当前位置:文档之家› 电链锯的链制动器结构特征及制动原理

电链锯的链制动器结构特征及制动原理

电链锯的链制动器结构特征及制动原理
电链锯的链制动器结构特征及制动原理

鼓式制动器的建模与仿真资料

河北工业大学 毕业设计说明书 作者:张南学号: 100287系:机械工程 专业:车辆工程 题目:鼓式制动器的建模与仿真 指导者:刘茜副教授 评阅者: 2014年 06 月 08 日

毕业设计说明书中文摘要

目录 1.绪论 (1) 制动系统的原理 (1) 鼓式制动器的介绍 (1) 鼓式制动器优缺点 (3) 2.鼓式制动器零件建模及装配 (4) 零件建模 (4) 制动器的装配 (13) 3. 虚拟样机模型的建立及性能仿真分析 (15) 制动器各部件间约束关系的建立 (15) 几何体间约束的关系与选择 (17) ADAMS\View的运动仿真 (25) ADAMS\View仿真结果 (27) 结论 (33) 参考文献 (34) 致谢 (35)

1.绪论 制动系统原理 制动系统是行车安全中非常重要的一部分,制动系统主要表现为通过踩下制动踏板,制动系统将力进行一系列传递从而最终表现为车辆的行车速度降低直至停车。制动系统原理图如下图。制动系统由制动踏板、助力泵、总泵活塞、制动鼓、液压管道、驻车制动等组成。踩下制动踏板将力传递到制动系统,助力泵将踏板上的力进行放大并传递到制动总泵中推动总泵活塞运动,将力传递到制动器的制动鼓,产生摩擦力矩从而使车轮速度降低直至停车。 图制动系统的原理图 1.1鼓式制动器的介绍 鼓式制动器应用在车辆上面已经有很长时间的历史,由于它的可靠性稳定以及大制动力均衡,使得鼓式制动器至今仍被装置在许多车型上 (多用于后轮)。鼓式制动器是通过液压装置将制动蹄向外推,使制动蹄摩擦片与随着车轮转动的制动鼓发生摩擦产生制动力矩从而使车辆实现制动的效果。鼓式制动器的制动鼓内侧与摩擦片接触的位置就是制动装置产生制动力矩的位置。在获得相同制动力矩的情况下,鼓式制动器的制动鼓直径较盘式制动器的制动鼓要小得多。因此需要较大制动力的德众大型

盘式制动器结构和原理

盘式制动器结构和原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

盘式制动器结构和原理 2、定钳盘式制动器 如下图所示:制动钳体通过导向销与车桥相连,可以相对于制动盘轴向移动,制动钳只在制动盘的内侧设置油缸,而外侧的制动块附装在钳体上,制动时,来自制动主缸的液压油通过进油口进入制动油缸,推动活塞及其上的制动块向右移动,并压到制动盘,于是制动盘给活塞一个向左的反作用力,使得活塞连同制动钳体整体沿导销向左移动,直到制动盘右侧的制动块也压紧在制动盘上,此时两侧的制动块都压在制动盘上,夹住制动盘使其制动。 定钳盘式制动器 转播到腾讯微博 定钳盘式制动器 3、典型浮钳盘式制动器 浮钳盘式制动器 如下图所示为桑塔纳轿车前轮制动器。 转播到腾讯微博 桑塔纳轿车前轮制动器 制动钳体用螺栓与支架相连,螺栓同时兼作导向销,支架固定在前悬架总成轮毂轴承座凸缘上。壳体可沿导各销与支架作轴向相对移动,两制动块装在支架上,用保持弹簧卡住,使两制动块可以在支架上作轴向移动,但不会上下窜动。制动盘装在两制动块之间,

并通过轮胎螺栓固定在前轮毂上,制动块由无石棉的活塞在制动液压力作用下,推动内制动块压向制动盘内侧,制动钳上的反力使制动钳壳体向内侧移动,从而带动外制动块压向制动盘外侧面。于是内、外摩擦块将制动盘的两端面紧紧夹住,实现了制动。 4、制动间隙自调结构 利用活塞矩形密封圈的弹性变形实现制动间隙的自动调整。 转播到腾讯微博 制动间隙自调结构 矩形密封圈嵌在制动钳油缸的矩形槽内,密封圈刃边与活塞外圆配合较紧,制动时刃边在摩擦作用下随活塞移动,使密封圈发生弹性变形,相应于极限摩擦力的密封圈极限变形量应等于制动器间隙为设定值时完全制动所需的活塞行程,解除制动时,密封圈恢复变形,活塞在密封圈弹力作用下退回原位,当制动盘与摩擦衬块磨损后引起的制动间隙超过设定值时,则制动时活塞密封圈变形量达到极限值后,活塞仍可在液压作用下,克服密封圈的摩擦力而继续移动,直到实现完全制动为止。解除制动后,制动器间隙即恢复到设定值δ,因活塞密封将活塞拉回的距离仍然等于原设定值δ,活塞密封圈兼起活塞复位弹簧和一次调准式间隙自调装置的作用。 5、制动块磨损报警装置 许多盘式制动器上装有制动块摩擦片磨损报警装置,用来提配驾驶员制动块上的摩擦片需要更换。下图为应用较广泛的声音式制动块磨损损装置。 转播到腾讯微博

电磁驱动离合器和制动器

电磁驱动离合器和制动器 页码 概述 干式运转/湿式运转 4.03.00 电路 4.03.00 整流器 4.03.00 线圈连接 4.03.00火花淬熄 4.03.00感应电流高温保护 4.03.00反映时间 4.03.00快速啮合/制动 4.05.00慢啮合 4.06.00快速脱开 4.06.00应用示例 4.07.00 产品样本数据 多片式电磁离合器和制动器 工作原理和安装方式 4.09.00滑环多片式离合器0810(0010*)系列 4.11.00滑环多片式离合器0011-05.系列 4.13.00滑环多片式离合器0011-100系列 4.14.00多片式制动器0011-300系列 4.15.00滑环多片式制动器0006-05.系列 4.16.00 单面电磁离合器、制动器及组合式离合制 动器 工作原理 4.19.00 安装方式 4.20.00 单面电磁离合器0808-10.(0008-10.*)系列 4.23.00单面电磁离合器0808-30.(0008-30.*)系列 4.25.00单面电磁制动器0809-10.(0009-10.*)系列 4.27.00单面组合式电磁离合制动器0008-102系列 4.29.00带外壳的单面组合式电磁离合制动器0081系列 4.30.00 牙嵌式电磁离合器 设计 4.33.00安装方式 4.34.00驱动原理 4.34.00应用示例 4.35.00滑环牙嵌式离合器0812(0012*)系列 4.37.00恒定场牙嵌式离合器0813(0013*)系列 4.39.00

目录页码弹簧制动多片式双面电磁制动器 工作原理和安装方式 4.41.00应用及安装方式 4.42.00离合器制动器一起工作的时建议 4.42.00弹簧制动多片式制动器0028/0228系列 4.43.00弹簧制动双面制动器0207系列 4.45.00 SEMO制动器 弹簧制动电磁制动器,0208系列 4.49.00

汽车鼓式制动器开题报告

毕业设计(论文)开题报告 设计(论文)题目:路宝汽车后轮制动器的设计 院系名称: 汽车与交通工程学院 专业班级: 车辆工程 学生姓名: 导师姓名: 开题时间: 指导委员会审查意见: 签字:年月日

一、课题研究目的和意义 制动系统是保证行车安全的极为重要的一个系统,既可以使行驶中的汽车减速,又可保证停车后的汽车能驻留原地不动。对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力、上坡阻力、空气阻力都能对汽车起到制动作用,但这些外力的大小都是随机的、不可控制的。因此,汽车上必须装设一系列专门装置,以便驾驶员能根据道路和交通等情况,使外界(主要是路面)对汽车某些部分(主要是车轮)施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力称为制动力,相应的一系列专门的装置即称为制动装置。由此可见,汽车制动系对于汽车行驶的安全性,停车的可靠性和运输经济效益起着重要的保证作用。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,汽车制动系的工作可靠性显得日益重要。因此,许多制动法规对制动系提出了许多详细而具体的要求。 鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量。制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。当然,鼓式制动器也并非一无是处,它造价便宜,而且符合传统设计。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式的设计。 二、课题研究现状及分析

电磁离合刹车组原理分类特点说明

(提示:该文档由天机传动制动离合器公司提供,仅供参考交流之用,转载时请注明来源-百度文库) 电磁离合刹车组全称为离合刹车组合体或者电磁离合器制动器组合,由一个电磁刹车器一个电磁离合器组成,或者由一个电磁刹车器与两个电磁离合器组成。均采用DC24V直流电,常规扭矩在6~400Nm。 一、分类: 内藏式电磁离合刹车组:电磁离合器与电磁刹车器都装置在轻合金外壳内部; 外露式电磁离合刹车组:电磁离合器与电磁刹车器都装置在轻合金的外壳外部; 套筒式电磁离合刹车组:电磁离合器与电磁刹车器叠加装置; 双法兰电磁离合刹车组:电磁离合器与电磁刹车器都装置在轻合金外壳内部,分为卧式与立式; 单法兰电磁离合刹车组:电磁离合器与电磁刹车器都装置在轻合金外壳内部; 双电磁离合单刹车组:两个电磁离合器装置在轻合金外壳外部,电磁刹车器装置在轻合金外壳部,可附加皮带轮; 双电磁离合器组合体:两电磁离合器都装置在轻合金外壳的外部,可附加皮带轮。 二、主要用途: 有起动、停止、切离、寸动定位、高频运转、正反转、动力分配及其他,适用于包装机械、印刷机械、电线电缆设备等。 三、主要特性: 1、结构简单紧凑,操作简便,能在极短的时间内保证准确结合。而且联接可靠,制动灵活,能实现对工作机构的自动控制及远距离操作。 2、由于采用了固定在输入轴的衔铁,就可电磁线圈固定在端盖上,克服了普通电磁离合器需在转动的线圈外圆周上设置接线滑环的缺点,大大的减小了磨损。保证对线圈供电可靠及时。控制功率小,使用寿命长。 3、用弹簧座、销子、弹簧以摩擦片组成的,可轴向移动的装置,进行轴向滑动的装置,使加工比较简单,安装维修也简便。弹簧座采用铝合金制作,减少了剩磁对离合效果的影响。在设计电磁离合器与制动器组合时,只需对销子进行剪切以及弯曲应力的校核计算就可。 4、性能稳定,动作特性和转矩特性都长期保持稳定 5、可使用于多种用途,可配合使用目的安装,可做多种运用,如动力分配、正反转等。 6、可高频度运转,动作特性极佳,转动部分惯性小,可以高频起动停止。 四、工作原理: 电磁离合器之转子被固定于入力轴上,其之电枢与电磁刹车器则在同轴而形成的出力轴,电磁离合器之轭与电磁刹车器装置于机架上。当电流通过电磁离合器时,出力轴即被带动当电磁离合器分离,当电磁刹车器有电流通过时,出力轴就会停止运转。 五、离合刹车组尺寸规格设计图

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

盘式制动器工作原理

盘式制动器工作原理 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动。制动钳上的两个摩擦片分别装在制动盘的两侧。分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好象用钳子钳住旋转中的盘子,迫使它停下来一样。这种制动器散热快,重量轻,构造简单,调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。有些盘式制动器的制动盘上还开了许多小孔,加速通风散热提高制动效率。反观鼓式制动器,由于散热性能差,在制动过程中会聚集大量的热量。制动蹄片和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。 当然,盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动液压高,必须要有助力装置的车辆才能使用。而鼓式制动器成本相对低廉,比较经济。 所以,汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮制动力要比后轮大。轿车生产厂家为了节省成本,就采用前轮

盘式制动,后轮鼓式制动的方式。 四轮盘式制动的中高级轿车,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。随着材料科学的发展及成本的降低,在汽车领域中,盘式制动有逐渐取代鼓式制动的趋向。鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用于各类汽车上。但由于结构问题使它在制动过程中散热性能差和排水性能差,容易导致制动效率下降,因此在近三十年中,在轿车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。

电磁铁的结构及工作原理

电磁铁的结构及工作原理 1.电磁铁的工作原理与典型结构 电磁铁的结构形式很多,如图所示。 按磁路系统形式可分为拍合式、盘式、E形和螺管式。按衔铁运动方式可分为转动式如图(a)所示和直动式如图(b)、(c)、(d)所示。 电磁铁的基本工作原理: 当线圈通电后,铁心和衔铁被磁化,成为极性相反的两块磁铁,它们之间产生电磁吸力。当吸力大于弹簧的反作用力时,衔铁开始向着铁心方向运动。当线圈中的电流小于某一定值或中断供电时,电磁吸力小于弹簧的反作用力,衔铁将在反作用力的作用下返回原来的释放位置。 电磁铁是利用载流铁心线圈产生的电磁吸力来操纵机械装置,以完成预期动作的一种电器。它是将电能转换为机械能的一种电磁元件。 电磁铁主要由线圈、铁心及衔铁三部分组成,铁心和衔铁一般用软磁材料制成。铁心一般是静止的,线圈总是装在铁心上。开关电器的电磁铁的衔铁上还装有弹簧,如图所示。

2.电磁铁的分类 按其线圈电流的性质可分为直流电磁铁和交流电磁铁;按用途不同可分为牵引电磁铁、制动电磁铁、起重电磁铁及其他类型的专用电磁铁。 牵引电磁铁主要用于自动控制设备中,用来牵引或推斥机械装置,以达到自控或遥控的目的;制动电磁铁是用来操纵制动器,以完成制动任务的电磁铁;起重电磁铁是用于起重、搬运铁磁性重物的电磁铁。 3.电磁铁根据所用电源的不同,有以下三种: ①交流电磁铁。阀用交流电磁铁的使用电压一般为交流220V,电气线路配置简单。交流电磁铁启动力较大,换向时间短。但换向冲击大,工作时温升高(外壳设有散热筋);当阀芯卡住时,电磁铁因电流过大易烧坏,可靠性较差,所以切换频率不许超过30次/min,寿命较短。 ②直流电磁铁。直流电磁铁一般使用24V直流电压,因此需要专用直流电源。其优点是不会因铁芯卡住而烧坏(其圆筒形外壳上没有散热筋),体积小,工作可靠,允许切换频率为120次/min,换向冲击小,使用寿命较长。但启动力比交流电磁铁小。 ③本整型电磁铁。本整型指交流本机整流型。这种电磁铁本身带有半波整流器,可以在直接使用交流电源的同时,具有直流电磁铁的结构和特性。 1、首先是电源设计,即线圈两端的电压。建议使用直流电源,因为直流电流可 以保证次吸力稳定,没有交变。介于你设计的磁吸力小,可选用5-12V直流电源(电压越大,反应速度越快)。 2、绕线组材料的选取,如果设计要求绕线组质量轻,则可选择漆包铝线。一 般情况下,选择漆包铜线,因为铜的电阻率低。 3、考虑绕线组的发热,绕线组是有电阻的,其发热功率P=U*U/R(U为电源 电压)。 4、选用横截面积合适的导线作为绕线组。 5、磁吸力F∝磁感应强度B,而B∝I*N(电流与匝数的乘积),而I=U/R,

(完整版)毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

§1制动器的结构型式及选择

§1 制动器的结构型式及选择 除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,即是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。 汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上,例如变速器第二轴的后端或传动轴的前端。摩擦式制动器按其旋转元件的形状又可分为鼓式和盘式两大类。 鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已很少采用。由于外束型鼓式制动器通常简称为带式制动器,而且在汽车上已很少采用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式结构。 盘式制动器的旋转元件是一个垂向安放且以两侧面为工作面的制动盘,其固定摩擦元件一般是位于制动盘两侧并带有摩擦片的制动块。当制动盘被两侧的制动块夹紧时,摩擦表面便产生作用于制动盘上的摩擦力矩。盘式制动器常用作轿车的车轮制动器,也可用作各种汽车的中央制动器。 车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用;而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。 鼓式制动器和盘式制动器的结构型式也有多种,其主要结构型式如下表所示.

盘式制动器使用说明书

盘式制动器使用说明书

————————————————————————————————作者:————————————————————————————————日期: ?

盘式制动器使用说明书 盘式制动器使用说明书盘式制动器使用说明书目录一、性能与用途.1二、结构特征与工作原理..1三、安装与调整..4四、使用与维护..9五、润滑...12六、特别警示...13七、故障原因及处理方法...12附图1:盘式制动器结构图...15附图2:盘形闸结 盘式制动器使用说明书 目录 一、性能与用途………………………………………………………………….1 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑…………………………………………………………….………..12 六、特别警示 (1) 七、故障原因及处理方法...................................................... (12) 附图1:盘式制动器结构图………………………………………….….…….15 附图2:盘形闸结构图…………………………………………….….…….16 附图3: 制动器限位开关结构图………………………………….….…….17 附图4: 盘式制动器的工作原理图 (18) 附图5:盘式制动器安装示意图………………………………….….…….19 附图6: 制动器信号装置安装示意图…………………………….….…….20 一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。

制动系统组成

制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。

在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。 通风制动盘

制动过程实际上是摩擦力将动能转化为热能的过程,如制动器的热量不能及时散出,将会影响其制动效果。为了进一步提升制动效能,通风制动盘应运而生。通风刹车盘内部是中空的或在制动盘打很多小孔,冷空气可以从中间穿过进行降温。 从外表看,它在圆周上有许多通向圆心的洞空,它利用汽车在行驶当中产生的离心力能使空气对流,达到散热的目的,因此比普通实心盘式散热效果要好许多。 陶瓷制动盘 陶瓷制动盘相对于一般的刹车盘具有重量轻、耐高温耐磨等特性。普通的刹车盘在全力制动下容易高热而产生热衰退,制动性能会大打折扣,而陶瓷刹车盘有很好的抗热衰退性能,其耐热性能要比普通制动盘高出许多倍。 陶瓷制动盘在制动最初阶段就能产生最大的制动力,整体制动要比传统制动系统更快,制动距离更短。当然,它的价格也是非常昂贵的,多用于高性能跑车上。 紧急制动辅助系统(EBA) 紧急制动辅助系统,其作用是当行车电脑ECU发现驾驶员进行紧急制动时,可在瞬间自动加大制动力,以防止因为司机制动力不足而发生险情。

起重及冶金电机用电磁制动器工作原理与选用

起重及冶金电机用电磁制动器工作原理与选用 王景辉 佳木斯电机股份有限公司,黑龙江佳木斯(154002) 摘 要 起重及冶金电机用电磁制动器属于断电制动,起到抱闸作用。阐述了电磁制动器(以下简称制动器)的结构和工作原理及电磁制动器的选用原则。 关键词 制动器;工作原理;选用原则 中图分类号T M343 文献标识码B 文章编号100827281(2009)022******* W ork i n g Pr i n c i ple and Selecti on of the Electromagneti c Brake of M otor for Crane and M et a llurg i ca l Appli ca ti on s W ang J inghu i Abstract Electr omagnetic brake of mot or f or crane and metallurgical app licati ons bel ongs t o deenergized braking.This paper describes the structure,working p rinci p le and selecti on p rinci p le of electr omagnetic brake. Key words B rake;working p rinci p le;selecti on p rinci p le. 0 引言 起重及冶金用三相异步电动机与普通电机相比有诸多优点。它有较大的过载能力和较高的机械强度,特别适用于那些短时或断续运行、频繁起制动的起重设备上。通常起重设备大致分为两种机构:起升机构和行走机构。在这两种机构中,为了使电机获得较稳定的低速运行,将所吊重物准确定位,最简单、常用的办法就是在电机尾端安装内置制动器。 1 制动器的结构及工作原理 起重及冶金用电机所配制动器属于常闭型设计,即无电流通过时,其轴处于制动状态,制动器的制动力矩由摩擦力产生,并且能在干式状态下工作,当接通直流电时,制动器即松开,该系列制动器由基本模块E(制动力矩可调)和基本模块N (制动力矩不可调)两种结构型式,其工作原理如图1所示。 当制动时(即断电时)经由滑键(花键)安装于轴套5上的转子4通过衔铁盘8被弹簧9压向反磨擦面7,从而产生制动力矩。此时,在衔铁盘与定子10之间会产生一个气隙S,当放松制动时定子线圈被通以直流电,所产生的磁场使衔铁盘8压缩弹簧9被定子10吸附,此时转子4被松开,制动解除。对于E型制动力矩的大小可通过调节螺母11 进行调节。 1.防尘盖 2.调节螺管 3.摩擦片 4.转子 5.轴 套 6.轴 7.法兰 8.衔铁盘 9.弹簧 10.定子 11.调节螺母 S.气隙 图1 制动器结构及工作原理 该电机选用带有直流开关的六极半波整流器,输入交流电压380V,输出直流电压180V。整流器按图2提供的接线方式接线。如想缩短制动器制动时间,可以将整流器的直流开关,按图3所示接线。对于单速非变频电机,整流器输入电源可以接到电机主电源的任意两相上,而对于双速电机或者是变频电机,整流器需要单独提供电源。 15 2009年第2期  第44卷(总第147期) (EXP LOSI O N-PROOF E LECTR I C MACH I N E) 防爆电机

定钳盘式制动器的CAD图纸 装配 零件图

定钳盘式制动器的CAD图纸装配零件图 目录 一、性能与用途 (1) 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑 (12) 六、特别警示 (13) 七、故障原因及处理方法 (12) 附图1:盘式制动器结构图 (15) 附图2:盘形闸结构图 (16) 附图3: 制动器限位开关结构图 (17) 附图4: 盘式制动器的工作原理图 (18) 附图5: 盘式制动器安装示意图 (19) 附图6: 制动器信号装置安装示意图 (20)

一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。 二、结构特征与工作原理 1、盘式制动器结构(图1) 盘式制动器是由盘形闸(7)、支架(10)、油管(3)、(4)制动器信号装置(8)、螺栓(9)、配油接头(11)等组成。盘形闸(7)由螺栓(9)成对地把紧在支架(10)上,每个支架上可以同时安装1、2、3、4对甚至更多对盘形闸,盘形闸的规格和对数根据提升机对制动力矩的大小需求来确定。 2、盘形闸结构(图2) 盘形闸由制动块(1)、压板(2)、螺钉(3)、弹簧垫圈(4)、滑套(5)、碟形

鼓式制动器的工作原理

鼓式制动器的工作原理 典型的鼓式制动器主要由底板、制动鼓、制动蹄、轮缸(制动分泵)、回位弹簧、定位销等零部件组成。底板安装在车轴的固定位置上,它是固定不动的,上面装有制动蹄、轮缸、回位弹簧、定位销,承受制动时的旋 转扭力。每一个鼓有一对制动蹄,制动蹄上有摩擦衬片。制动鼓则是安装在轮毂上,是随车轮一起旋转的部件,它是由一定份量的铸铁做成,形状似园鼓状。当制动时,轮缸活塞推动制动蹄压迫制动鼓,制动鼓受到摩擦减速,迫使车轮停止转动。 在轿车制动鼓(汽车制动泵)上,一般只有一个轮缸,在制动时轮缸受到来自总泵液力后,轮缸两端活塞会同时顶向左右制动蹄的蹄端,作用力 相等。但由于车轮是旋转的,制动鼓(汽车制动泵)作用于制动蹄的压力左右不对称,造成自行增力或自行减力的作用。因此,业内将自行增力的一侧制动蹄称为领蹄,自行减力的一侧制动蹄称为从蹄,领蹄的摩擦力矩是 从蹄的2~2.5倍,两制动蹄摩擦衬片的磨损程度也就不一样。 为了保持良好的制动效率,制动蹄与制动鼓(汽车制动泵)之间要有一个最佳间隙值。随着摩擦衬片磨损,制动蹄与制动鼓之间的间隙增大,需要有一个调整间隙的机构。过去的鼓式制动器间隙需要人工调整,用塞尺 调整间隙。现在轿车鼓式制动器都是采用自动调整方式,摩擦衬片磨损后 会自动调整与制动鼓间隙。当间隙增大时,制动蹄推出量超过一定范围时,调整间隙机构会将调整杆(棘爪)拉到与调整齿下一个齿接合的位置,从而增加连杆的长度,使制动蹄位置位移,恢复正常间隙。 轿车鼓式制动器一般用于后轮(前轮用盘式制动器)。鼓式制动器(汽车制动泵)除了成本比较低之外,还有一个好处,就是便于与驻车(停车)制动组合在一起,凡是后轮为鼓式制动器的轿车,其驻车制动器也组合在 后轮制动器上。这是一个机械系统,它完全与车上制动液压系统是分离的:利用手操纵杆或驻车踏板(美式车)拉紧钢拉索,操纵鼓式制动器的杠件扩展制动蹄,起到停车制动作用,使得汽车不会溜动;松开钢拉索,回位 弹簧使制动蹄恢复原位,制动力消失。 全浮式支承结构特点:轮毂通过轴承支承在半轴套管上,半轴外端凸缘固定在轮毂上。受力特点:只承受扭矩。 半浮式支承结构特点:半轴外端通过轴承支承在半轴套管上,轮毂直接固定在半轴上。受力特点:除承受扭矩外,外端承受各种力及玩矩。主减速器的调整: 圆锥滚子轴承预紧力调整 目的:为了减少锥齿轮传动过程中产生的轴向力所引起的齿轮轴的轴向移动,以提高轴的支承刚度,保证锥齿轮副的正常啮合。 调整的结构原理: 两内圈不动,改变两外圈的距离或者两外圈不动,改变两内圈的距离。 调整方法:加/减轴承垫片或调整调节螺母 检查方法:以1·0~1·5N·m的力矩转动叉形凸缘11。

电磁离合器及制动器

1、概数 DLD系列电磁离合器、DZD电磁制动器及其组合离合器, 均为无滑环、干式单片,具有结构紧凑、响应迅速、寿命 长久、使用可靠等优点,由于操作简便,易于实现远距离 集中控制和自动控制,故除应用在机床上外,已广泛地应 用于纺织、印染、食品、印刷、轻工、办公、医疗、建筑、 起重、运输、计算机、精密机械、工业机器人、电机等机 电产品装置上。 正常工作条件: 1、周围空气温度为-5℃~-40℃; 2、周围介质中无爆炸危险且无足以腐蚀金属和破坏绝缘的 气体及导电尘埃; 3、线圈的供电电压波动不超过+5%和-15%的额定电压值; 4、海拨不超2000M;在干式条件下工作。 DLD、DZD系列电磁离合器、制动器主要有磁轭、线圈、动 盘(制动器无动盘)、摩擦片、衔铁、法兰(见结构示意图)。 线圈通电时产生磁通吸合衔铁,从而产生摩擦扭矩,使从动 部分结合或制动。

电磁离合器、制动器的基本参数 4、安装要点及实例简介 单片电磁离合器与制动器属于干式工作,安装位置应勿靠近带有油污和润滑油飞溅的地方,离合器与制动器可安装在同轴或对接轴上,当安装在对接轴上时,必须保证两轴的同轴度,离合器安装后,磁轭与动盘间不得发生摩擦,但间隙不要超过0.3~1.5。动盘与衔铁的间隙δ应保证表中规定尺寸。 单片电磁离合器与制动器自六十年代初问世以来,经过三十多年的研究开发和实践其结构已日趋完善,规格品种更加齐全、性能和可靠性更加提高。但在正确选择和合理使用方面至今仍存在不少问题,特别在使用过程中的合理安装是充分发挥其性能的矛盾焦点。为此,为了使用户能正确掌握安装设计,选择部分典型安装实例供各机械用户参考

盘式制动器结构、工作原理盘式制动器图示前桥驱动桥盘式制动器结构

一、盘式制动器结构、工作原理 1、盘式制动器图示: 前桥驱动桥 2、盘式制动器结构 1、副钳体 2、左摩擦块 3、右摩擦块 4、自调机构 5、气室 6、主钳体 7、制动盘 8、托架 9、滑销 3、工作原理: 制动时,气室(5)推动自调机构(4)向左压出,使右摩擦块(3)与制动盘(7)右侧制动,由于制动盘(7)的轴向移动受限制,因此在反作用力的作用下,主副钳体向右移动,使左摩擦块(2)与制动盘 (7)左侧制动,最后将旋转的制动盘(7)刹住。 二、盘式制动器使用、保养 1、日常检查制动器钳体密封体:

①检查副钳体端2个滑销密封盖,如出现松脱或者遗失及时给予更换或安装; ②检查主钳体端2个滑销端盖,如出现松脱或者遗失及时给予更换或安装; ③检查主钳体上密封帽,如存在裂纹、损伤或者遗失及时给予更换或安装; ④推动主、副钳体滑动检查4个滑销密封圈,如存在裂纹和损伤及时给予更换。 2、定期检查内容: 3、制动盘失效判定标准: ①尺寸检查:如图:A=制动盘厚度45mm(新),B=制动盘厚度37mm(极限); ②裂纹检查:如图所示:检查制动盘上的裂纹和磨损划痕; A1=小裂纹在表面上延伸,此情况允许。 B1=小于0.75a长、1.5mm宽和深的裂纹径向延伸,此情况允许。 C1=小于1.5mm深的环形槽,此情况允许。 D1=径向贯通裂纹是不允许的,制动盘必须更换。 4、摩擦片更换及间隙调整:

4.1、摩擦块拆卸 4.1.1拨出传感器线束的插座,拿出摩擦块压板总成和摩擦块。 4.1.2一字槽螺钉旋具将弧形弹簧拆卸;用平口螺丝刀将传感器线束的内、外感应头撬出。取下摩擦块。 注意:撬内、外感应头应避免将绕在感应头上的线束伤断! 4.2、摩擦块安装 将摩擦块安装在托架内,再用压棒将传感器感应头预先压入摩擦块的U形槽中。 注意:摩擦块安装在托架内后,必须保证摩擦材料与制动盘对应,防止摩擦片装反后出现制动故障;传感器感应头按图示方向装入U形槽,不得装反以及压坏线束。线束插头按箭头方 向拔出 内感应头 外感应头

鼓式制动器结构及其制动性能

第2章鼓式制动器 2.1鼓式制动器概述 鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。 早期设计的制动系统,其刹车鼓的设计在1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量。制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。 另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。当然,鼓式制动器也并非一无是处,它造价便宜,而且符合传统设计。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用。 因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式的设计。 2.2鼓式制动器分类 一般内张鼓式行车制动器都采用带摩擦片的制动蹄作为固定元件。位于制动鼓内部的制动蹄在一端承受促动力时,可绕其另一端的支点向外旋转,压靠到制动鼓(旋转元件)内圆面上,产生摩擦力矩(制动力矩)进行制动。凡对制动蹄加力

使蹄转动的装置称为制动蹄促动装置,常用的促动装置有制动轮缸、凸轮促动装置及楔形促动装置,相应的鼓式制动器称为轮缸式制动器、凸轮式制动器和楔式制动器。领从蹄式制动器、双领蹄式制动器、双从蹄式制动器都是轮缸式制动器的一种。 2.3鼓式制动器工作原理及应用 鼓式制动器的旋转元件是制动鼓,固定元件是制动蹄,制动时制动蹄在促动装置作用下向外旋转,外表面的摩擦片压靠到制动鼓的内圆柱面上,对鼓产生制动摩擦力矩。凡对蹄端加力使蹄转动的装置统称为制动蹄促动装置,制动蹄促动装置有轮缸、凸轮和楔。以液压制动轮缸作为制动蹄促动装置的制动器称为轮缸式制动器;以凸轮作为促动装置的制动器称为凸轮式制动器;用楔作为促动装置的制动器称为楔式制动器。 在轿车制动鼓上,一般只有一个轮缸,在制动时轮缸受到来自总泵液力后,轮缸两端活塞会同时顶向左右制动蹄的蹄端,作用力相等。但由于车轮是旋转的,制动鼓作用于制动蹄的压力左右不对称,造成自行增力或自行减力的作用。因此,业内将自行增力的一侧制动蹄称为领蹄,自行减力的一侧制动蹄称为从蹄,领蹄的摩擦力矩是从蹄的2~2.5倍,两制动蹄摩擦衬片的磨损程度也就不一样。 为了保持良好的制动效率,制动蹄与制动鼓之间要有一个最佳间隙值。随着摩擦衬片磨损,制动蹄与制动鼓之间的间隙增大,需要有一个调整间隙的机构。过去的鼓式制动器间隙需要人工调整,用塞尺调整间隙。现在轿车鼓式制动器都是采用自动调整方式,摩擦衬片磨损后会自动调整与制动鼓间隙。当间隙增大时,制动蹄推出量超过一定范围时,调整间隙机构会将调整杆(棘爪)拉到与调整齿下一个齿接合的位置,从而增加连杆的长度,使制动蹄位置位移,恢复正常间隙。 轿车鼓式制动器一般用于后轮(前轮用盘式制动器)。鼓式制动器除了成本比较低之外,还有一个好处,就是便于与驻车(停车)制动组合在一起,凡是后轮为鼓式制动器的轿车,其驻车制动器也组合在后轮制动器上。这是一个机械系统,

电磁制动器的原理与设计

1 引言 1.1 课题研究的背景及意义 制动器是保障汽车安全运行、取得预期运行效益的最基本的使用性能,因此汽车制造厂、使用者、汽车维修和管理人员都很重视车辆的制动性。随着车辆技术的进步和汽车行驶速度的提高,这种重要性日渐突出,众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法以及采用新的技术。 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,那时的车辆质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自身质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动(图1.1)是继机械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器,克莱斯勒的四轮液压制动器于1924年问世,通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 1.前轮制动器 2.制动轮缸3、6、8.油管 4.制动踏板机构 5.制动主缸7.后轮制动器

图1.1 在液压鼓式制动器出现的若干年后,人们又发明了液压钳盘式制动器,盘式制动器又称为碟式制动器,顾名思义,是取其形状而得名。由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动。制动卡钳上的两个摩擦片分别装在制动盘的两侧。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1.2 制动系统的现状与发展 目前液压操纵仍然是最可靠、经济的方法,即使增加了防抱制动(ABS)功能后,传统的油液制动系统仍然占有优势地位。传统的控制系统只做一样事情,即均匀分配油液压力。当制动踏板踏下时,主缸就将等量的油液送到通往每个制动器的管路,并通过一个比例阀使前后制动力平衡。而ABS或其他一种制动干预系统则按照每个制动器的需要对油液压力进行调节。传统的液压制动系统发展至今已是非常成熟的技术,随着人们对制动性能要求的不断提高,防抱死制动系统(ABS)、牵引力控制系统(TCS)、电子稳定性控制程序(ESP)、主动避撞技术(ACC)等功能逐渐融入到制动系统中,越来越多的附加机构安装于制动线路上,这使得制动系统结构更加复杂,也增加了液压回路泄露的隐患以及装配、维修的难度。因此,一种结构更简捷,功能更可靠的制动系统呼之欲出。 随着电子,特别是大规模、超大规模集成电路的发展,汽车制动系统的形式也将发生变化。线控制动系统失一个全新的系统,给制动系统带来巨大的变革,为将来的车辆智能控制提供条件。随着汽车电子化的发展,现代汽车制动控制技术正朝着电制动方向发展。电制动系统首先用在混合动力制动系统车辆上,采用液压制动和电制动两种制动系统。但这种混合制动系统也只是全电制动系统的过渡方案,由于两套制动系统共存,使结构复杂,成本偏高。而线控制动因其巨大的优越性,必将取代传统的

相关主题
文本预览
相关文档 最新文档