 熟悉溶胶凝胶法制备纳米二氧化钛的方法及相关操作; 理解二氧化钛吸附实验的原理和操作; 掌握数据处理的方法 2、溶胶凝胶法制备纳米二氧化钛 2.1 需要的仪器 恒压漏斗、茄行烧瓶、量筒、移液管、铁架台、磁力搅拌、磁子、冷凝管、温度计、烘箱、研钵 2.2 需要的试剂 钛酸丁酯异丙醇浓硝酸蒸馏水 2.3 实验步骤 1.50ml钛酸丁酯溶16ml的异丙醇中,摇匀(在恒压漏斗中进行) 得到溶液A 2.取200ml 的蒸馏水,加入0.32 ml 的浓硝酸,摇匀(在茄行烧瓶中进行),得到 溶液B 3.将烧瓶固定在铁架台上,进行磁力搅拌,将溶液A 逐滴滴加至溶液B中,使两溶液 缓慢接触,并进行水解反应,得到溶液C 溶液C室温回流,记载下当时的室温 4.回流分若干天进行,保证回流时间不少于48小时,得到溶液D 5.蒸干方式:将溶液D进行水浴加热85度并不断搅拌将水分蒸发干,得E 6.将E放入烘箱100烘干 7.研磨至粉末状; 2.4 实验结果 1、回流分4天进行,总计回流时间50小时,室温为15℃。 2、经研磨,得到白色细粉末状固体。称量得二氧化钛质量为11.233g,理论产量不小于11.785g,损失为产品转移过程中损失。 3、纳米二氧化钛性质实验 3.1 二氧化钛吸附试验 1、仪器:烧杯(500mL),容量瓶(1000mL),样品瓶(6个),电子天平,磨口瓶,超 声波清洗机,玻璃注射器,过滤器,分光光度计 2、试剂:二氧化钛粉末,染料X-3B(分子量615),蒸馏水 3、实验步骤: 1、用电子天平称取60mg染料,配成1000mL的60mg/L溶液(避光保存)。 2、将烧杯润洗后,倒入100ml染料溶液,再倒入称量好的50mg的二氧化钛粉末。 静置后置于超声波清洗机中(70℃超声40分钟,注意避光)。剩余原液取样保存编

纳米二氧化钛的制备及其在涂料中的应用

纳米二氧化钛的制备及其在涂料中的应用 才红 (韩山师范学院化学系,广东潮州 521042) 摘要:以钛酸丁酯复合醇溶胶作为前驱体,采用溶胶–凝胶法 制备TiO2微粒,并将其在不同温度下焙烧,获得了纳米TiO2。在紫外光的照射下,将纳米TiO2添加到成膜物质中,配以添加剂、消泡剂等,合成了纳米复合涂料。黏度、甲醛含量、抗菌 性能、耐热性以及重金属含量的测试结果表明,纳米复合涂料 的各项性能均高于原涂料,尤以由600 °C下焙烧所得纳米TiO2制备的涂料为佳,其黏度为14.6 Pa·s,甲醛降解率为73%,抗 菌圈半径比原涂料增大了88%;在300 °C下烘烤5 h,涂层出 现少量龟裂,但未剥落。 关键词:纳米复合涂料;内墙涂料;二氧化钛;溶胶–凝胶法;焙烧;抗菌 中图分类号:TQ630.6 文献标志码:A 文章编号:1004 – 227X (2009) 10 – 0063 – 04 Preparation of nano-TiO2 and its application in coatings // CAI Hong Abstract: TiO2 particles were prepared by sol-gel method with Ti(OC4H9)4 as precursor, and then baked at different temperatures to produce nano-TiO2. Nanocomposite coatings were synthesized by adding the nano-TiO2 to film-forming materials combined with additive and foam suppressor under ultraviolet light. The test results of viscosity, formaldehyde content, antimicrobial activity, thermal stability and heavy metal contents showed that the properties of nanocomposite coatings are much better than that of the original coatings, and the coating containing nano-TiO2 obtained by baking at 600 °C is the most excellent with a viscosity of 14.6 Pa·s, formaldehyde degradation rate of 73% and a 88% increase of the radius of inhibition zone compared with that of original coating. The coating has a little crack, but no crumbling off when it is baked at 300 °C for 5 h. Keywords: nanocomposite coating; interior wall coating; titania; sol-gel method; baking; antibacterial Author’s address: Department of Chemistry, Hanshan Normal University, Chaozhou 521041, China 收稿日期:2009–03–30 修回日期:2009–04–15 基金项目:韩山师范学院青年科学基金资助项目(K04013)。 作者简介:才红(1979–),女,河北秦皇岛人,硕士,讲师,主要从事环保型复合涂料的研究和植物纤维的改性与应用。 作者联系方式:(E-mail) tiddychen@https://www.doczj.com/doc/b81841409.html,。1 前言 纳米材料因其具有独特的性能而受到各国科学家的高度重视,被誉为21世纪最有潜力的材料。而纳米TiO2因其易得、耐腐蚀、对光稳定以及较强的光催化氧化能力等优点而倍受关注。制备和开发纳米TiO2已成为科技界研究的热点之一[1-4]。 本文以钛酸丁酯复合醇溶胶作为前驱体,通过溶胶–凝胶法制备了纳米TiO2粉末。为改善纳米材料在涂料中的分散性,先将所制的纳米TiO2粉末溶于少量水中,再将其添加到基质涂料中,配以消泡剂、助剂、分散剂等成分,在紫外光照射下充分搅拌,使涂料中的有害气体在生产过程中得到充分降解,从而得到环保型绿色涂料。这种制备方法的报道甚少,其工艺相对简单,生产效率高,期望对开拓内墙涂料新功能、提高产品质量有一定的参考价值。 2 实验 2. 1 主要试剂与仪器 钛酸丁酯,广州化学试剂厂;内墙涂料及其助剂,潮州市华明涂料厂;琼脂营养液,福建泉州市泉港化工厂;甲醛(w = 37%)、浓硫酸、硝酸(w = 65% ~ 68%)、浓盐酸、乙酰丙酮等均为市售分析纯。 TU1900紫外分光光度计、TAS-990AFG原子吸收分光光度计和XD-2型X射线衍射仪,北京普析通用公司提供;CHDF-2000高分辨率粒径分布测试仪,武汉中创联达科技有限公司;JSM6360LA型扫描电镜(SEM),日本电子公司。 2. 2 制备纳米TiO2的原理和方法 制备纳米TiO2的反应在常温下即可快速进行,主要发生如下反应: Ti(OC4H9)4 + 4H2O → Ti(OH)4 + 4C4H9OH Ti(OH)4 + Ti(OC4H9)4→ 2TiO2 + 4C4H9OH Ti(OH)4 → TiO2 + 2H2O

纳米二氧化钛的性质及应用进展

纳米二氧化钛的性质及应用进展 牙膏工业2006年第3期 纳米二氧化钛的性质及应用进展 李志军王红英 (深圳职业技术学院工业中心518055) 摘要:纳米二氧化钛微粒具有大的比表面积,其表面原子数,表面能和表面张力随粒径的下降急剧增加,由于其尺寸的 细微化,表现出独特的物理和化学特性,导致纳米二氧化钛微粒的热,光,敏感特性和表面稳定性等方面不同于常规粒子,这 就使其在环境,信息,材料,能源,医疗与卫生等领域有着广阔的应用前景.综述了纳米二氧化钛的性质,并介绍了近年来纳 米二氧化钛的应用研究发展动态. 关键词:纳米粉体二氧化钛性质应用 纳米微粒是指颗粒尺寸在I—lOOnm的超细微 粒.由于纳米微粒具有了量子尺寸效应,小尺寸效 应,表面效应和量子隧道效应,因而展现出许多特有 的性质,在催化,滤光,光吸收,医药,磁介质及新材 料等方面具有广阔的应用前景.纳米二氧化钛因其 具有粒径小,比表面积大,磁性强,光催化,吸收性能 好,吸收紫外线能力强,表面活性大,热导性好,分散 性好,所制悬浮液稳定等优点,因此倍受关注,制备 和开发纳米二氧化钛成为国内外科技界研究的热 点….本文将介绍纳米二氧化钛的一些基本性质 及其主要的应用研究进展. 1纳米TiO的基本结构 二氧化钛是金属钛的一种氧化物,其分子式是 TiO.根据其晶型,可分为板钛矿型,锐钛矿型和金

红石型三种.其中锐钛矿型TiO属于四方晶系,其晶格参数仅0=37.85nm,C0=95.14nm.图1为 两种晶型单元结构图.锐钛矿型TiO的单元结 构中钛原子处于钛氧八面体的中心,其周围的6个氧原子都位于八面体的棱角处,有4个共棱边,也就是说,锐钛矿型的单一晶格有4个TiO分子.锐 钛型TiO的八面体呈明显的斜方晶型畸变,Ti—O 键距离均很小且不等长,分别为I.937×10.m和1.964×10.11'1,这种不平衡使TiO分子极性很强, 强极性使TiO表面易吸附水分子,使水分子极化而形成表面羟基. 这种表面羟基的特殊结合使其表面改性成为可 ●Ti oO 金红石型 (a)(b) 图1TiO2的两种晶型单元结构图[.】 能,它可作为广义碱与改性剂结合,从而完成对TiO2的表面改性. 2纳米TiO的表面性质 2.1表面超亲水性 目前的研究认为,在光照条件下,TiO表面的 超亲水性起因于其表面结构的变化.在紫外光照射下,TiO价带电子被激发到导带,电子和空穴向 TiO表面迁移,在表面生成电子空穴对,电子与 Ti反应,空穴则与表面桥氧离子反应,分别形成正三价的钛离子和氧空位.此时,空气中的水解离吸附在氧空位中,成为化学吸附水(表面羟基),化学 吸附水可进一步吸附空气中的水分,形成物理吸附

纳米二氧化钛(TiO2)光触媒杀菌净化技术介绍

納米二氧化钛光催化技术介绍 纳米光催化采用二氧化钛(TiO2)半导体の效应,激活材料表面吸附氧和水分,产生活性氢氧自由基(OH.)和超氧阴离子自由基(O2-),从而转化为一种具有安全化学能の活性物质,起到矿化降解环境污染物和抑菌杀菌の作用。 纳米二氧化钛(TiO2)光催化利用自然光即可催化分解细菌和污染物,具有高催化活性、良好の化学稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景の绿色环保催化剂之一。 无毒害の纳米TiO2催化材料,充分发挥抗菌、降解有机污染物、除臭、自净化の功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间の多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用の环保材料。 光催化原理 - 什么是光催化 光催化[Photocatalyst]是光 [Photo=Light] +催化剂 [catalyst]の合成词。主要成分是二氧化钛(TiO2),二氧 化钛本身无毒无害,已广泛用于食品,医药,化妆品等各种 领域。光催化在光の照射下会产生类似光合作用の光催化反应(氧化-还原反应,产生出氧化能力极强の自由氢氧基和活性氧,这些产物可杀灭细菌和分解有机污染物。并且把有机污染物分解成无污染の水(H2O)和二氧化碳(CO2),同时它具有杀菌、除臭、防污、亲水、防紫外线等功能。光催化在微弱の光线下也能做反应,若在紫外线の照射下,光催化の活性会加强。近来, 光催化被誉为未来产业之一の纳米技术产品。 - 光催化反应原理

TiO2当吸收光能量之后,价带中の电子就会被激发到导带,形成带负电の高活性电子e-,同时在价带上产生带正电の空穴h+。在电场の作用下,电子与空穴发生分离,迁移到粒子表面の不同位置。热力学理论表明,分布在表面のh+可以将吸附在TiO2表面OH-和H2O分子氧化成(OH.)自由基,而OH.自由基の氧化能力是水体中存在の氧化剂中最强の,能氧化并分解各种有机污染物(甲醛、苯、TVOC等)和细菌及部分无机污染物(氨、NOX等),并将最终降解为CO2、H2O等无害物质。由于OH.自由基对反应物几乎无选择性,因而在光催化中起着决定性の作用。此外,许多有机物の氧化电位较TiO2の价带电位更负一些,能直接为h+所氧化。而TiO2表面高活性のe-侧具有很强の还原能力,可以还原去除水体中金属离子。应用以上原理光催化广泛应用于杀菌、除臭、空气净化、污水处理等领域。 光催化优势 光催化の空气净化技术优点 1、光催化の优点 -高效杀菌(杀菌率达到99.99%) -除臭功能 -防污/自洁、防霉功能 2、彻底の净化 -是分解而不是吸附污染物; -发生の是质变而不是量变; -对污染物具有不可逆の彻底分解; 3、广泛の净化 -能对室内几乎所有の细菌、病毒和有机污染物起到强效分解作用; -特别是对人们不易感知の细菌和病毒进行彻底分解; 4、实用の净化

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性评价 实 验 报 告 组别:第七组 组员:曲红玲高晗 班级:应121-2 指导老师:翁永根老师

纳米二氧化钛的制备及其光催化活性评价 一、实验目的 1、掌握利用简单的原料制备纳米材料的基本方法和原理。 2、了解二氧化钛的应用和多种制备方法的优缺点。 3、了解纳米半导体材料的性质。 4、了解纳米半导体光催化的原理。 5、掌握光催化材料活性的评价方法。 二、实验原理 二氧化钛,化学式为2TiO ,俗称钛白粉。多用于光触媒、化妆品,能靠紫外线消毒及杀菌。以纳米级2TiO 为代表的具有光催化功能的光半导体材料,因其颗粒细小、比表面积大而具有常规材料所不具备的优点,以及较高的光催化活性、高效的光点转化性能等,在抗菌除雾、空气净化、废水处理、化学合成及燃料敏化太阳能电池等方面显出广阔的应用前景。 1、纳米二氧化钛的制备 纳米二氧化钛的制备方法有很多。主要分为两类:一类是液相法合成,包括液相沉淀法、液相凝胶法、醇盐水解法、微乳液法及水热法;另一类是气相法合成,包括四氯化钛氢氧焰水解法、四氯化钛气相氧化法、钛醇盐气相氧化法、钛醇盐气相水解法、钛醇盐气相热解法。其中,溶胶凝胶法是近年来制备二氧化钛广泛使用的方法。本试验采用溶胶凝胶法制备二氧化钛。 溶胶凝胶法中,反应物为水、钛酸四丁酯,分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度,使钛酸四丁酯在无水乙醇中水解生成()4OH Ti ,脱水后即可得到2TiO 。在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以得到二氧化钛。 在以乙醇为溶剂,钛酸四丁酯和水发生不同程度的水解反应,钛酸四丁酯在酸性条件下,在乙醇介质中水解反应是分步进行的。 一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定的凝胶。此过程中涉及的反应为: ()()OH H C OH Ti O H H OC Ti 944249444+=+ ()()OH H C TiO H OC Ti OH Ti 942494442+=+ ()O H TiO OH Ti 2242+? 2、光催化活性评价 光触媒在光照条件下(可以是不同波长的光照)所起到的催化作用的化学反应,通称为光反应。光催化一般是多种相态之间的催化反应。 本次试验是进行紫外光催化活性评价,分别通过测量在亚甲基蓝和甲基橙中,反应前

纳米二氧化钛综述

纳米二氧化钛的制备综述 摘要综述了纳米二氧化钛的多种制备方法和原理,比较和评述了不同方 法的优缺点。 关键词纳米二氧化钛;制备方法;原理 纳米材料以其特殊的性能和广阔的发展前景引起众多科学家们的广泛关注。纳米材料是指微粒几何尺寸在1nm~l00nm范围内的固体材料。纳米粒子是处于微观粒子和宏观粒子之间的介观系统。纳米材料以其独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子效应等性质,而呈现出许多奇异的物理、化学性质,使其在众多领域具有特别重要的应用价值和广阔的发展前景。纳米二氧化钛TiO2是当前应用前景最为广阔的一种纳米材料,它是当前众多纳米材料中的“明星”。我国对纳米二氧化钛的研究已经进入产业化开发与生产阶段,其制备手段可分为物理和化学两大类。本文就采用化学方法制备纳米二氧化钛的一些方法进行总结,并对不同方法的优缺点进行比较和评述。 一气相法 1.气相合成法 气相合成法是一种传统方法。1941年德国Degussa公司率先采用气相四氯化硅氧焰水解制备自炭黑(纳米级的二氧化硅)。在20世纪80年代中后期,气相氢氧焰水解法(Aerosil法)制备纳米级TiO2开始被应用于工业生产中。其生产过程是将精制过的氢气、空气和氯化物(TIC14 )蒸汽以一定的配比进入水解炉高温水解,温度控制在18000C以上,生成TiO2的气溶胶,经过聚集冷却器停留一段时间即形成絮状大颗粒的TiO2,再经过脱酸炉脱酸(吸附在TiO2表面的HC1)后,从而得到产品,其生产原理如下: Ti+2CI4 = TiC14 TiC14 +2H2+ O2 = TiO2 + 4HCI Aerosil法的优点是:原料TiC14获得容易,可挥发,易水解,易提纯,产品无需粉碎,物质的浓度小,生成粒子的凝聚少,气相产物TiO2的表面整洁、纯度高,易控制粒径颗粒分布集中,可得到不同比表面或不同晶型的系列产品。2.气相沉积法 化学气相沉积法可沉积金属、碳化物、氧化物、氮化物、硼化物等,能在几何形状复杂的物件表面涂敷,涂层与基底结合牢固,此方法发展非常迅速。 魏培海以1200C Ti(OC4H9) 为源物质,将一定流量的氮气通入其中进行鼓泡,并作为载气将Ti(OC4H9)带入TiO2反应器,同时将一定量的氮气通入反应器,应用金属气相沉积(MOCVD)方法沉积TiO2薄膜。当基底物质维持在4000C时,在基底表面发生下列反应:Ti(OC4H9)+24 O2=TiO2+16CO2+18 H2O TiO2分子沉积在基底表面,形成金红石型的TiO2薄膜,膜的厚度可通过调节反应时间来控制,此膜具有较强的光响应性能及稳定性,平带电位与溶液的pH值有关,是较理想的光电化学修饰材料。李文军等也以Ti(OC4H9) 为原料,氧气作反应气体,高纯氮作载体,采用低压MOCVD法在单晶硅基片上制备了TiO2薄膜。通过控制基片温度制成不同构型的TiO2。孙顺明应用自制设备及MOCVD 技术,分别在高掺杂硅片和有透明导电膜玻璃的基片上生长了TiO2薄膜。另外,

【原创】纳米二氧化钛的现状与发展

【原创】纳米二氧化钛的现状与发展 纳米二氧化钛的现状与发展(上) 魏绍东1,夏林胜2 (1.东华工程科技股份有限公司,安徽合肥230024;2.中国科学技术大学材料 科学与工程系,安徽合肥230026) 摘要:介绍了纳米二氧化钛生产的原料和几种制备方法。通过对国内外生产现状和特点的比较,提出了以硫酸氧钛为原料制备纳米二氧化钛的工艺路线,并对工业化装置的规模、工艺方案以及存在的问题进行了介绍。 关键词:纳米二氧化钛;制备工艺;硫酸氧钛;工艺路线;均匀沉淀法 Current Situtation and Development of Nanometer TiO2 WEI Shao-dong1, XIA Lin-sheng2 (1.East China Engineering Science & Technology Co., Ltd., Hefei 230024,China; 2.Department of Material Science and Engineering,University of Science and Technology of China, Hefei 230026,China) Abstract: This paper summarizes several manufacture methods and the raw material production of nanometer TiO2.Through the comparison of the characteristics and the present situation of the domestic and international production of nanometer TiO2,the technological route for the manufacture of nanometer TiO2 with TiOSO4 as the raw material is presented,process scheme the scale of commercial plant as well as existent problems are introduced. Key words: nanometer TiO2; manufacture technology; titanyl sulfate; technological route; homogeneous precipitation method 引言 自1990年7月在美国巴尔的摩召开了第一届纳米科学技术国际会议以来,纳米材料科学作为一个相对独立的学科诞生了,此后,纳米材料引起了世界各国材料学界、物理学界和化学界的极大兴趣和广泛重视,很快形成了世界范围的“纳米热”。我国政府和有关部门也较早认识到纳米科技的重要性,并于积极地推动和财政支持。国家科委出台的“攀登计划”(1990~1999)中,就有纳米科技项目,并给予连续10年的专项支持;1999年,国家科技部又制定了“国家重点基础研究发展规划”(“973”计划),其中安排了“纳米材料与纳米结构”项目;在国家“863”高技术计划中,也列有不少纳米材料的应用研究项目。 二氧化钛(TiO2),俗称钛白,具有无毒、最佳的不透明性、最佳白度和光亮度,被认为是目前世界上性能最好的一种白色颜料,广泛应用于涂料、塑料、造纸、印刷油墨、化纤、

纳米二氧化钛制备方法

1. 纳米TiO 2粉体制备方法 物理法 气相冷凝法: 预先处理为气相的样品在液氮的气氛下冷凝成核制得纳米TiO2 粉体,但该法不适于制备沸点较高的半导体氧化物 高能球磨法: 工艺简单,但制得的粉体形状不规则,颗粒尺寸分布宽,均匀性差 化学法 固相法: 依靠固体颗粒之间的混合来促进反应,不适合制备微粒 液相法: 就是将钛的氯化物或醇盐先水解生成氢氧化钛(或羟基氧钛) ,再经煅烧得到TiO2. 研究最广泛。 以四氯化钛为原料,其反应为 TiCl4 + 4H2O → Ti (OH) 4 + 4HCl , Ti (OH) 4 → TiO2 + 2H2O. 以醇盐为原料,其反应为 Ti (OR) 4 + 4 H2O → Ti (OH) 4 + 4 ROH , Ti (OH) 4 ???→煅烧 TiO2 + 2 H2O. 主要包括硫酸法、水解法、溶胶-凝胶(Sol2gel) 法、超声雾化、热解法等。 溶胶- 凝胶法就是将钛醇盐制备成二氧化钛溶胶. 为了得到多孔催化剂,通常采用煅烧等方法将凝胶进行干燥,去除溶剂,制得干凝胶. Dagan 等[25 ]采用超临界干燥法所制得的TiO2气凝胶孔隙率为85 % ,比表面积高达600 m2·g - 1 ,晶粒尺寸为5. 0 nm ;对水杨酸的光催化氧化表明该催化剂具有比Degussa P - 25 TiO2粉末更高的催化活性.

气相法: 其核心技术是反应气体如何成核的问题. 通过四氯化钛与氧气反应或在氢氧焰中气相水解获得纳米级TiO2 ,目前德国Degussa 公司P-25 粉末光催化剂是通过该法生产的 常用的化学制备方法有溶胶-凝胶法、沉淀法、水解法、喷雾热解法、水热法和氧化- 还原法等。 2. 纳米TiO2薄膜制备方法: 除了与粉体制备相同的制备方法如溶胶-凝胶法、热解法外,还有液相沉积法、化学气相沉积法、磁控溅射法等。 溶胶-凝胶法(Sol-Gel): 制备的薄膜纯度高,且制备工艺简单,易批量生产; 水热合成法: 通过水解钛的醇盐或氯化物前驱体得到无定形沉淀,然后在酸性或碱性溶液中胶溶得到溶胶物质,将溶胶在高压釜中进行水热Ostwald熟化。熟化后的溶胶涂覆在导电玻璃基片上,经高温(500℃左右)煅烧,即得到纳米晶TiO2薄膜。也可以使用TiO2的醇溶液与商业Ti02(P25,3Onm)混合以后得到的糨糊来代替上面提到的溶胶。反应中为了防止颗粒团聚,通常采用化学表面改性的方法,如加有机螫合剂、表面活性剂、乳化剂等,以降低粉末表面能,增加胶粒问静电排斥,或产生空问位阻作用而使胶体稳定。这些有机添加剂在高温煅烧阶段会受热分解除去. 是溶胶-凝胶法的改进方法,主要在于加入了一个水热熟化过程,由此控制产物的结晶和长大,继而控制半导体氧化物的颗粒尺寸和分布,以及薄膜的孔隙率.得到的Ti02颗粒是锐钛矿型还是锐钛矿型与金红石型的混合物由反应条件(如煅烧温度)决定。水热处理的温度对颗粒尺寸有决定性的影响。一般来说,将溶胶在高压釜中(150Xl05~330×105Pa)于200~250℃处理12h,可得到平均粒径15~20nm的Ti02颗粒。如果用丝网印刷术(也可用刮涂的方法)将TiO2溶胶涂覆在导电玻璃上,则得到

纳米二氧化钛

纳米二氧化钛的制备及活度测定 实 验 报 告 小组成员: 指导老师:翁永根 纳米二氧化钛的制备及活度检测 一、实验目的:

1、探索二氧化钛的制备方法,寻求最简便的制备过程,培养学生的实验 创新能力。 2、了解二氧化钛的性质与作用。 3、掌握二氧化钛活度检测方法。 二、实验原理: 1、纳米粉体是指颗粒粒径介于1~100 nm之间的粒子。由于颗粒尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。 纳米TiO2具有许多独特的性质。比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分散性好等。基于上述特点,纳米TiO2具有广阔的应用前景。利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 μm)高得多;利用其透明性和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光敏性,可开发一种TiO2感光材料。如何开发、应用纳米TiO2,已成为各国材料学领域的重要研究课题。目前合成纳米二氧化钛粉体的方法主要有液相法和气相法。由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂。 2、反应物为水、钛酸四丁酯(Ti(O-C4H9)4),分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度。使钛酸四丁酯在乙醇红水解生成Ti (OH)4,脱水后即可得到TiO2.在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以得到二氧化钛。TiO2溶胶凝胶法的制备主要包括2个部分:水解缩合、凝结。缩合是将溶质分子或离子缩合为大分子聚合物即胶粒的过程。这些胶粒分散在介质中称为溶胶。在一定条件下,胶粒聚集、合并,并转化成湿凝胶称为凝结。在sol-gel过程中,钛酸丁酯的水解——缩聚反应速度极快,会立即生成沉淀,影响TiO2的细化。我们可以通过加入水解抑制剂、配置滴加液,并控制滴加速度等方法来抑制沉淀的产生,从而形成均匀稳定的溶胶。在以乙醇为溶剂、钛酸四丁酯和水发生不同程度的水解反应,钛酸四丁酯在酸性条件下,在乙醇介质中水解反应是分步进行的。 水解产物为含钛离子溶胶: Ti(OC4H9)4 +4H2O==Ti(OH)4+4C4H9OH Ti(OH)4+Ti(OC4H9)4==2TiO2+4C4H9OH

纳米二氧化钛

纳米二氧化钛 纳米二氧化钛是金红石型白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。可用于化妆品、功能纤维、塑料、涂料、油漆等领域,作为紫外线屏蔽剂,防止紫外线的侵害。也可用于高档汽车面漆,具有随角异色效应。 简介 纳米二氧化钛,亦称纳米。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在100纳米以下,其外观为白色疏松粉末。具有抗紫外线、抗菌、自洁净、抗老化功效,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。 纳米二氧化钛主要有两种结晶形态:锐钛型(Anatase)和金红石型(Rutile)。金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮盖力和着色力也较高。而锐钛型二氧化钛在可见光短波部分的反射率比金红石型二氧化钛高,带蓝色色调,并且对紫外线的吸收能力比金红石型低,光催化活性比金红石型高。在一定条件下,锐钛型二氧化钛可转化为金红石型二氧化钛。 分类 一.按照晶型可分为:金红石型纳米钛白粉和锐钛型纳米钛白粉。

在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性,而且随着(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米TiO2能净化空气,具有除臭功能。 2、防紫外线功能 纳米TiO2既能吸收紫外线,又能反射、散射紫外线,还能透过可见光,是性能优越、极有发展前途的物理屏蔽型的紫外线防护剂。 纳米二氧化钛的抗紫外线机理: 按照波长的不同,紫外线分为短波区190~280 nm、中波区280~320 nm、长波区320~400nm。短波区紫外线能量最高,但在经过离臭氧层时被阻挡,因此,对人体伤害的一般是中波区和长波区紫外线。 纳米二氧化钛的强抗紫外线能力是由于其具有高折光性和活性。其抗紫外线能力及其机理与其粒径有关:当粒径较大时,对紫外线的阻隔是以反射、散射为主,且对中波区和长波区紫外线均有效。防晒机理是简单的遮盖,属一般的物理防晒,防晒能力较弱;随着粒径的减小,光线能透过纳米二氧化钛的粒子面,对长波区紫

相关主题
文本预览
相关文档 最新文档