当前位置:文档之家› 碳化硅的制备与应用

碳化硅的制备与应用

碳化硅的制备与应用
碳化硅的制备与应用

目录

摘要 (1)

关键字 (1)

1碳化硅的合成与制备 (1)

2SiC陶瓷的主要应用领域 (3)

3结束语 (5)

参考书目 (5)

碳化硅陶瓷的制备与应用

摘要:碳化硅陶瓷材料由于抗氧化性强、耐磨性能好、硬度高、热稳定性好、高温强度大、热膨胀系数小、热导率大以及抗热震和耐化学腐蚀等优良特性,广泛的应用于各个领域。本文通过对碳化硅陶瓷材料的的发展历程,特性及国内外研究状况提出了几种碳化硅陶瓷的烧结方法,并讨论其发展趋势。

关键词:碳化硅;合成与制备;烧结;应用;

1、碳化硅陶瓷的合成与制备

SiC由于其共价键结合的特点,烧结时的扩散速率相当低,即使在的2100℃的高温,C和Si的自扩散系数也仅为1.5×10-10和2.5×10-13cm2/s所以,很难采取通常离子键结合材料所用的单纯化合物常压烧结途径来制取高致密化材料,必须采用一些特殊的工艺手段或依靠第二相物质促进其烧结。

SiC很难烧结。其晶界能与表面能之比很高,不易获得足够的能量形成晶界而烧结成块体。SiC烧结时的扩散速率很低,其表面的氧化膜也起扩散势垒作用。因此,碳化硅需要借助添加剂或压力等才能获得致密材料。本制件采用Al-B-C作为烧结助剂。硼(B)在SiC晶界的选择性偏析减小晶界能,提高烧结推动力,但过量的B会使SiC晶粒异常长大。添加C(碳)可以还原碳化硅表面对烧结起阻碍作用的SiO2膜,并使表面自由能提高。但过多的碳,使制品失重,密度下降。铝(Al)有抑制晶粒长大的作用,并有增强硼的烧结助剂作用,但过量的Al却会使制件的高温强度下降。因此,必须通过试验合理确定Al,B,C的用量。

目前制备SiC陶瓷的主要方法有无压烧结、热压烧结、热等静压烧结、反应烧结等。

1.1 碳化硅陶瓷的无压烧结

无压烧结被认为是SiC烧结最有前途的烧结方法,通过无压烧结工艺可以制备出复杂形状和大尺寸的SiC部件。根据烧结机理的不同,无压烧结又可分为固

的β-SiC可通过添加B和C进行常压烧结,这相烧结和液相烧结。对含有微量SiO

2

种方法可明显改善SiC的烧结动力学。掺杂适量的B,烧结过程中B处于SiC晶界上,部分与SiC形成固溶体,从而降低了SiC的晶界能。掺杂适量的游离C对固相烧结

生成,加入的适量C有助于使SiC表有利,因为SiC表面通常会被氧化有少量SiO

2

面上的SiO

膜还原除去,从而增加了表面能。然而#对液相烧结会产生不利影响,

2

因为C会与氧化物添加剂反应生成气体,在陶瓷烧结体内形成大量的开孔,影响致密化进程。SiC的烧结工艺中,原料的纯度、细度、相组成十分重要。S.Proehazka 通过在超细β-SiC粉体(含氧量小于2%)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98%的SiC烧结体。但SiC-B-C系统属于固相烧结的范畴,需要的烧结温度较高,并且断裂韧性较低,断裂模式为典型的穿晶断裂,晶粒粗大且均匀性差。国外对SiC的研究焦点主要集中于液相烧结上,即以一定数量的

烧结助剂,在较低的温度下实现SiC致密化。SiC的液相烧结相对于固相烧结,不仅烧结温度有所降低,微观结构也改善了,因而烧结体的性能也较固相烧结体有所提高。

通过对SiC陶瓷显微结构的研究发现,断裂韧性好的SiC陶瓷晶粒粗大并且呈棒状结构。棒状晶粒在提高断裂韧性的同时,降低了SiC陶瓷的强度。为了在降低烧结温度的同时获得较好的强度和韧性,许多人通过不同的添加剂以调整玻璃相的组分,试图改善陶瓷的烧结性能。烧结过程中,由于晶界液相的引入和独特的界面结构导致了界面结构弱化,材料的断裂也变为完全的沿晶断裂模式,结果

使材料的强度和韧性显著提高。但考虑到采用Al

2O

3

添加剂,生成低熔点、高挥发

性的玻璃相,在较高的温度时将发生强烈挥发,引起材料的失重,对材料的致密

化产生不利的影响,所以要适当提高添加剂中Al

2O

3

的质量分数。

1.2 碳化硅陶瓷的热压烧结

SiC的共价键很强,致使烧结时的体积和晶界扩散速率相当低;SiC晶粒表面的SiO

2

薄膜,同时也起到了扩散势垒的作用。因此不使用添加剂或高压力,将SiC 烧结到高的密度是相当困难的。Nadeau指出,不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结最有效的添

加剂。https://www.doczj.com/doc/ba11575822.html,nge研究了添加不同量Al

2O

3

对热压烧结SiC的性能影响,认为热压烧

结致密是靠溶解--再沉淀机理。为了进一步降低烧结温度,降低生产成本,世界各国投入大量的人力、物力、财力进行了深入的研究。热压烧结虽然能降低烧结温度,并且具有较高的烧结密度和抗弯强度。但是热压烧结工艺只能制备形状简单的SiC部件,而且一次热压烧结过程中所制备的产品数量很小,因此不利于工业化生产。

1.3 碳化硅陶瓷的热等静压烧结

传统的烧结工艺(无压烧结或热压烧结),如果不加入适当的添加剂,纯SiC 很难烧结致密。为了获得致密的SiC烧结体,必须采用亚微米级SiC细粉,并加入少量合适的烧结添加剂。但是添加剂的引入,SiC陶瓷的许多性能必定受到影响。为了克服传统烧结工艺存在的缺陷,Duna以B和C为添加剂,采用热等静压烧结工艺,在1900℃便获得了密度大于98%、室温抗弯强度高达600MPa左右的细晶SiC 陶瓷。尽管热等静压烧结可获得形状复杂的致密SiC制品,并且制品具有较好的力学性能,但是HIP烧结必须对素坯进行包封,所以很难实现工业化生产。

1.4 碳化硅陶瓷的其他烧结方法

要进行SiC陶瓷的低温烧结,还可采用反应烧结。反应烧结SiC又称自结合SiC,反应烧结虽可制得形状复杂的致密SiC陶瓷,并且具有良好的抗热震性,但

烧结体中相当数量SiC的存在,使得反应烧结的SiC陶瓷高温性能较差。所谓反应烧结,是通过多孔坯件同气相或液相发生化学反应,使坯件质量增加,孔隙减小,并烧结成具有一定强度和尺寸精度的成品的工艺。同其它烧结工艺比较,反应烧结在致密过程中的尺寸变化小,可以制造尺寸精确的制品。对于反应烧结的SiC 特别适合于塑性成形方法成型(如冷静压和模压等)。其塑化剂可用热固性树脂如酚醛树脂。不必像其他陶瓷的生产那样在成形后除去塑化剂。因为塑化剂是提供与硅反应的碳源的载体。八十年代国外又通过微波烧结技术成功地在较低的温度下烧结了SiC陶瓷,但微波烧结的机理还很不清楚,所以关于这一方面的报道仍很少。

2、 SiC陶瓷的主要应用领域

2.1 磨料

由于其超硬性能,可制备成各种磨削用的砂轮、砂布、砂纸以及各类磨料,广泛应用于机械加工行业。我国工业碳化硅主要作磨料用,黑色碳化硅制成的磨具,多用于切割和研磨抗张强度低的材料,如玻璃、陶瓷、石料和耐火物等,同时也用于铸铁零件和有色金属材料的磨削。绿色碳化硅制成的磨具,多用于硬质合金、钛合金、光学玻璃的磨削,同时也用于缸的珩磨及高速钢刀具的精磨。立方碳化硅专用于微型轴承的超精磨,采用W3.5立方碳化硅微粉制成的油石对轴承(材料ZGCrl5)超精磨,其光洁度可由9直接磨到12以上。因此,在相同粒度的其他磨料中,立方碳化硅的加工效率最高。

2.2 耐火材料

国外将碳化硅用作耐火材料的数量大于用作磨料。我国亦在不断扩大这方面的应用,根据国外厂商的习惯,耐火材料黑色碳化硅通常分为3种牌号:

①高级耐火材料黑碳化硅。这种牌号的化学成分要求与磨料用黑色碳化硅完全相同,主要用以制造高级碳化硅制品,如重结晶碳化硅制品、燃气轮机构件、喷嘴、氮化硅结合碳化硅制件、高炉高温区衬材、高温窑炉构件、高温窑装窑支承件、耐火匣钵等。

②二级耐火材料黑色碳化硅,含碳化硅大于90%。主要用于制造耐中等高温的窑炉构件,如马弗炉炉衬材料等。这些构件除利用碳化硅的耐热性、导热性外,在很多场合还兼用它的化学稳定性。

③低品位耐火材料黑色碳化硅,其碳化硅含量要求大于83%,主要用于出铁槽、铁水包,炼锌业和海绵铁制造业等的内衬。

2.3 脱氧剂

炼钢时通常要使用硅铁脱氧,近代发展了用碳化硅代替硅铁作脱氧剂,炼出的钢质量更好、更经济。因为用碳化硅脱氧时,成渣少而且很快,有效地减少了渣中某些有用元素的含量,炼钢时间短而成分更好控制,脱氧剂黑色碳化硅在美

国和日本等国家的钢铁工业中用得很普遍。磨料用或耐火材料用碳化硅在炉中所生成的适合于作脱氧剂的物料,都能全部销售应用于生产而无须回炉,产品综合利用率高,生产的经济效果极佳。

2.4 军事方面

用碳化硅陶瓷与其他材料一起组成的燃烧室及喷嘴,已应用于火箭技术中。碳化硅基复合材料制备的阿丽亚娜火箭尾喷管已成功应用。碳化硅密度居中,比Al2O3轻20%,硬度和弹性模量较高,价格比B4C低得多,还可用于装甲车辆和飞机机腹及防弹防刺衣等。碳化硅材料还具有自润滑性及摩擦系数小,约为硬质合金的一半。它的抗热震性好、弹性模量高等特点在一些特殊地方获应用,如用来制成高功率的激光反射镜其性能优于铜质,由于密度低、刚性好、变形小。CVD 与反应烧结的碳化硅轻量化反射镜已经在空间技术中大量使用。

2.5 电气和电工

利用碳化硅陶瓷的高热导性能,绝缘性好作为大规模集成电路的基片和封装材料。碳化硅发热体是一种常用的加热元件,由于它具有操作简单方便,使用寿命长,使用范围广等优点,成为发热材料中最经久耐用且价廉物美的一种,使用温度可达1600℃。此外,碳化硅还可用做避雷器的阀体和远红外线发生器等[11]。

2.6 耐磨及高温件

利用碳化硅陶瓷的高硬度、耐磨损、耐酸碱腐蚀等性能,在机械工业、化学工业中被用来制备新一代的机械密封材料,如滑动轴承、耐腐蚀的管道、阀片和风机叶片。尤其是作为机械密封材料已被国际上确认为自金属、氧化铝、硬质合金以来第四代基本材料,它的抗酸、抗碱性能与其它材料相比是极为优秀的,几乎没有一种材料可与之相比。利用碳化硅陶瓷的高热导性能,可用于冶金工业窑炉中的高温热交换器等,使用温度可达1300℃;用电镀方法将碳化硅微粉涂敷于水轮机叶轮上,可以大大提高叶轮的耐磨性能,延长其检修周期。用机械压力将立方碳化硅磨粉与W28微粉压入内燃机的汽缸壁上,可延长缸体使用寿命达1倍以上。使用碳化硅与硼砂的混合物对45#钢收割机刀片进行表面渗硼化学热处理,可使其渗硼层的硬度达到克氏显微硬度1800~2000kg/mm2,使其使用寿命延长数倍。用碳化硅制成的托辊,早已成功地应用于轧钢机上,它比金属托辊有更好的耐热性与耐磨性,并能改善所轧钢材的质量。用碳化硅材料制成的砂泵及水力旋流器,具有很好的耐磨性能;用碳化硅材料制成的缸套等耐磨件可广泛用于石油和化工等行业。碳化硅还可作为高温热机械用材料,被首选为热机械的耐高温部件。诸如:作高温燃汽轮机的燃烧室、涡轮的静叶片、高温喷嘴等。用碳化硅制成活塞与气缸套用于无润滑油无冷却的柴油机上,可减少摩擦30%~50%,使噪声明显降低。

SiC陶瓷由于具有良好的物理与化学性能,在各工业部门内应用已倍受关注,

尤其是在热机工程及机械密封行业中所显示的良好性能和应用潜力已逐步为人们所认识。机械密封行业所需的结构陶瓷,要求材料具有高强度、高韧性、低蠕变性、耐磨擦磨损、耐腐蚀性以及良好的抗氧化性,而SiC陶瓷恰恰具备上述特点,所以成为了用作密封件的极好材料。目前,工业生产所用的机械密封材料中有近一半采用碳化硅。

3、结束语

SiC陶瓷在石油、化工、汽车、机械和宇航等领域中的应用范围越来越广泛,迫切需要在提高SiC陶瓷性能的同时,不断改进制造技术,降低生产成本。实现SiC陶瓷的低温烧结,可显著降低能耗,明显降低生产成本,推动SiC陶瓷产品的产业化。与其它结构陶瓷相比,碳化硅原料来源丰富、制备工艺方法多,可以适应各种不同使用工况的要求,是除了氧化铝以外最可能形成产业化规模的工程结构陶瓷.世界各主要陶瓷生产厂家都十分重视碳化硅材料的研究与应用开发。我国是碳化硅原料生产大国,又具有十分广泛的工业与高技术需求,此外由于碳化硅产品的需求领域覆盖高、中、低档材料,有利于产业化规模的形成.因此作为推动结构陶瓷产业化的重要突破口,我们应积极做好碳化硅材料的研制、开发与推广工作,以尽快形成我国自己的碳化硅产业。

参考书目:

[1]李世普.特种陶瓷工艺学[M].武汉理工大学出版社,1997.

[2]金志浩.工程陶瓷材料M].机械工业出版社,2000.

[3]刘水刚高伟 .化工新型材料无机材料学报 2004 第3期

[4]孙莹;谭寿洪;江东亮 .多孔碳化硅材料的制备及其催化性能.无机材料学报2003(04)

[5]碳化硅制备方法含量检测及应用指导手册.北京:中国科技出版社,2006

[6]秦成娟,王新生.碳化硅陶瓷的研究进展[J].山东陶瓷,2006.4

[7]芳玲;罗丰华.碳化硅陶瓷的制备.陶瓷科学与艺术[J].2006第6期

氮化硅结合碳化硅材料的生产与应用_张林

氮化硅结合碳化硅材料的生产与应用 ◆ 张 林 孟宪省 山东工业陶瓷研究设计院 淄博255031 ◆ 赵光华 朱喜仲 水利部丹江口水利枢纽管理局碳化硅总厂 摘 要 阐述了氮化硅结合碳化硅窑具材料的生产技术、生产工艺流程及使用情况。指出作为现代窑具的替代产品,它具有较好的市场前景。 关键词 氮化硅结合碳化硅,工艺,生产,应用 1 生产工艺与性能 1.1 混料 压制料是按配方称量SiC砂和Si粉,倒入高效混料机,并均匀加入事先称量好且加水稀释的添加剂和临时结合剂。搅拌15~20min,并过筛,放入料仓困料24h以上。 挤出料是根据配方,用上述相似的方法进行混料和困料。并应额外加入可塑剂。 注浆料是先将Si粉放在水池中浸泡48h后,再由泥浆泵抽送到压滤机经压滤处理。根据配方称量SiC砂和Si饼,倒入高速搅拌罐并加入一定量的水、临时结合剂和悬浮剂搅拌2h。 1.2 成型 压制成型是将困好的料准确称量后,均匀布于模具中,振动加压成型,再经真空吸盘转移到储坯车上。 挤出成型是将混合料放入真空练泥机进行真空处理,使泥料均匀混合。泥料用塑料薄膜覆盖严实,困料24h,再经真空挤出成型机挤出。 浇注成型主要是满足异型件要求,由于SiC 砂和Si粉为瘠性料,自身密度大,导致泥浆的悬浮性差,易产生沉淀,使泥浆内颗粒分布不均匀。因此,配方中颗粒不能太粗且比例要适当,同时加入悬浮剂和解胶剂(一般采用明胶),并采用压力注浆。然后把经24h搅拌过的泥浆从储浆罐抽入压力注浆罐中,进行真空处理,注浆罐带有慢速搅拌机,加压后泥浆通过管道输送至浇注台的石膏模内成型;保持一定的压力和时间,待吃浆厚度达到要求后,空浆;坯体巩固后,脱模。 1.3 干燥 成型后粗修和整形的合格坯体,入储坯车至干燥室内。干燥室的热风来自热风炉(或窑炉余热利用),热风温度以100~120℃为好,有条件也可使用电热干燥。应严格控制升温速度,以免坯体出现变形或开裂。坯体干燥3天。达到干燥残余水分(一般<0.5%)后推出冷却,经精修坯体和生坯检查,合格的进入氮化炉烧成。 1.4 烧成 合格干燥品装入窑车进氮化室,对氮化反应空间密封后推入梭式窑,接上充氮管和抽真空管,升温至700~1450℃进行抽真空和氮化烧成。中高温氮化阶段(指1100℃以上),严格控制升温制度及氮气质量,氮气纯度应达到99.99%以上。在1180℃及1280℃两个反应高峰期应增加保温时间,以免反应过速出现“流硅”。 1.5 制品的性能 氮化硅结合碳化硅制品抗折强度随温度升高而提高,至1400℃时,强度开始下降,但到1500℃时仍保持常温抗折强度指标。氮化硅结合碳化硅材质的高温抗折强度是普通耐火材料的4~8倍;热膨胀系数是高铝耐火材料的一半;导热系数是一般耐火材料的7~8倍[1]。 生产应用 NAIHU O CAILIAO 1999,33(3)156~157,175  收稿日期:1998-09-07编辑:徐慧娟156  耐火材料1999/3

碳化硅粉体的制备及改性技术

随着科学技术的发展, 现代国防,空间技术以及汽车工业等领域不仅要求工程材料具备良好的机械性能,而且要求其具有良好的物理性能。碳化硅(SiC)陶瓷具有高温强度和抗氧化性好、耐磨性能和热稳定性高、热膨胀系数小、热导率高、化学稳定性好等优点,因而常常用于制造燃烧室、高温排气装置、耐温贴片、飞机引擎构件、化学反应容器、热交换器管等严酷条件下的机械构件,是一种应用广泛的先进工程材料。它不仅在正在开发的高新技术领域(如陶瓷发动机、航天器等)发挥重要作用,在目前的能源、冶金、机械、建材化工等[1]领域也具有广阔的市场和待开发的应用领域。为此,迫切需要生产不同层次、不同性能的各种碳化硅制品。碳化硅的强共价键导致其熔点很高,进而使SiC粉体的制备、烧结致密化等变得更加困难。本文综述了近些年碳化硅粉体的制备及改性、成型和烧结工艺三个方面的研究进展。 [1]蔡新民,武七德,刘伟安.反应烧结碳化硅过程的数学模型[J].武汉理工大学学报, 2002, 24(4): 48-50 1 碳化硅粉体的制备及改性技术 碳化硅粉体的制备技术就其原始原料状态主要可以分为三大类:固相法、液相法和气相法。 1.1 固相法 固相法主要有碳热还原法和硅碳直接反应法。碳热还原法又包括阿奇逊(Acheson)法、竖式炉法和高温转炉法。SiC粉体制备最初是采用Acheson法[2],用焦炭在高温下(2400 ℃左右)还原SiO2制备的,但此方法获得的粉末粒径较大(>1mm),耗费能量大、工艺复杂。20世纪70年代发展起来的ESK法对古典Acheson法进行了改进,80年代出现了竖式炉、高温转炉等合成β-SiC粉的新设备。随着微波与固体中的化学物质有效而特殊的聚合作用逐渐被弄清楚,微波加热合成SiC粉体技术也日趋成熟。最近,L N. Satapathy等[3]优化了微波合成SiC的工艺参数。他们以Si+2C为起始反应物,采用2.45 GHz的微波在1200-1300 ℃时保温5分钟即可实现完全反应,再通过650 ℃除碳即可获得纯的β-SiC,其平均粒径约0.4 μm。硅碳直接反应法又包括自蔓延高温合成法(SHS)和机械合金化法。SHS还原合成法利用SiO2与Mg之间的放热反应来弥补热量的不足,该方法得到的SiC粉末纯度高,粒度小,但需要酸洗等后续工序除去产物中的Mg。杨晓云等[4]将Si 粉与C 粉按照n(Si):n(C) = 1:1制成混合粉末,并封装在充满氩气的磨罐中,在WL-1 行星式球磨机上进行机械球磨,球磨25 h 后得到平均晶粒尺寸约为6 nm 的SiC 粉体。 [2] 宋春军,徐光亮. 碳化硅纳米粉体的合成、分散与烧结工艺技术研究进展[J].材料科学与工艺,2009,17(2):168~173 [3] L N. Satapathy,P D. Ramesh,Dinesh Agrawal,et al. Microwave synthesis of phase-pure, fine silicon carbide powder[J].Materials Research Bulletin, 2005, 40(10):1871-1882. [4] 杨晓云, 黄震威. 球磨Si, C 混合粉末合成纳米SiC 的高分辨电镜观察. 金属学报,2000, 36(7): 684-688. 1.2 液相法 液相法主要有溶胶-凝胶(Sol-gel)法和聚合物热分解法。溶胶凝胶法为利用含Si和含C的有机高分子物质,通过适当溶胶凝胶化工艺制取含有混合均匀的Si和C的凝胶,然后进行热解以及高温碳热还原而获得碳化硅的方法。Limin Shi等[5]以粒径9.415 μm的SiO2为起始原料,利用溶胶凝胶法在其表面包覆一层酚醛树脂,通过热解然后1500 ℃于Ar气氛下进行还原反应,获得了粒径在200 nm左右的SiC颗粒。有机聚合物的高温分解是制备碳化硅的有效技术:一类是加热凝胶聚硅氧烷,发生分解反应放出小单体,最终形成SiO2和C,再由碳还原反应制得SiC 粉;另一类是加热聚硅烷或聚碳硅烷放出小单体后生成骨架,最终形成SiC 粉末。

碳化硅的应用

碳化硅 碳化硅,又称为金钢砂或耐火砂,英文名Silicon Carbide,分子式SiC。 纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。绿色至蓝黑色。介电常数7。硬度9Mobs。A-是半导体。迁移率(300 K), cm2 / (VS),400电子和50空穴,谱带间隙eV,303(0 K)和2.996(300 K);有效质量0.60电子和1.00空穴,电导性,耐高温氧化性能。相对密度3.16。熔点2830℃。导热系数(500℃)22. 5 , (1000℃)23.7 W / (m2K)。热膨胀系数:线性至100℃:5.2×10-6/ ℃,不溶于水、醇;溶于熔融碱金属氢氧化物。 碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。碳化硅为晶体,硬度高,切削能力较强,化学性能力稳定,导热性能好。 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。 碳化硅的用途是十分广泛的,目前主要是用作磨料和耐火材料,这两项用途占了碳化硅产量中的大部分。通常磨料用的颗粒粒级很窄,反之耐火材料不同。下面分几个方面介绍碳化处的主要用途。 一、磨料 由于碳化硅具有很高的硬度、化学稳定性和一定的韧性,所以是一种用途很广的磨料,可用以制造砂轮、油石、涂附磨具或自由研磨。它主要是用于研磨玻璃、陶瓷、石材等非金属材料、铸铁及某些非铁金属,它与这些材料之间的反应性很弱。由于它是普通废料中硬度最高的材料,所以包常用以加工硬质合金、钛合金、高速钢刀具等难磨材料及修正砂轮用。碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁、橡胶使用寿命的5~20倍,也是航空飞行跑道的理想材料之一。 其中黑色碳化硅和绿色碳化硅的应用也有所差别。黑碳化硅制成的磨具,多用于切割和研磨抗张强度低的材队如玻璃、陶瓷、石料和耐火物氯同时也用于铸铁零件和有色金属材料的磨削。绿碳化硅制成的磨具,多用于硬质合金、钦合金、光学玻璃的磨削,同时也用于缸缸和高速钢刀具的精磨。 由于其优良的耐磨性,碳化硅在冶金选矿行业中也有应用。参见《碳化硅在选矿工艺中的应用》。 二、耐火材料和耐腐蚀材料 这一用途是由于它的高熔点(分解温度)、化学惰性和抗热震性。日前生产碳化硅耐火材料的主要方法包括压制和烧结碳化硅、压制和再结晶碳化硅、浇注和再结晶碳化硅、碳化硅

第三代半导体面SiC碳化硅器件及其应用

件)器及其应用i三第代半导体面-SC(碳化硅以其优良的物理化学特性和电特性成为制SiC作为一种新型的半导体材料,造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重器件的特性要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件和各类传感器已逐步成为SiCGaAs器件.因此,远远超过了Si器件和关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC 上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,

均为SiO2,这意味上制造出来.尽管只是简SiC帕型器件都能够在M 器件特别是Si着大多数. 单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC MOSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能. 1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV 的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边

【CN109748282A】一种低温制备纳米碳化硅的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910227916.3 (22)申请日 2019.03.25 (71)申请人 东北大学 地址 110819 辽宁省沈阳市和平区文化路 三巷11号 (72)发明人 孙蔷 王增榕  (74)专利代理机构 大连理工大学专利中心 21200 代理人 陈玲玉 梅洪玉 (51)Int.Cl. C01B 32/97(2017.01) B82Y 40/00(2011.01) H01M 4/58(2010.01) H01M 10/0525(2010.01) B01J 32/00(2006.01) (54)发明名称 一种低温制备纳米碳化硅的方法 (57)摘要 本发明提出了一种低温制备纳米碳化硅的 方法,该方法采用“双限域”过程,首先通过热解 二氧化硅/聚合物的复合物制备二氧化硅/碳的 复合物,然后将得到的复合物与金属镁或钙机械 混合,在密闭的反应器内热处理,最后,用盐酸和 氢氟酸依次清洗可得到纳米结构SiC。在这一合 成路线中二氧化硅/碳复合物中的碳骨架提供第 一限域效应,限制纳米SiC的长大,而密闭反应器 提供第二限域效应,降低碳热还原的温度。该方 法制备的纳米碳化硅具有大的比表面积和丰富 的孔隙,可以作为载体负载金属银催化剂,以及 用于锂离子电池负极材料。本发明提供的纳米碳 化硅制备方法,工艺过程简单、便于实现规模化 生产。权利要求书1页 说明书3页 附图5页CN 109748282 A 2019.05.14 C N 109748282 A

权 利 要 求 书1/1页CN 109748282 A 1.一种低温制备纳米碳化硅的方法,其特征在于,包括步骤如下: (1)采用聚合物以及纳米尺度二氧化硅作为原料,按聚合物与二氧化硅的质量比在1: 5-0.5之间进行机械混合; (2)将(1)制备的混合物在500-900℃内热解1-4h,生成二氧化硅/碳复合物;所述热解气氛为氩气或氮气,气流量为0.2-3L/min,升温速率为1-10℃/min; (3)将(2)得到的二氧化硅/碳复合物与金属还原剂进行机械混合,然后转移到密闭反应器中,随后进行热处理;热处理温度为400-750℃;得到碳热还原产物; (4)将(3)碳热还原产物置于混合酸中,静置3-48h,后用去离子水洗涤,最后置于烘箱干燥,制得纳米碳化硅;所述混合酸为1:1-5体积比混合的氢氟酸与浓盐酸,混酸中氢离子浓度为0.1-1.0M/L。 2.根据权利要求1所述的一种低温制备纳米碳化硅的方法,其特征在于,(1)中所述的聚合物为碳含量在30wt%以上的聚合物。 3.根据权利要求2所述的一种低温制备纳米碳化硅的方法,其特征在于,(1)中聚合物为酚醛树脂、淀粉、纤维素、甲壳素、脲醛树脂中的一种或两种以上的混合。 4.根据权利要求1或2或3所述的一种低温制备纳米碳化硅的方法,其特征在于,(3)中热处理温度为400-550℃。 5.根据权利要求1或2或3所述的一种低温制备纳米碳化硅的方法,其特征在于,(1)中纳米尺度二氧化硅的形貌为球型和棒状,且粒径在5-80nm范围内。 6.根据权利要求1或2或3所述的一种低温制备纳米碳化硅的方法,其特征在于,(3)中所述金属还原剂为钠、镁或钙中的一种;密闭反应器的材质为不锈钢或铜。 7.根据权利要求1或2或3所述的一种低温制备纳米碳化硅的方法,其特征在于,(4)中干燥温度80℃,干燥4-10h。 8.根据权利要求1或2或3所述的一种低温制备纳米碳化硅的方法,其特征在于,(1)和(3)中机械混合方式为球磨或机械搅拌。 9.权利要求1-8任一所述方法制备的纳米碳化硅的应用,其特征在于,介孔结构的纳米碳化硅,应用于锂离子电池电极材料和催化剂载体。 2

碳化硅的用途

碳化硅的用途 碳化硅是典型的多晶型化合物,按大类来分,有α-碳化硅和β-碳化硅两种。α-碳化硅做为磨料有黑、绿两种品种。β-碳化硅是制备碳化硅类陶瓷的主要原料。碳化硅的用途十分广泛,如:冶金、机械、化工、建材、轻工、电子、发热体。磨料可作为冶金工业的净化剂、脱氧剂和改良剂。在机械加工方面可作为合成硬质合金刀具;加工后的硅碳板可作为耐火材料用于陶瓷烧制的棚板。通过精加工后生产的微粉,可用于高科技电子元器件和远红外线辐射材料的涂料。高纯度精微粉可供国防工业航空航天器皿的涂层。对国际国内各经济领域的用途十分广阔。 碳化硅半导体能应对“极端环境”,据称,碳化硅晶片甚至可以经受住金星或太阳附近的热度。前期的研究表明,即使在560摄氏度的高温中,碳化硅晶片在没有冷却装置的情况下仍能正常运作。碳化硅晶片在通讯领域具有广阔的运用前景,能让高清晰电视发射器提供更清晰的信号和图像;也可以用在喷气和汽车引擎中,监测电机运转。同时,它还可运用于太空探索领域,帮助核动力飞船执行更繁杂的任务。法国物理学家预言,在芯片制造领域,碳化硅取代硅已为时不远。 1、磨料--主要因为碳化硅具有很高硬度,化学稳定性和一定韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自由研磨,从而来加工玻璃、陶瓷、石材、铸铁及某些非铁金属、硬质合金、钛合金、高速钢刀具和砂轮等。

2、耐火材料和耐腐蚀材料---主要因为碳化硅具有高熔点(分解度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用棚板和匣钵、炼锌工业竖缸蒸馏炉用碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。 3、化工用途--因为碳化硅可在溶融钢水中分解并和钢水中离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁净化剂,即用作炼钢脱氧剂和铸铁组织改良剂。这一般使用低纯度碳化硅,以降低成本。同时还可以作为制造四氯化硅原料。 4、电工用途--用作加热元件、非线性电阻元件和高半导体材料。加热元件如硅碳棒(适用于1100~1500℃工作各种电炉),非线性电阻元件,各式避雷阀片。 5、其它配制成远红外辐射涂料或制成碳化硅硅板用远红外辐射干燥器中。 碳化硅用途细分: 1、有色金属冶炼工业的应用 利用碳化硅具有耐高,强度大,导热性能良好,抗冲击,作高间接加热材料,如坚罐蒸馏炉,精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等。 2、钢铁行业方面的应用 利用碳化硅的耐腐蚀,抗热冲击耐磨损,导热好的特点,用于大型高炉内衬提高了使用寿命。 3、冶金选矿行业的应用

第三代半导体面SiC碳化硅器件及其应用

第三代半导体面-SiC(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在Si C上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC M OSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC 材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和K ansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. 1.2 SiC功率器件 由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了

碳化硅陶瓷及制备工艺

碳化硅陶瓷性能及制造工艺 碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。 SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强 的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱 溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的 SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性 能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。 SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在

SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。 现就SiC陶瓷的生产工艺简述如下: 一、SiC粉末的合成: SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有:1、Acheson法: 这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。 2、化合法: 在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合

聚碳硅烷低温制备碳化硅泡沫陶瓷

硅酸盐学报 田 仕 等:TiB 2粒径对BN–TiB 2复相陶瓷致密化和性能的影响 · 1763 · 第39卷第11期 聚碳硅烷低温制备碳化硅泡沫陶瓷 刘 卫1 ,黎 阳1,陈 璐1,2 (1. 贵州师范大学材料与建筑工程学院,贵阳 550014;2. 贵州大学材料与冶金学院,贵阳 550025) 摘 要:采用具有连通气孔的聚氨酯海绵浸渍聚碳硅烷(polycarbosilane ,PCS)、碳化硅微粉与四氢呋喃配制的浆料,挂浆素坯经热氧化不熔化处理后,在惰性气氛中于1 000 ℃热解制备碳化硅泡沫陶瓷。研究了固相含量和PCS 含量对碳化硅泡沫陶瓷微观结构、体积密度、线收缩率和抗弯强度的影响,结果表明:固相含量为43.1%~69.6%、PCS 含量为5%~20%的浆料在烧成过程中均可得到SiC 泡沫陶瓷。随PCS 含量提高,泡沫陶瓷线收缩率逐渐升高;抗弯强度随固相含量的提高而增加,随PCS 含量的增加先升高再降低;固相含量为69.6%、PCS 含量为10%的浆料制备的SiC 泡沫陶瓷抗弯强度达3.9 MPa 。 关键词:聚碳硅烷;碳化硅泡沫陶瓷;聚氨酯海绵 中图分类号:TQ174.1+2 文献标志码:A 文章编号:0454–5648(2011)11–1763–05 网络出版时间:2011–10–25 10:49:06 DOI :CNKI:11-2310/TQ.20111025.1049.009 网络出版地址:https://www.doczj.com/doc/ba11575822.html,/kcms/detail/11.2310.TQ.20111025.1049.009.html Silicon Carbide Foamed Ceramics Prepared with Polycarbosilane at Low Sintering Temperature LIU Wei 1 ,LI Yang 1,CHEN Lu 1,2 (1. School of Materials and Architecture Engineering, Guizhou Normal University, Guiyang 550014; 2. Materials and Metallurgical Colloge, Guizhou University, Guiyang 550025, China) Abstract: Polyurethane sponges were dipped into a slurry prepared with polycarbosilane (PCS), silicon carbide powder and tetrahy-drofuran in order to obtain the green body. Silicon carbide foamed ceramics were fabricated of pyrolysis of the thermal oxidation treated green body at 1 000 ℃ under inert atmosphere. Effect of the solid content of slurry and PCS content on microstructure, vol-ume density, linear shrinkage and flexural strength of the foamed ceramics were investigated. The results show that silicon carbide foamed ceramics can be obtained from the slurry with the solid content of slurry from 43.1% to 69.6% and PCS content from 5% to 20%. The linear shrinkage gradually increased with increasing the PCS content. The flexural strength of the foamed ceramics in-creased with the increase of the solid content in slurry, but it increased firstly and then decreased with the increase of the PCS content. The flexural strength of the silicon carbide foamed ceramics prepared from slurry of the solid content of 69.6% and PCS content of 10% reached 3.9 MPa. Key words: polycarbosilane; silicon carbide foamed ceramics; polyurethane sponge 近年来,泡沫陶瓷已广泛用作隔热隔音材料和医用材料,以及工业污水处理、汽车尾气处理、电工电子和生物化学等领域。碳化硅(silicon carbide ,SiC)泡沫陶瓷具有质量轻、介电常数高、比表面积大、抗化学腐蚀性能优良,可在恶劣环境下长时间使用等优异性能,在航空航天、电子、生物医学和 冶金等领域具有广阔的应用前景[1–2]。 传统SiC 泡沫陶瓷制备工艺多以SiC 粉、高岭土粉和氧化铝粉为 原料制成浆料,并利用聚氨酯海绵进行挂浆处理,所制备的SiC 泡沫陶瓷含有一定的杂质,且烧成温度较高[3–5]。 聚碳硅烷(polycarbosilane ,PCS)作为SiC 陶瓷先驱体,已广泛应用于制备陶瓷纤维、纳米复相陶瓷、陶瓷基复合材料和陶瓷涂层,具有陶瓷产率高、合成产物杂质少和烧成温度低等优点[6],是一种理想的低温烧结SiC 泡沫陶瓷的黏合剂。聚氨酯海绵 收稿日期:2011–04–20。 修改稿收到日期:2011–06–06。 基金项目:贵州省教育厅自然科学基金重点项目(2009–0036)和贵阳市 科学技术计划项目(2009第1–055号)资助。 第一作者:刘 卫(1966—),女,硕士,教授。 Received date: 2011–04–20. Approved date: 2011–06–06. First author: LIU Wei (1966–) female, master, professor. E-mail: liyang3300@https://www.doczj.com/doc/ba11575822.html, 第39卷第11期 2011年11月 硅 酸 盐 学 报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 39,No. 11 November ,2011

碳化硅材料在汽车上面的应用探究

新型碳化硅材料在汽车上面的应用 1摩擦副材料的选配 由于航空用离合器是工作在高速、高温、高载荷状态下,楔块的材料应同时满足强度及耐磨损的需求,宜选用高强度、高温、硬度高、高导热性、耐热冲击、低热膨涨系数性质的材料, 根据以上使用特性,楔块常用材料一般选Cr14Mo4V、Gr4Mo4V、W18Gr4V、M -50、AMS6490等耐高温材料,硬度一般在HRC63左右。而相配合的内外套常选用镍铬钼材料(如18CrNi4A、SAE8640、AISI9310)或轴承钢ZGGr15等,滚道表面最小硬度不低于HRC60。 2 碳化硅等特种陶瓷的结构性能及种类 陶瓷的性能由两种因素决定。首先是物质结构,主要是化学键的性质和晶体结构。它们决定陶瓷材料的性能,如耐高温性、半导体性及绝缘性等。其次是显微组织,包括分布、晶粒大小、形状、气孔大小和分布、杂质、缺陷等。陶瓷材料在性能上有其独特的优越性。在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;在电性能方面有绝缘性、压电性、半导体性、磁性等;在化学方面有催化、耐腐蚀、吸附等功能;在生物方面,具有一定生物相容性能,可作为生物结构材料等。但也有它的缺点,其致命缺点是脆性。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。近期研究表明:用不同配比的各种原料和陶瓷复合材料制成的纳米级原材料经烧结可提高韧性。这一发现吸引了许多研究者,成为国际上研究的热点。预期合成陶瓷研究将使全陶瓷内燃机尽快成为现实。这是21世纪的新挑战,将使汽车发动机、刀具、模具等方面面貌一新。 工程陶瓷目前有氮化硅(Si3N4)、碳化硅(SiC),硅化钨(WSi2)、二氧化锆(ZrO2)、三氧化铝(A12O3)等。这些材料具有耐热、高硬度、耐磨、耐腐蚀、相对密度小等特点。若能用于燃气轮机,可使工作温度从目前的1100e提高到1370e,而热效率从60%提高到80%,应是理想的发动机材料。陶瓷材料种类繁多,各有特色,可制成各种功能元件。 碳化硅陶瓷是用碳化硅粉,用粉末冶金法经反应烧结或热压烧结工艺制成。碳化硅陶瓷最大特点是高温强度大、热稳定性好、耐磨抗蠕变性好。适用于浇注金属用的喉嘴、热电偶套管、燃气轮机的叶片、轴承等零件。同时由于它的热传导能力高,还适用于高温条件下的热交换器材料,也可用于制作各种泵的密封圈。氮化硅陶瓷抗温度急变性好,硬度高,其硬度仅次于金刚石、氮化硼等物质,用氮化硅陶瓷材料制作发动机,由于工作温度达到1370e,发动机效率可达30%,同时由于温度提高,可使燃料充分燃烧,排出废气污染成分大幅度降落,不仅降低能耗,并且减少了情形污染。氮化硅陶瓷原料丰富、加工性好,可以用低成本生产出各种尺寸精确的部件,特别是形状复杂的部件,成品率比其他陶瓷材料高。金属陶瓷,主要包括六大类:介电陶瓷、半导体陶瓷、磁性陶瓷、压电陶瓷、热电陶瓷、绝缘陶瓷等,该技术有助于节能环保。除了提高汽车的安全性和舒适性之外,如何提高环保性能也是一个焦点。 3 陶瓷发动机 陶瓷具有较好的高温强度、耐蚀性和耐磨性,尤其是氮化硅和碳化硅陶瓷,有可能作为高温结构材料来制造发动机。陶瓷发动机已成为当前世界各国竞相开发的目标之一。用陶瓷材料制造的发动机,具有以下优越性:陶瓷的耐热性好,这可以提高发动机的工作温度,从而使发动机效率大大提高。例如,对燃气轮机来说,目前作为其制造材料的镍基耐热合金,工作温度在1000e左右;若采用陶瓷材料,工作温度可达1300e,使发动机效率提高30%左右;工作温度高,可使燃料充分燃烧,排出废气中的污染成分大大减少。这不仅降低了能源消耗,而且减少了环

碳化硅陶瓷

碳化硅工艺流程 碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。 SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC 不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。 SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。 现就SiC陶瓷的生产工艺简述如下: 一、SiC粉末的合成: SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有: 1、Acheson法: 这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。 2、化合法:

电子碳化硅芯片的设备制作方法与制作流程

本技术属于碳化硅芯片加工领域,尤其是一种电子碳化硅芯片的制备方法,针对现有的不便于对环氧树脂的浇筑量进行精准控制的问题,现提出如下方案,其包括以下步骤:S1:将需要制备的碳化硅芯片的尺寸数据录入电脑,在电脑上建模,根据碳化硅芯片的尺寸确定模具的尺寸;S2:在电脑上建立模具模型,将碳化硅电路板模拟放入模具模型中,对碳化硅电路板进行定位;S3:模拟向模具模型中浇筑环氧树脂,对浇筑的量的数据进行记录; S4:将碳化硅电路板放入实际的模具中,根据S3中所述的浇筑的量向模具中浇筑环氧树脂成型,本技术能够对环氧树脂的浇筑量进行精准控制,保证了加工的精度,同时可以防止环氧树脂凝结。 技术要求 1.一种电子碳化硅芯片的制备方法,包括以下步骤: S1:将需要制备的碳化硅芯片的尺寸数据录入电脑,在电脑上建模,根据碳化硅芯片的 尺寸确定模具的尺寸; S2:在电脑上建立模具模型,将碳化硅电路板模拟放入模具模型中,对碳化硅电路板进 行定位; S3:模拟向模具模型中浇筑环氧树脂,对浇筑的量的数据进行记录; S4:将碳化硅电路板放入实际的模具中,根据S3中所述的浇筑的量向模具中浇筑环氧树 脂成型,安装底座进行封装; S5:打开模具,将一体成型的电子芯片取出,即可制得电子碳化硅芯片。 2.根据权利要求1所述的一种电子碳化硅芯片的制备方法,其特征在于,所述S2中,将碳化硅电路板放入模具模型中时,对碳化硅电路板的位置进行调整,调整完成后在模具的 模腔内标注四个定位点。 3.根据权利要求2所述的一种电子碳化硅芯片的制备方法,其特征在于,将四个定位点在模具中的位置数据进行记录,并在实际的模具中布置四个定位柱,通过四个定位柱对碳 化硅电路板进行定位。

SiC材料的制备与应用

SiC材料的制备与应用 摘要:本文主要介绍了SiC材料的制备方法,通过不同制备的方法获得不同结构的SiC,其中主要有α-SiC、β-SiC和纳米SiC。并介绍了SiC材料在材料中的应用。 关键词:α-SiC;β-SiC;纳米SiC; 前言: SiC 是人造强共价健化合物材料, 碳化硅又称金钢砂或耐火砂。碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。 2、SiC粉末的合成方法及应用: 2.1 Acheson法生产SiC的进展 经过百年发展, 现代SiC 工业生产仍采用的是Acheson 间歇式工艺。这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和文章拷贝于华夏陶瓷网焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。目前SiC 冶炼炉改进处于: ①炉体规模增大; 老式冶炼炉长为5~10m ,现在可长至25m ,装料高达以千吨计; ②送电功率增大:现在冶炼炉功率多在3000至7000kW 之间,功率在12 ,000kW的超大型冶炼炉已在我国宁夏北方碳化硅公司正常运行; ③电源由交流改为直流,保证了电网安全和稳定,操作更方便。 工业SiC 生产耗能高、对环境和大气有污染,且劳动量大。因此欧美发达国家尽管SiC 用量不断增大,但生产持续降低,代以从国外进口,同时加大了高性能SiC 材料的开发力度。中国、巴西和委内瑞拉等发展中国家的初级SiC 产量已占全世界的65 %以上。传统的SiC 冶炼炉主要不能完全解决以下环境问题:(1) CO2 、SO2 和扒墙时产生的SiC 粉尘的污染。(2) 解决原料闷燃放出的臭气和石油焦的挥发份,尤其是燃烧时或燃烧后及扒墙时产生的SO2 、H2S 和硫醇类等含硫物质和CO 气体带来的环境问题。(3) 无法收集冶炼时产生的炉内逸出气体用以发电或合成气体。 七十年代德国ESK公司在发展Acheson 工艺方面取得了突破[2 ]。ESK的大型

碳化硅用途

碳化硅用途 碳化硅又称金钢砂或耐火砂。碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。黑碳化硅是什么,他是怎么制作出来的 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。 绿碳化硅是什么,他是怎么制作出来的 绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。 碳化硅(SiC)由于其独特的物理及电子特性, 在一些应用上成为最佳的半导体材料: 短波长光电器件, 高温, 抗幅射以及高频大功率器件. 其主要特性及与硅(Si)和砷化镓(GaAs)的对比. 宽能级(eV) 4H-SiC: 3.26 6H-Sic: 3.03 GaAs: 1.43 Si: 1.12 由于碳化硅的宽能级, 以其制成的电子器件可在极高温下工作. 这一特性也使碳化硅可以发射或检测短波长的光, 用以制作蓝色发光二极管或几乎不受太阳光影响的紫外线探测器. 高击穿电场(V/cm) 4H-SiC: 2.2x106 6H-SiC: 2.4x106 GaAs: 3x105 Si: 2.5x105 碳化硅可以抵受的电压或电场八倍于硅或砷化镓, 特别适用于制造高压大功率器件如高压二极管,功率三极管, 可控硅以及大功率微波器件. 另外, 此一特性可让碳化硅器件紧密排列, 有利于提高封装密度. 高热传导率(W/cm?K@RT) 4H-SiC: 3.0-3.8 6H-SiC: 3.0-3.8 GaAs: 0.5 Si: 1.5 碳化硅是热的良导体, 导热特性优于任何其它半导体材料. 事实上, 在室温条件下, 其热传导率高于任何其它金属. 这使得碳化硅器件可在高温下正常工作. 高饱和电子迁移速度(cm/sec @E 2x105V/cm) 4H-SiC: 2.0x107 6H-SiC: 2.0x107 GaAs: 1.0x10 Si: 1.0x107 由于这一特性, 碳化硅可制成各种高频器件(射频及微波). 碳化硅的5大主要用途 1?有色金属冶炼工业的应用 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉?精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等? 2?钢铁行业方面的应用 利用碳化硅的耐腐蚀?抗热冲击耐磨损?导热好的特点,用于大型高炉内衬提高了使用寿命? 3?冶金选矿行业的应用 碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道?叶轮?泵室?旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5—20倍,也是航空飞行跑道的理想材料之一? 4?建材陶瓷,砂轮工业方面的应用 利用其导热系数?热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料?

相关主题
文本预览
相关文档 最新文档