当前位置:文档之家› 空间曲面与空间曲线学习总结

空间曲面与空间曲线学习总结

空间曲面与空间曲线学习总结
空间曲面与空间曲线学习总结

面及其方程

一曲面方程的概念

空间曲面可看做点的轨迹,而点的轨迹可由点的坐标所满足的方程来表达。因此,空间曲面可由方程来表示,反过来也成立。

为此,我们给出如下定义:

若曲面

S与三元方程

F x y z

(,,) 0

(1)

有下述关系:

1、曲面

S上任一点的坐标均满足方程(1);

2、不在曲面

S上的点的坐标都不满足方程(1)。

那么,方程(1)称作曲面

S的方程,而曲面S称作方程(1)的图形。

下面,我们来建立几个常见的曲面方程。

【例1】球心在点

)

,

,

(

z

y

x

M

,半径为R的球面方程。

解:设M x y z (,,)是球面上的任一点,那么M M R 0=, 即:

()()()x x y y z z R -+-+-=020202

()()()x x y y z z R -+-+-=0202022

(2)

(2)式就是球面上任一点的坐标所满足的方程。 反过来,不在球面上的点

''''M x y z (,,),'M 到M 0的距离M M R 0'≠, 从而点

'M 的坐标不适合于方程(2)。

故方程(2)就是以

M x y z 0000(,,)为球心,R 为半径的球面方程。

若球心在原点,即

M x y z O 0000000(,,)(,,)=,其球面方程为

x y z R 2222++=

【例2】设有点A (,,)123和B (,,)214-,求线段AB 垂直平分面π

的方程。

解:所求平面π是与A 和B 等距离的点的几何轨迹,设M x y z (,,)是所求平面上任意

的一点,则

AM BM =

即:

()()()()()()x y z x y z -+-+-=-+++-123214222222

化简得26270 x y z

-+-=

这便是平面π的方程。

上述两例告诉我们如下事实:

作为点的几何轨迹的曲面可以用它的坐标间的方程来表示,反过来,变量x y z ,,

之间

的方程一般地表示点(,,)

x y z

的轨迹所形成的曲面。

因此,空间解析几何关于曲面的研究,有以下两个基本问题:第一、已知曲面作为点的几何轨迹,建立该曲面的方程;

第二、已知坐标x y z

,,

的方程,研究该方程所表示的曲面形状。

二旋转曲面

【例3】设有一条过原点,且与

z轴夹角为α的直线L,求直线L绕z轴旋转所产生的曲面的方程。(

L绕z轴旋转时,始终z与轴保持定角α)

解:设L开始位于yoz平面,M y z

111

0(,,)

L上一点,则

z y ctg 11

=?α

当L 转动时,点

M 1转到点M x y z (,,)在L 的转动过程中,点M 的竖坐标满足

z z =1

且点

M 到z 轴的距离满足

x y y 221

+=

从而

z x y ctg =±+?22α

z a x y 2222=?+() (3)

其中

a ctg =α。

这表明:曲面上任一点

M 的坐标一定满足方程(3);反过来,如果M 不在曲面上,那么

直线OM 与z 轴的夹角就不等于α,于是,点M 的坐标就不满足方程(3)。因此,方程

(3)便是所求的曲面方程。

上述曲面称之为圆锥面,动直线L 与z 轴的交点称之为圆锥面的顶点,定角称为圆锥面的半顶角。

一般地,我们给出旋转曲面的定义如下:

一条平面曲线绕其平面上的一条定直线旋转一周所成的曲面叫做旋转曲面,这条定直线叫做旋转曲面的轴。

显然,圆锥面是一种旋转曲面,求

yoz 平面上的直线z y ctg =?α绕z 轴旋转所成

的圆维面,只需将y 改成

±+x y 22

,即可得到圆锥面的方程

z x y ctg =±+?22α

用类似的方法,可求出一般旋转曲面的方程。

设在

yoz 平面上有一条已知曲线C ,它的方程为 f y z (,)=0,将C 绕z 轴旋转一

周,得到以z 轴为轴的旋转曲面。

M y z 1110(,,)是C 上任一点的坐标,则 f y z (,)110=,当点M 1旋转到点

M x y z (,,)时,总有

z z 1=

M 到z 轴的距离为

x y y 221+=

将z z 1=,y x y 1

22

=±+代入方程

f y z (,)110=得到

f x y z (,)±+=220

这便是所要求的旋转曲面的方程。 同理,曲线 C 绕

y 轴旋转所成的旋转曲面方程为

f y x z (,)±+=220

三 柱面

【例4】方程x y R 222+=表示怎样的曲面?

解:x y R 222

+=在

xoy 面上表示圆心在原点,半径为R 的圆。 在空间直角坐标中,该方程不含变量z ,即不论z 取何值,只要横坐标x 和纵坐标

y 适

合方程的空间点M x y z (,,)均在该曲面上。也就是说,过圆x y R 222

+=上的点且平

行于z 轴的直线都在该曲面上。

因此,曲面是由平行于z 轴的直线沿xoy 面上的圆x y R 222

+=移动而形成的。

这一曲面称作圆柱面。xoy 面上的圆x y R 222

+=称之为准线,那些平行于z 轴

且过准线的直线叫做母线。

一般地,我们给出柱面的定义如下: 平行于定直线并沿定曲线C 移动的直线L 形成的轨迹称之为柱面。 定曲线C 称为柱

面的准线, 动直线

L 称为柱面的母线。

空间曲线及其方程

一、空间曲线一般方程

我们知道,空间直线可看作两个相交平面的交线。一般地,空间曲面也可看作两个相交

曲面的交线。

设(,,)0F x y z =和(,,)0G x y z =是两个相交曲面的方程

则方程组 (,,)0

(,,)0F x y z G x y z =??

=? (1)

表示交线的方程,称为空间曲线的一般方程。

【例5】 方程组22442x y z y ?-=?

=-?表示什么曲线?

解:因为2

2

44x y z -=表示双曲抛物面,2y =-表示平行于在x z O 面的平面,它们

的交线是平面2y =-上的抛物线。实际上将2y =-代入2244x y z -=,得2

4(4)x z =+,

因此它表示平面2y =-上,顶点在(0,2,4)--开口向上的抛物线。

二、空间曲线的参数方程

我们还知道,空间直线L 的参数方程为

000x x mt y y nt z z pt

=+??

=+??=+? ()t -∞<<+∞

这里,,x y z 都是参数t 的线性函数。一般地,如果,,x y z 是参数t 的函数,方程组

()()()x x t y y t z z t =??

=??=? (2)

通常表示一条空间曲线C ,方程组(2)叫做空间曲线的参数方程。当给定1t t =时,就得到曲线C 上的一个点111(,,)x y z ;随着t 的变动便可得到曲线C 上的全部点。

【例7】设圆柱面2

2

2

x y R +=上有一质点,它一方面绕z 轴以等角速度ω旋转,另一方面以等速度0v 向z 轴正方向移动,开始时即0t =时,质点在(,0,0)A R 处,求质点运动

方程。

解:设时间t 时,质点在(,,)M x y z (如图6-34),M '是M 在x y O 面上的投影,则

0cos cos sin sin AOM t x OM R t y OM R t

z MM v t

?ω?ω?ω'∠=='=='=='==

因此质点的运动方程为

0cos sin x R t

y R t z v t

ωω=??

=??=?

此方程称为螺旋线的参数方程。

三、空间曲线在坐标面上的投影

以空间曲线C 为准线,母线平行于z 轴(即垂直于x y O 面)的柱面叫做曲线C 关于x y O 面的投影柱面,投影柱面与x y O 面的交线叫做空间曲线C 在x y O 面上的投影曲线,简称投

影。

如何来求空间曲线C 的投影柱面和投影曲线呢? 设空间曲线C 的方程为

(,,)0(,,)0F x y z G x y z =??

=? (3)

消去变量z 得方程

(,)0H x y = (4)

由上节知道,方程(4)表示母线平行于z 轴的柱面。

而方程(4)是由方程组(3)消去z 后所得的结果,因此满足(3)的,x y 必定满足(4),

这说明方程组(3)所表示的曲线C 上的所有的点都在方程(4)所表示的柱面上。

因此方程(4)所表示的柱面必定包含以方程组(3)所表示的曲线C 为准线,母线平行于z 轴的柱面,即空间曲线C 关于x y O 面的投影柱面。而方程组

(,)0

0H x y z =??

=?

所表示的曲线必定包含空间曲线C 在x y O 面上的投影。

同理,消去方程组(3)中变量x 或变量y 再分别和0x =或0y =联立,我们就可得包

图6-34

含空间曲线C 在y z O 面或x z O 上的投影的曲线方程:

(,)0

0R y z x =??

=? 或 (,)00T x z y =??=?

【例9】 设一立体由上半球面224z x y =--和锥面22

3()z x y =+所围成(图6-35),求它在x y O 面上的投影。

解:半球面和锥面的交线为

:C 222243()z x y

z x y ?=--??=+?

?

消去z ,得到2

2

1x y +=,容易看出,这恰好是交线C 关于

x y O 面的投影柱面,因此交线C 在x y O 面上的投影曲线为

2210x y z ?+=?

=? 这是一个x y O 面上的圆。于是所求立体在x y O 面上的投影就是该圆在x y O 面上所围成的部

分:2

2

1x y +≤。

图6-35

空间曲线与曲面

实验七空间曲线与曲面 实验目的 1.掌握空间直线、平面的画法。 2.了解常见的空间曲线与曲面的画法。 与本实验相关的理论 最基本的空间作图函数是Plot3 ,用于作所有二元函数的三维立方体图形,其格式是: Plot3D[f,{x,xmin,xmax},{y,ymin,ymax},可选项] 由于很多曲面和绝大多数曲线都不能用显函数的形式表示。Mathematica 还提供了Parametric Plot3D参数作图函数,其格式是:Parametric Plot3D[{x[u,v],y[u,v] ,z[u,v]} ,{u,umin,umax},{v,vmin,vmax},可选项] Mathematica作三维图形的机理是先在XOY坐标面给定区域内计算出一系列格点的值,再用矩形“小瓦片”拟合张在上面的曲面上。因而如果曲面的表面变化复杂,可通过设置更细的“瓦片”分割来改善。这时候可增加选项PlotPoint―>n 来说明分割数n。 实验步骤 一、画空间曲线 注意空间曲线的参数方程只有一个参变量,如果要画出螺旋线 x=10cost , y=10sint , z=2t 的图形,只要输入: Parametric Plot3D[{10cos[t],10sin[t],2t} ,{t,0,20}] 空间直线也类似地处理。 例1:求过A(3,5,-2),B(3,5,-2)的直线方程,并画图。 分析:空间直线方程可由点向式写出,再改成参数式

) 2(4)2(535313----=--=--z y x 化为参数式是:t x 23-=,t y 25-=,t z 62+-= 输入:Parametric Plot3D[{3-2t ,5-2t ,-2+6t} ,{t ,0,1}] 二、画空间曲面 例2:求过A (1,0,0),B (0,2,0),C (0,0,3),的平面方程,并画图。 分析:平面方程可由截距式写出,y x z 2 333--=。 输入:Parametric Plot3D[{3-3x-3y/2} ,{x ,-1,1},{y ,-1,1}] 例3:画出二元函数22),(y x y x f +=的图形。 输入:Parametric Plot3D[{x^2+y^2} ,{x ,-4,4},{y ,-4,4}] 例4:画出椭球心在原点,3=a ,4=b ,5=c 的椭球面。 输入:Parametric Plot3D[{3*Cos[u] Cos[v], 4*Sin[u] Cos[v],5*Sin[v]} ,{u ,0,2Pi},{v ,-Pi/2,Pi/2}] 例5:画出以x y cos =为准线,母线平行于Z 轴的柱面。 输入:Parametric Plot3D[{x,Cos[x],z} ,{x ,-4,4},{z ,-4,4}] 例6:画出由平面曲线z x cos 1+=绕Z 轴放转而成的旋转面。 输入:Parametric Plot3D[{(1+Cos[u])Cos[v] ,(1+Cos[u])Sin[v] ,u} ,{u ,-Pi ,Pi},{v ,0,2Pi}] 例7:画单叶双曲面。 输入:Parametric Plot3D[{Sec[u]Cos[v] ,Sec[u]Sin[v] ,Tan[u]} ,{u ,-Pi/2+0.5,Pi/2-0.5},{v ,0,2Pi}]

实验2-空间曲线曲面图形的绘制

实验二空间曲线曲面图形的绘制 一、实验目的 熟练掌握使用Mathematica软件绘制空间曲线曲面图形的方法. 二、实验容与Mathematica命令 1.基本三维图形 函数(,) 的图形为三维空间的一个曲面,Mathematica中,绘制三维曲面图形的 z f x y 基本命令格式为 Plot3D[f,{x,xmin,xmax},{y,ymin,ymax},Options] 其中,f为一个二元显函数. 该命令有众多可供使用的选项,可执行命令“Options[Plot3D]”查询. 1)绘制曲面的基本方法 运行t1=Plot3D[Sin[x+y]*Cos[x+y],{x,0,4},{y,0,4}] 图1 2)用PlotRange 设定曲面的表面的变化围 运行Show[t1,PlotRange{-0.2,0.5}]

图2 3)坐标轴上加标记,并且在每个外围平面上画上网格 运行Show[t1,AxesLabel{"Time","Depth","Value"},FaceGrids All] 图 3 4)观察点的改变 将观察点改变在(2,-2,0),运行 Show[t1,ViewPoint{2,-2,0}]

图 4 也可用鼠标拖动改变视点。 5)无网格和立体盒子的曲面 运行 Show[t1,Mesh False,Boxed False] 图 5 6)没有阴影的曲面 利用Shading取消曲面的阴影运行 Show[t1,Shading False]

图 6 7)给曲面着色 Show[t1,Lighting False 图 7 Show[t1,Lighting None]

空间曲线地切线与空间曲面地切平面

第六节 空间曲线的切线与空间曲面的切平面 一、空间曲线的切线与法平面 设空间的曲线C 由参数方程的形式给出:?? ? ??===)()()(t z z t y y t x x ,),(βα∈t . 设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线. 如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零(即空间的曲线C 为光滑曲线),则曲线在点A 切线是存在的.因为割线的方程为 ) ()() ()()()()()()(010010010t z t z t z z t y t y t y y t x t x t x x --=--=-- 也可以写为 010********)()() ()()()()()()(t t t z t z t z z t t t y t y t y y t t t x t x t x x ---=---=--- 当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为 ) () ()()()()(000000t z t z z t y t y y t x t x x '-='-='-. 过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点 )(),(),((000t z t y t x A 的法平面,法平面方程为 ))(())(())((00'00'00'=-+-+-z z t z y y t y x x t x 如果空间的曲线C 由方程为 )(),(x z z x y y == 且)(),(0' 0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是 ) () ()()(100000x z x z z x y x y y x x '-= '-=- 法平面方程为

(整理)常用空间曲面

第六节 常用空间曲面 一、曲面方程的概念 在第四节中,我们已经知道了,在空间中一个平面可以用一个三元一次方程来表示;反过来,一个三元一次方程的图形是一个平面。在一般情况下,如果曲面S 与三元方程 (,,)0F x y z = (1) 有下述关系: (1) 曲面S 上任一点 的坐标都满足方程(1); (2) 不在曲面S 上的点的坐标都不满足方程(1) (1)就叫做曲面S 的方程,而那么方程 曲面S 就 叫做方程(1)的图形(图6-21)。 象在 平面解析几何中把平面曲线当作动点轨迹一样,在空间解析几何中,我们常把曲面看作一个动点按照某个规 律运动而成的轨迹。 运用这个观点,我们来建立球面方程。 例1 若球心在点0000(,,)M x y z ,半径为R ,求该球面方程。 解:设(,,)M x y z 是球面上任一点,那么 0M M R = 又 0M M =故 2 2 2 2 000()()()x x y y z z R -+-+-= (2) 这就是球面上的点的坐标所满足的方程,而不在球面上的点的坐标都不满足该方程,所以该方程就是以0000(,,)M x y z 为球心,R 为半径的球面方程。 如果球心在原点,那么0000x y z ===,从而球面方程为 2222x y z R ++= 将(2)式展开得 222222 0000002220x y z x x y y z z x y z R ++---+++-= 所以,球面方程具有下列两个特点: (1) 它是,,x y z 之间的二次方程,且方程中缺,,xy yz zx 项; (2) 2 2 2 ,,x y z 的系数相同且不为零。 现在我们要问,满足上述两个特点的方程,它的图形是否为球面呢? 例2 方程2 2 2 40x y z x y ++-+=表示怎样的曲面? 解:配方,得 222117 (2)()2 4x y z -+++= 所以所给方程为球面,球心为1 (2,,0) 2-,半径为2。 例3 方程2 2 2 2230 x y z x y z ++-+-+=是否表示球面? x ,)0y z =

数学实验教程实验6(空间曲线与曲面

实验6 空间曲线与曲面 实验目的 1.学会利用软件命令绘制空间曲线和曲面 2.通过绘制一些常见曲线、曲面去观察空间曲线和曲面的特点 3.绘制多个曲面所围成的区域以及投影区域。 实验准备 1.复习常见空间曲线的方程 2.复习常见空间曲面的方程 实验内容 1.绘制空间曲线 2.绘制空间曲面:直角坐标方程、参数方程 3.旋转曲面的生成 4.空间多个曲面的所围成的公共区域以及投影区域 软件命令 表6-1 Matlab 空间曲线及曲面绘图命令 实验示例 【例6.1】绘制空间曲线 绘制空间曲线sin ,cos ,x at t y at t z ct ===,在区间09t π≤≤上的图形,这是一条锥面螺旋线,取a=10,c=3。

【程序】: t=0:pi/30:9*pi; a=10; c=3; x=a*t.*sin(t); y=a*t.*cos(t); z=c*t; plot3(x,y,z,’mo ’) 【输出】:见图6-1。 图6-1 空间曲线的绘制 【例6.2】利用多种命令绘制空间曲面 绘制二元函数 22 2 2 sin x y z x y += +在区域:99,99D x y -≤≤-≤≤上的图形。 【程序】:参见Exm06Demo02.m 。 【输出】:见图6-2。 图 6-2 绘制空间曲面 【例6.3】绘制Mobius 带 Mobius 带的参数方程为 122122 cos sin cos ,[0,2],[,] sin u u x r u y r u r c v u v a b z v π=??==+∈∈??=?,, 其中,,a b c 为常数,绘制其图形。

曲线积分曲面积分总结

第十三章 曲线积分与曲面积分 定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分. 第一节 对弧长的曲线积分 一、 对弧长的曲线积分的概念与性质 在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为()x f y =,[]b a x ,∈,其上每一点的密度为()y x ,ρ. 如图13-1我们可以将物体分为n 段,分点为 n M M M ,...,,21, 每一小弧段的长度分别是12,,...,n s s s ???.取其中的一小段弧i i M M 1-来分 析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点 (),i i ξη的密度(),i i ρξη来近似整个小段的密度.这样就可以得到这一小段的质量近似于 (),i i i s ρξη?.将所有这样的小段质量加起来,就得到了此物体的质量的近似值.即 ()∑=?≈n i i i i s y x M 1,ρ. 用λ表示n 个小弧段的最大长度. 为了计算M 的精确值, 取上式右端之和当0λ→时的极限,从而得到 1 lim (,).n i i i i M s λρξη→∞ ==?∑ 即这个极限就是该物体的质量.这种和的极限在研究其它问题时也会遇到. 上述结果是经过分割、求和、取极限等步骤而得到的一种和数得极限,这意味着我们已经得到了又一种类型的积分. 抛开问题的具体含义,一般的来研究这一类型的极限,便引入如下定义: 定义13.1 设L 是xoy 面内的一条光滑曲线,函数()y x f ,在L 上有界,用L 上任意插入 图13-1

常见的空间曲面与方程

常见的空间曲面与方程 常见的空间曲面有平面、柱面、锥面、旋转曲面和二次曲面。 1. 平面 空间中平面的一般方程为 0a x b y c z d +++= 其中,,a b c 均为常数,且,,a b c 不全为零。 例如,1x y z ++=(图8-6(a )),0x =(图8-6(b ))均表示空间中的平面, z yoz 平面(x =0) y y x 图8-6(a ) 图8-6 (b) 图8-6 2. 柱面 与给定直线L 平行的动直线l 沿着某给定的曲线C 移动所得到空间曲面,称为柱面, l 为母线,C 为准线。 如图8-7所示 图8-7 图8-8

例如,222x y R +=表示空间中母线平行于z 轴,准线是xoy 平面上的圆222x y R +=的 圆柱面的方程,简称圆柱面图(8-8)。 3. 二次曲面 三元二次方程 222 1231 2 31230a x a y a z b x y b y z b z x c x c y c z d +++ ++++++= 所表示的曲面称为二次曲面,其中,,(1,2,3),i i i a b c i d =均为常数,且,,i i i a b c 不全为0. 二次曲面有以下几种标准形式,它们分别为: 球面: 图8-9 椭球面:222 2221(,,0)x y z a b c a b c ++=>图8-10 图8-9 图8-10 单叶双曲面:222 2221(,,0)x y z a b c a b c -+=>图8-11 双叶双曲面:222 2221(,,0)x y z a b c a b c +-=->图8-12 2222(0)x y z R R + += >x z

曲面与空间曲面的归纳

曲面与空间曲线的总结

曲面与空间曲线一.曲面及其方程: 1.曲面方程的一般概念: 定义:若曲面上的点的坐标(x,y,z) 都满足方程F(x,y,z)=0, 而满足此方程的点都在曲面上,则称此方程为 该曲面的方程,而曲面称为此方程的‘图形’。 例1:求与A(2,3,1)和B(4,5,6)等距离的点的运动规迹。 解: 设M(x,y,z)为动点的坐标,动点应满足的条件是 |AM|=|BM|由距离公式得 此即所求点的规迹方程,为一平面方程。 2.坐标面及与坐标面平行的平面方程: ①坐标平面xOy 的方程:z=0 ②过点(a,b,c)且与xOy 面平行的平面方程:z=c 222222)6()5()4()1()3()2(-+-+-=-+-+-z y x z y x 整理得 631044=-++z y x

③坐标面yOz 、坐标面zOx 以及过(a,b,c)点且分别与之平行的平面方程:x=0; y=0; x=a; y=b 3. 球面方程: ①球面的标准方程:以M0(x0,y0,z0)为球心,R 为半径 的球面方程为 (x-x0)2+(y-y0)2+(z-z0)2=R2 ②球面的一般方程: x2+y2+z2+Ax+By+Cz+D=0 球面方程的特点:平方项系数相同;没有交叉项。 例2:求x2+y2+z2+2x-2y-2=0表示的曲面 解:整理得: (x+1)2+(y-1)2+z2=22 故此为一个球心在(-1,1,0),半径为2的球。 4.母线平行于坐标轴的柱面方程: 一般我们将动直线l 沿定曲线c 平行移动所形成的轨迹 称为柱面。其中直线l 称为柱面的母线,定曲线c 称为柱面 的准线。本章中我们只研究母线平行于坐标轴的柱面方程。 此时有以下结论: 若柱面的母线平行于z 轴,准线c 是xOy 面上的一条曲线,其方程为F(x,y)=0,则该柱面的方程为F(x,y)=0; 同理,G(x,z)=0,H(y,z)=0在空间中分别表示母线平行于y 轴和x 轴的柱面。 分析:母线平行于坐标轴的柱面的特点为:平行于某轴,则在其方程中无此坐标项。其几何意义为:无论z 取何值,只要满足F(x,y)=0,则总在柱面上。 几种常见柱面:x+y=a 平面; 2 22a y x =+圆柱面

曲面与空间曲线的方程

第 2 章曲面与空间曲线的方程 本章教学目的:通过本章学习,使学生理解空间坐标系下曲面与空间曲线方程之定义及 表示,熟悉空间中一些特殊曲面、曲线的方程。 本章教学重点:空间坐标系下曲面与空间曲线方程的定义。 本章教学难点:(1)空间坐标系下母线平行于坐标轴的柱面方程与平面坐标系下有关平面 曲线方程的区别; ( 2)空间坐标系下,空间曲线一般方程的规范表示。 本章教学内容: § 1 曲面的方程 普通方程: 1 定义:设工为一曲面,F(x, y, z) =0为一三元方程,空间中建立了坐标系以后, 若工上任一点P(x,y,z)的坐标都满足F(x,y, z)=0,而且凡坐标满足方程的点都在曲 面工上,则称F (x, y, z) =0为工的普通方程,记作 2:F (x, y, z) =0. 不难看出,一点在曲面2上〈一〉该点的坐标满足工的方程,即曲面上的点与其 方程的解之间是一一对应的???》的方程的代数性质必能反映出2的几何性质。 2 三元方程的表示的几种特殊图形:空间中任一曲面的方程都是一三元方程,反之,是否任一三 元方程也表示空间中的一个曲面呢?一般而言这是成立的,但也有如下特殊情况 1 ° 若F( x, y, z) =0 的左端可分解成两个(或多个)因式F1( x, y, z) 与F2 (x, y, z)的乘积,即 F (x, y, z)= F i (x, y, z) F2 (x, y, z),贝U F (x , y , z) =0〈一〉F i (x , y , z) =0 或F2 (x , y , z) =0 ,此时 F( x y z) =0 表示两叶曲面1与 2 它们分别以F1( x y z) =0 F2( x y z) =0 为其方程此时称F(x y z)=0 表示的图形为变态曲面。如 F(x,y,z) xyz 0 即为三坐标面。 2 0方程F(x,y,z) (x2 y2 z2) x i2 y 2 2 (z 3)2 0 仅表示坐标原点和点( i 2 3) 3 °方程F(x, y,z) 0可能表示若干条曲线如 F(x, y,z) (x2 y2)(y2 z2) 0 即表示z 轴和x 轴 °方程F(x, y,z) 0不表示任何实图形如 4

空间曲线与曲面的绘制

空间曲线与曲面的绘制 本实验的目的是:利用数学软件Mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特 点,以加强几何的直观性。 1. 空间曲线的绘制 绘制空间曲线时一般使用曲线的参数方程,利用命令“ParametricPlot3D ”如画出参数方程「x =x(t) * y = y(t) , h Et “2所确定的空间曲线的命令格式为: Z =z(t) ParametricPlot3D[{x[t],y[t],z[t]},{t,tmi n, tmax}, 选项] 例1 画出旋转抛物面z = x2y2与上半球面z = 1亠:1 - x2- y2交线的图形。 X = cost 解:它们的交线为平面z=1上的圆x2+y2=1,化为参数方程为*y = sint,t"O,勿],下面的 z = 1 mathematica命令就是作出它们的交线并把它存在变量p中: p ParametricPlot3D Cos t , Sin t , 1 , t, 0, 2 Pi 运行即得曲线如图1所示。 在这里说明一点,要作空间曲线的图形,必须先求出该曲线的参数 乍(x, y, z) =0 方程。如果曲线为一般式,其在xOy面上的投影柱面的

空间曲面与空间曲线学习总结

面及其方程 一曲面方程的概念 空间曲面可看做点的轨迹,而点的轨迹可由点的坐标所满足的方程来表达。因此,空间曲面可由方程来表示,反过来也成立。 为此,我们给出如下定义: 若曲面 S与三元方程 F x y z (,,) 0 (1) 有下述关系: 1、曲面 S上任一点的坐标均满足方程(1); 2、不在曲面 S上的点的坐标都不满足方程(1)。 那么,方程(1)称作曲面 S的方程,而曲面S称作方程(1)的图形。 下面,我们来建立几个常见的曲面方程。 【例1】球心在点 ) , , ( z y x M ,半径为R的球面方程。

解:设M x y z (,,)是球面上的任一点,那么M M R 0=, 即: ()()()x x y y z z R -+-+-=020202 ()()()x x y y z z R -+-+-=0202022 (2) (2)式就是球面上任一点的坐标所满足的方程。 反过来,不在球面上的点 ''''M x y z (,,),'M 到M 0的距离M M R 0'≠, 从而点 'M 的坐标不适合于方程(2)。 故方程(2)就是以 M x y z 0000(,,)为球心,R 为半径的球面方程。 若球心在原点,即 M x y z O 0000000(,,)(,,)=,其球面方程为 x y z R 2222++= 【例2】设有点A (,,)123和B (,,)214-,求线段AB 垂直平分面π 的方程。 解:所求平面π是与A 和B 等距离的点的几何轨迹,设M x y z (,,)是所求平面上任意 的一点,则 AM BM = 即: ()()()()()()x y z x y z -+-+-=-+++-123214222222

曲面与空间曲线的方程

第2章 曲面与空间曲线的方程 本章教学目的:通过本章学习,使学生理解空间坐标系下曲面与空间曲线方程之定 义及表示,熟悉空间中一些特殊曲面、曲线的方程。 本章教学重点:空间坐标系下曲面与空间曲线方程的定义。 本章教学难点:(1)空间坐标系下母线平行于坐标轴的柱面方程与平面坐标系下有 关平面曲线方程的区别; (2)空间坐标系下,空间曲线一般方程的规范表示。 本章教学内容: §1 曲面的方程 一 普通方程: 1 定义:设Σ为一曲面,F (x ,y ,z )=0为一三元方程,空间中建立了坐标系以后, 若Σ上任一点P (x ,y ,z )的坐标都满足F (x ,y ,z )=0,而且凡坐标满足方程的点都在曲面Σ上,则称F (x ,y ,z )=0为Σ的普通方程,记作 Σ:F (x ,y ,z )=0. 不难看出,一点在曲面Σ上〈═〉该点的坐标满足Σ的方程,即曲面上的点与其方程的解之间是一一对应的 ∴Σ的方程的代数性质必能反映出Σ的几何性质。 2 三元方程的表示的几种特殊图形: 空间中任一曲面的方程都是一三元方程,反之,是否任一三元方程也表示空间中的 一个曲面呢?一般而言这是成立的,但也有如下特殊情况 1° 若F (x ,y ,z )=0的左端可分解成两个(或多个)因式F 1(x ,y ,z ) 与F 2(x ,y ,z )的乘积,即F (x ,y ,z )≡F 1(x ,y ,z )F 2(x ,y ,z ),则 F (x ,y ,z )=0〈═〉F 1(x ,y ,z )=0或F 2(x ,y ,z )=0,此时 F (x ,y ,z )=0表示两叶曲面1∑与2∑,它们分别以F 1(x ,y ,z )=0,F 2(x ,y ,z )=0为其方程,此时称F (x ,y ,z )=0表示的图形为变态曲面。如 0),,(=≡xyz z y x F 即为三坐标面。 20方程()()[] 0)3(21)(),,(222222=-+-+-++≡z y x z y x z y x F 仅表示坐标原点和点(1,2,3) 3°方程0),,(=z y x F 可能表示若干条曲线,如 0))((),,(2 222=++≡z y y x z y x F 即表示z 轴和x 轴 4°方程0),,(=z y x F 不表示任何实图形,如

§7.4.1-3空间曲面和空间曲线

§7.4空间曲面和空间曲线 本节以两种方式来讨论空间曲面: (1)已知曲面的形状,建立这曲面的方程; (2)已知一个三元方程,研究这方程的图形。 7.4.1球面与柱面 (一)球面 空间中与一定点等距离的点的轨迹叫球面。 求球心在点),,( z y x M ,半径为R 的球面方程。 设),,(z y x M 为球面上的任一点,则有R M M = ,即 R z z y y x x =-+-+-222)()()( ,化简得: 2222)()()(R z z y y x x =-+-+- 。 ① 满足方程①,因此,方程①是球面的方程。 当0=== z y x 时,即球心在原点的球面方程为 2 222R z y x =++。 ② 例1.指出方程05642222=+--+++z y x z y x 表示何种曲面。 解:9415964412222+++-=+-++-+++z z y y x x , 22223)3()2()1(=-+-++z y x ,方程表示以)3 ,2 ,1(-为球心,3为半径的球面。 (二)柱面 动直线L 沿给定曲线C 平行移动所形成的曲面,称为柱面。动直线L 称为柱面的母线,定曲线C 称为柱面的准线。 y

现在来建立以xoy 面上的曲线C :? ??== . 0, 0),(z y x F 为准线,平行于L z 轴的直线 设) ,,( z y x M 为柱面上任一点,过 M 作平行于轴的直线 z ,交xoy 面于点 ) 0 , ,( y x M ,由柱面定义可知点上必在准线C M 。故有0),(= y x F 。由于 M M 与点点有相同的横坐标和纵坐标,故的坐标点 M 也必满足方程 0),(=y x F 。反之,如果空间一点) ,,( z y x M 满足方程0),(=y x F ,即0 ),(= y x F ,故 ) ,,( z y x M 且与轴平行的直线 z 必通过 上的点准线C ) 0 , ,( y x M ,即) 0 , ,( y x M 在过) 0 , ,( y x M 的母线上,于是) ,,( z y x M 必在柱面上,因此方程0),(=y x F 表示平行于轴的柱面 z 。 一般地 方程0) ,(=y x F 表示母线轴的柱面平行于 z ; 方程0) ,(=z y H 表示母线轴的柱面平行于 x ; 方程0) ,(=z x G 表示母线轴的柱面平行于 y 。 以二次曲线为准线的柱面称为二次柱面。 例如:方程2 2 2 a y x =+表示圆柱面;方程 12 22 2=+ b y a x 表示椭圆柱面; 方程12 2 22 =- b x a y 表示双曲柱面;方程Py x 22=表示抛物柱面。 y 22 a y = x x y 1 2 2=b y

空间曲线的切线与空间曲面的切平面之欧阳光明创编

第六节空间曲线的切线与空间曲面 的切平面 欧阳光明(2021.03.07) 一、空间曲线的切线与法平面 设空间的曲线C 由参数方程的形式给出:?? ???===)()()(t z z t y y t x x ,),(βα∈t . 设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线. 如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零(即空间的曲线C 为光滑曲线),则曲线在点A 切线是存在的.因为割线的方程为 也可以写为 当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为 )()()()()()(000000t z t z z t y t y y t x t x x '-='-='-. 过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点)(),(),((000t z t y t x A 的法平面,法平面方程为 如果空间的曲线C 由方程为 且)(),(0'0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是 法平面方程为

如果空间的曲线C 表示为空间两曲面的交,由方程组 确定时,假设在),,(000z y x A 有0),(),(≠??=A z y G F J ,在),,(000z y x A 某邻域内满足隐函数组存在定理条件,则由方程组 ? ??==0),,(0),,(z y x G z y x F ,在点),,(000z y x A 附近能确定隐函数 有)(),(0000x z z x y y ==,) ,(),(1,),(),(1x y G F J dx dz z x G F J dx dy ??-=??-=。于是空间的曲线C 在 点),,(000z y x A 的切线是 即 法平面方程为 类似地,如果在点),,(000z y x A 有0),(),(≠??A y x G F 或0),(),(≠??A x z G F 时,我们得到的切线方程和法平面方程有相同形式。 所以,当向量 时,空间的曲线C 在),,(000z y x A 的切线的方向向量为r 例6.32 求曲线θθθb z a y a x ===,sin ,cos 在点()πb a ,0,-处的切线方程. 解 当πθ=时,曲线过点()πb a ,0,-,曲线在此点的切线方向向量为 {}{}b a b a a ,,0|,cos ,sin -=-=πθθθ, 所以曲线的切线方程为 b t z z a t y y t x x )()(0)(000-=--=-.

相关主题
文本预览
相关文档 最新文档