当前位置:文档之家› 燃烧热的测定实验报告

燃烧热的测定实验报告

燃烧热的测定实验报告
燃烧热的测定实验报告

燃烧热实验报告

一、实验目的

1、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。

2、掌握量热技术的基本原理,学会测定奈的燃烧热。

3、了解氧弹卡计主要部件的作用,掌握氧弹量热计的实验技术。

4、学会雷诺图解法校正温度改变值。

二、实验原理

燃烧热是指1摩尔物质完全燃烧时所放出的热量。在恒容条件下测得的燃烧热称为恒容燃烧热(Q v,m),恒容燃烧热这个过程的内能变化(Δr U m)。在恒压条件下测得的燃烧热称为恒压燃烧热(Q p,m),恒压燃烧热等于这个过程的热焓变化(Δr H m)。若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列关系式:

c H m = Q p,m=Q v,m+ΔnRT (1)

本实验采用氧弹式量热计测量萘的燃烧热。测量的基本原理是将一定量待测物质样品在氧弹中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。

氧弹是一个特制的不锈钢容器。为了保证化妆品在若完全燃烧,氧弹中应充以高压氧气(或者其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周围环境发生热交换。

但是,热量的散失仍然无法完全避免,这可以是同于环境向量热计辐射进热量而使其温度升高,也可以是由于量热计向环境辐射出热量而使量热计的温度降低。因此燃烧前后温度的变化值不能直接准确测量,而必须经过雷诺矫正作图法进行校正。

放出热(样品+点火丝)=吸收热(水、氧弹、量热计、温度计)

量热原理—能量守恒定律

在盛有定水的容器中,样品物质的量为n摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容为C(通常称为仪器的水当量,

即量热计及水每升高1K 所需吸收的热量),假设系统与环境之间没有热交换,燃烧前、后的温度分别为T1、T2,则此样品的恒容摩尔燃烧热为:

式中,Q v,m 为样品的恒容摩尔燃烧热(J·mol-1);n 为样品的摩尔数(mol);C 为仪器的总热容(J·K -1或J /℃)。上述公式是最理想、最简单的情况。

但是,由于(1):氧弹量热计不可能完全绝热,热漏在所难免。因此,燃烧前后温度的变化不能直接用测到的燃烧前后的温度差来计算,必须经过合理的雷诺校正才能得到准确的温差变化。(2)多数物质不能自燃,如本实验所用萘,必须借助电流引燃点火丝,再引起萘的燃烧,因此,等式(2)左边必须把点火丝燃烧所放热量考虑进去就如等式(3):

式中:m 点火丝为点火丝的质量,Q 点火丝为点火丝的燃烧热,为-6694.4 J / g ,?T 为校正后的温度升高值。

仪器热容的求法是用已知燃烧焓的物质(如本实验用苯甲酸),放在量热计中燃烧,测其始、末温度,经雷诺校正后,按上式即可求出C 。

雷诺校正:消除体系与环境间存在热交换造成的对体系温度变化的影响。方法:将燃烧前后历次观察的贝氏温度计读数对时间作图,联成FHDG 线如图2-1-2。图中H 相当于开始燃烧之点,D 点为观察到最高温度读数点,将H 所对应的温度T1,D 所对应的温度T2,计算其平均温度,过T点作横坐标的平行线,交FHDG 线于一点,过该点作横坐标的垂线a,然后将FH 线和GD 线外延交a 线于A 、C 两点,A 点与C 点所表示的温度差即为欲求温度的升高?T 。图中AA’表示由环境辐射进来的热量和搅拌引进的能量而造成卡计温度的升高,必须扣除之。CC’表示卡计向环境辐射出热量和搅拌而造成卡计温度的降低,因此,需要加上,由此可见,AC 两点的温度差是客观地表示了由于样品燃烧使卡计温度升高的数值

ΔT

点火丝,C Q m nQ m V =--点火丝n T T C Q m V )

(12,--=

燃烧后的最高点不出现,如图2-1-3,这种情况下 T仍可以按同法校正之。

三、仪器药品

外槽恒温式氧弹卡计(一个)

氧气钢瓶(一瓶)

压片机(2台)

数字式贝克曼温度计(一台)

0~100℃温度计(一支)

万用电表(一个)

扳手(一把)

萘(A .R)

苯甲酸(A.R或燃烧热专用)

铁丝(10cm长)

四、实验步骤

(1)称取约0.5g左右的苯甲酸和点火丝质量,记录m苯甲酸和m铁,将称取的苯甲酸和点火丝一起压片,再将压成的样品称重,记录m样+铁。

(2)将样品点火丝分别绑在氧弹卡记的两极上,旋紧氧弹盖,用万用表检查电路是否通路,充氧气,反复充放3次。

(3)将氧弹插上电极,放入水桶内,加入水3000mL,盖上盖子,打开搅拌器,用温度计测定环境温度T。

(4)插上贝克曼温度计探头,待温度稳定后,每隔30s读贝克曼温度计一次,记录10个数据,迅速按下点火键,仍30s读数一次,直到温度出现最高点,此阶段的温度作为燃烧期间的温度,当温度升到最高点并开始下降后仍每隔30s记录一次数据,记录10个数据。

(5)关闭电源,取下贝克曼温度计,拿出氧弹,放气,旋开氧弹盖,检查样品燃烧结果。若燃烧安全,称量剩下的铁丝,倒去铜水桶的水并用毛巾擦干。(6)称取0.5g左右萘,重复(2)-(5)操作。

五、注意事项

1、为避免腐蚀,必须清洗氧弹。

2、点火成败是实验关键,实验前应仔细安装点火丝。点火丝不应与弹体内壁接触,避免点火后发生短路。

3、实验结束后,一定要把未燃烧的铁丝重量从公式中减掉。

4、样品压片力度须适中。

六、数据处理

1.数据记录

(1)、数据整理如下:

第一次测量苯甲酸样品

第二次测量苯甲酸样品

2.数据处理

(1)、计算仪器常数的计算

查表可得苯甲酸标准状况下其摩尔燃烧焓为△c H m = —3226.9KJ/mol 苯甲酸燃烧反应方程式为:

C 7H 6O 2(s) + 7.5O 2(g)

3H 2O (l) + 7CO 2(g)

由 △r H m =?c H m = Q p,m =Q v,m +ΔnRT (1)

得苯甲酸标准状况下其恒压摩尔燃烧热为

mol

KJ J KJ K mol K J mol KJ nRT H m c /14.3228/1015.298)/(314.85.0/9.3226m Qv,3-=????--=?-?=-

如果不考虑温度的变化对标准燃烧热的影响,我们将这次该实验条件下苯甲酸的恒容燃烧热近似认为恒容摩尔燃烧热。

计算仪器常数

C

T

Q m Qv m C △点火丝

点火丝苯甲酸苯甲酸?--=12.122/)( (2)

式中:苯甲酸Qv ——为苯甲酸恒容摩尔燃烧热,mol KJ / ; C ——仪器常数,k J ·K -1 ;

T ?——样品燃烧前后量热计温度的变化值;

V Q 点火丝——为点火丝的恒容燃烧热(-6.6944k J ·g -1

m 点火丝——为点火丝的质量,g ;

苯甲酸m ——为苯甲酸的质量,g 。

利用雷诺作图法处理结果如下图:

图一:苯甲酸1

图二:苯甲酸2

由图一、二可得苯甲酸燃烧引起卡计温度变化差值分别为 △T 1=1.048 K △T 1=0.853 K

现将计算C 值所需数据及计算结果整理如下:

(2)计算萘的燃烧热

由公式可得,萘的恒容燃烧热:

点火丝点火丝萘)(△m Q m C Q T 18.128??--=

式中:萘Qv ——为萘恒容摩尔燃烧热,mol KJ / ;

K ——仪器常数,k J ·K

-1

T ?——样品燃烧前后量热计温度的变化值;

V Q 点火丝——为点火丝的恒容燃烧热(-6.6944k J ·g

-1

m 点火丝——为点火丝的质量,g ;

萘m ——为萘的质量,g

利用雷诺作图法处理结果如下图:

图三:萘1

图四:萘2

(3)萘的恒压摩尔燃烧热

由(2)可得萘的恒容摩尔燃烧热 故根据燃烧方程式:

().()()(C H s O g C O g H O

l +=+

81022210585 可得萘的燃烧焓:

nRT

Q Q m v m p △+=,,

两次实验其系统温度分别为21.6℃和21.6℃ 计算后取平均值得萘在294.75K 时其摩尔燃烧热为

?c H m =Q p,m =—5170.559mol KJ /

如果不考虑温度的变化对标准燃烧热的影响,我们将这次该实验条件下(294.75K )萘的恒压燃烧热近似认为恒压摩尔燃烧热。

七、讨论分析 1、实验结果讨论分析 (1) 实验误差计算

查表得,m Qp , (萘,25℃ )=—5153.8 kJ/mol

相对误差=%325.0%100||

..,=?-=理论值

理论值

测量m p m p m p Q Q Q α

(2)实验误差来源分析

i. 药片质量:压片后称重总质量,通过简单计算得到药片质量。在固定药片至

电极的过程中以及转移的过程中,可能有药片粉末的脱落。此外,考虑到实

验中是徒手操作,手上的油脂等杂物可能粘附在药片上,导致实际燃烧的物质并不是理论质量的物质,使得测量结果不准确。因此,要药片要压实,且最好戴着手套操作。

ii.系统绝热效果:系统并不是理想的绝对绝热,可能引入误差。

iii.搅拌器功率较大,搅拌器不断引进的能量引入误差。

iv.处理恒容摩尔燃烧热和恒压摩尔燃烧热时,没有找到苯甲酸和萘的比热,所以不能算得出298.15K时的值,本实验结果是近似处理。

2、实验过程等讨论

(1)注意事项

i.把苯甲酸在压片机上压成圆片时,压得太紧,点火时不易全部燃烧;压得太

松,样品容易脱落;要压得恰到好处。样品的质量过大或者过小也会造成误差。

ii.将压片制成的样品放在干净的滤纸上,小心除掉有污染和易脱落部分,然后在分析天平上精确称量。

iii.安装热量计时,插入精密电子温差测量仪上的测温探头,注意既不要和氧弹接触,又不要和内筒壁接触,使导线从盖孔中出来,接触了对测温造成误差。防止电极短路,保证电流通过点火线。

iv.氧弹充气不离人,一只手始终抓住充气阀,以免意外情况下弹盖或阀门向外冲出。

v.热量计的绝热性能应该良好,但如果存在有热漏,漏入的热量造成误差;搅拌器功率较大,搅拌器不断引进的能量形成误差。

(2)实验心得

充分体会到计算机程序的强大,数据的原始记录和进一步的处理,若有人工完成,一方面计算繁琐,另一方面误差较大。而计算机程序则迅速精确的实现数据的处理,无论对于实验者还是实验质量的提高都相当有益。

八、结论

c H m(萘,294.75k)=-5170.559mol

KJ/

九、思考题

1、实验测量得到的温度差值为何要经过雷诺作图校正,还有那些误差来源会影响测量结果。

答:内水桶不是完全绝热,体系和环境之间的热交换途径有:传导、对流、辐射、蒸发和机械搅拌。为了校正这部分损失,用雷诺图解法进行校正。其他误差来源在结果讨论中已讨论。

2、什么是卡计和水的热当量?如何测得?

答:卡计和水的比热容C就是热当量。本实验通过样品苯甲酸可以测得。

3、测量燃烧热两个关键要求是什么?如何达到?

答:1、实验系统绝热 2、样品完全燃烧以及放出的热完全被吸收。保证系统绝热良好效果采用本实验外槽恒温式氧弹卡计,而样品完全燃烧需要保证样品的压片质量要高,以及充氧要充分。

十、参考文献

[1].南京大学物理化学教研室傅献彩,沈文霞,姚天扬. 物理化学, 第四版

(上,下册).高等教育出版社, 1990.

[2]. 崔献英,柯燕雄,单绍纯. 物理化学实验 , 中国科学技术大学出版社,

2000.

[3].《燃烧热测定实验研究》李森兰,杜巧云,王保玉大学化学,2001.

溶解热的测定实验报告

溶解热测定 姓名 学号 班级 实验日期 1 实验目的 (1)了解电热补偿法测定热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或作图求出硝酸钾在水中的微分溶解热、积分溶解热和微分冲淡热。 (3)掌握用微机采集数据、处理数据的实验方法和实验技术。 2 实验原理 溶解热:恒温恒压下,物质的量为2n 的溶质溶于物质的量为1n 的溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示。 积分溶解热:恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。用s Q 表示。 微分溶解热:恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以1 2n n Q ???? ????表示。 冲淡热:恒温恒压下,一定量的溶剂A 加到某浓度的溶液使之稀释所产生的热效应。 积分冲淡热:恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液的过程中产生的热效应,以d Q 表示。 微分冲淡热:恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应, 以21n n Q ???? ????或2 0n s n Q ???? ????表示。 它们之间关系可表示为: s Q n Q =2 令021n n n = 2 1002n s n s n Q n n Q Q ???? ????+???? ????= ()()0201n s n s d Q Q Q -= 积分溶解热s Q 可由实验测得,其他三种热效应则可通过0n Q s -曲线求得,曲线某点的切线的斜率为该浓度下的摩尔微分稀释热,切线与纵坐标的截距,为该浓度下的摩尔微分溶解热 (即OC )。显然,图中A 点的摩尔溶解热与B 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。

燃烧焓的测定_物化实验

图1 量热氧弹 实验四 燃烧焓的测定 冷向星 2010011976 材03班(同组实验者:琦) 实验日期:2012-4-5 带实验的老师:春 1 引言 有机化合物的生成焓难以直接从实验中测定,然而有机化合物易于燃烧,含碳、氢和氧等三种元素的有机化合物完全燃烧时生成二氧化碳和水。从有机化合物燃烧的热效应数据也可以估算反应热效应。 通常燃烧焓在等容条件下测定(即称为“氧弹”的不锈钢容器中燃烧),所得数据为值,经换算后可得出值。 1.1实验目的 1.使用弹式量热计测定萘的燃烧焓。 2.了解量热计的原理和构造,掌握其使用方法。 3.掌握热敏电阻测温的实验技术。 1.2实验原理 当产物的温度与反应物的温度相同,在反应过程中只做体积功而不做其它功时,化学反应吸收或放出的热量,称为此过程的热效应,通常亦称为“反应热”。热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m 。通常,C 、H 等元素的燃烧产物分别为CO 2(g)、H 2O(l)等。由于上述条件下ΔH=Q p ,因此ΔC H m 也就是该物质燃烧反应的等压热效应Q p 。 在实际测量中,燃烧反应常在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q V (即燃烧反应的摩尔燃烧能变ΔC U m )。若反应系统中的气体物质均可视为理想气体,根据热力学推导,ΔC H m 和ΔC U m 的关系为: p V Q Q nRT =+? (1) 测量热效应的仪器称作量热计,量热计的种类很多,一般测量燃烧焓用弹式量热计。本实验是用氧弹式量热计进行萘的燃烧焓的测定,结构如图1。实验过程中外水套保持恒温,水桶与外水套之间以空气隔热。同时,还把水桶的外表面进行了电抛光。这样,水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成了一 个绝热系统。 将待测燃烧物质装入氧弹中,充入足够的氧气。氧弹放入装有一定量 水的桶中,盖好外桶盖。以电控部分各开关控制搅拌并实现燃烧点火,用 热敏电阻作为测温元件,用电子自动平衡记录仪连续记录桶水温度的变化。 当某样品连同辅助物质棉线、金属丝燃烧后,下式成立:

物化的实验报告燃烧热的测定

华南师范大学实验报告 一、实验目的 1、明确燃烧热的定义,了解定压燃烧热与定容燃烧热的差别。 2、掌握量热技术的基本原理;学会测定萘的燃烧热 3、了解氧弹量热计的主要组成及作用,掌握氧弹量热计的操作技术。 4、学会雷诺图解法校正温度改变值。 二、 实验原理 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()p V Q Q RT n g =+? (1) ()V W W Q Q C W C M +=+样品 21总铁丝铁丝水水(T -T ) (2) 用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?。 便可据上式求出K ,再用求得的K 值作为已知数求出待测物(萘)的燃烧热。 三、仪器和试剂 1.仪器 SHR-15氧弹量热计1台;贝克曼温度计;压片机 2台;充氧器1台;氧气钢瓶1个;1/10℃温度计;万能电表一个;天平 2.试剂 铁丝;苯甲酸(AR);萘(AR );氧气 四、实验步骤 1、测定氧氮卡计和水的总热容量 (1)样品压片:压片前先检查压片用钢模,若发现钢模有铁锈油污或尘土等,必须擦净后,才能进行压片,用天平称取约0.8g 苯甲酸,再用分析天平准确称取一根铁丝质量,从模具的上面倒入己称好的苯甲酸样品,徐徐旋紧 压片机的螺杆,直到将样品压成片状为止。抽出模底的托板,再继续向下压,使模底和样品一起脱落,然后在分析天平上准确称重。 分别准确称量记录好数据,即可供燃烧热测定用。 (2)装置氧弹、充氧气:拧开氧弹盖,将氧弹内壁擦净,特别是电极下端的不锈钢接线柱更应擦十净,将点火丝的两端分别绑紧在氧弹中的两根电极上,选紧氧弹盖,用万用表欧姆档检查两电极是否通路,使用高压钢瓶时必须严格遵守操作规则。将氧弹放在充氧仪台架上,拉动板乎充入氧气。 (3)燃烧温度的测定:将充好氧气后,再用万用表检查两电极间是否通路,若通路将氧弹放入量热计内简。用量筒称3L 自来水,倒入水桶内,装好搅拌轴,盖好盖子,将贝克曼温度计探头插入水中,此时用普通温度计读出水外筒水温和水桶内的水温。接好电极,盖上盖了,打开搅拌开关。待温度温度稳定上升后,每个半分钟读取贝克曼温度计一次,连续记

物理化学实验报告_溶解热的测定

物理化学实验报告 溶解热的测定 实验时间:2018年4月日 姓名:刘双 班级: 学号: 1.实验目的 (1)了解电热补偿法测量热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或者作图求出硝酸钾在水中的微分溶解热、积分冲淡热和微分冲淡热。 (3)掌握微机采集数据、处理数据的实验方法和实验技术。 2.实验原理 物质溶解于溶剂过程的热效应称为溶解热,物质溶解过程包括晶体点阵的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等过程,这些过程热效应的代数和就是溶解过程的热效应,溶解热包括积分(或变浓)溶解热和微分(或定浓)溶解热。把溶剂加到溶液中使之稀释,其热效应称为冲淡热。包括积分(或变浓)冲淡热和微分(或定浓)冲淡热。 溶解热Q:在恒温、恒压下,物质的量为n2的溶质溶于物质的量为n1的溶剂(或溶于某浓度的溶液)中产生的热效应。 积分溶解热Qs:在恒温、恒压下,1mol溶质溶于物质的量为n1的溶剂中产生的热效应。 微分溶解热(ee ee2)e 1 :在恒温、恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中 的热效应。 冲淡热:在恒温、恒压下,物质的量为n1的溶剂加入到某浓度的溶液中产生的热效应。 积分冲淡热Q d:在恒温、恒压下,把原含1mol溶质和n02mol溶剂的溶液冲淡到含溶剂为n01mol时的热效应,为某两浓度的积分溶解热之差。 微分冲淡热(ee ee1) e2 或(eee ee0 ) e2 :在恒温、恒压下,1mol溶剂加入到某一确定浓度的无 限量的溶液中产生的热效应。 它们之间的关系可表示为:

dQ=(ee ee1) e2 ee1+( ee ee2 ) e1 ee2 上式在比值e1 e2 恒定下积分,得: e=(ee ee1 ) e2 e1+( ee ee2 ) e1 e2 ee2=ee,令:e1 n2 =e0,则有: ( ?Q ?n1 )=[ ?(n2Q s ?(n2n0) ]=( ?Q s ?n0 ) Q d=(ee)e01?(ee)e02 其中积分溶解热ee可以直接由实验测定,其他三种可以由ee?e0曲线求得。 欲求溶解过程中的各种热效应,应先测量各种浓度下的的积分溶解热。可采用累加的方法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先后加入的溶质的总量可计算出n0,而各次热效应总和即为该浓度下的溶解热。本实验测量硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。先测定体系的初始温度T,当反应进行后温度不断降低时,由电加热法使体系复原到起始温度,根据所耗电能求出热效应Q。 3.仪器和试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率0.001℃,电压测量范围0~20V,电压测量分辨率0.01V,电流测量范围0~2A,电流测量分辨率0.01A。 精密稳流电源:YP-2B型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子)。 称量瓶8只,毛笔,研钵。 硝酸钾(A.R.) 4.实验操作 (1)取8个称量瓶,分别编号。 (2)取KNO3于研钵中,研磨充分。 (3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下所称量的数据。

燃烧焓的测定-2006030027

燃烧焓的测定 吴大维 2006030027 生64 同组实验者:王若蛟 实验日期:2008年3月7日提交报告日期:2008年3月21日 助教:卢晋 1引言 1.1 实验目的 1.使用弹式量热计测定萘的燃烧焓。 2.了解量热计的原理和构造,掌握其使用方法。 3.掌握热敏电阻测温的实验技术。 1.2 实验原理 当产物的温度与反应物的温度相同,在反应过程中只做体积功而不做其它功时,化学反应吸收或放出的热量,称为此过程的热效应,通常亦称为“反应热”。热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m。通常,C、H等元素的燃烧产物分别为CO2(g)、H2O(l)等。由于上述条件下ΔH=Q p,因此ΔC H m也就是该物质燃烧反应的等压热效应Q p。 在实际测量中,燃烧反应常在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q V(即燃烧反应的摩尔燃烧内能变ΔC U m)。若反应系统中的气体物质均可视为理想气体,根据热力学推导,ΔC H m和ΔC U m的关系为: (1)式中,T为反应温度(K);ΔC H m为摩尔燃烧焓(J·mol-1);ΔC U m为摩尔燃烧内能变(J·mol-1);v B(g)为燃烧反应方程中各气体物质的化学计量数。产物取正值,反应物取负值。通过实验测得Q V值,根据上式就可计算出Q p,即燃烧焓的值ΔC H m。 测量热效应的仪器称作量热计,量热计的种类很多,一般测量燃烧焓用弹式量热计。本实验是用氧弹式量热计进行萘的燃烧焓的测定,结构如上图。

实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。同时,还把内水桶的外表面进行了电抛光。这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成了一个绝热系统。 量热仪的外桶盖为提升式。将其向上提到限位高度,顺时针旋转约90度,便可停放住。点火电极的上电极触头、内水桶搅拌器及测温器件均固定在外桶盖上,当把桶盖旋转到适当位置降下时,它们便都处于预定位置。搅拌器的马达也固定在外桶盖上,其电源线及点火电极连线经桶盖内部与量热仪的电控部分连通。氧弹的另一极经弹杯、内水桶及外水套与电控部分连通。 将待测燃烧物质装入氧弹时,充入足够的氧气。氧弹放入装有一定量水的内桶中,盖好外桶盖。以电控部分各开关控制搅拌并实现燃烧点火,用热敏电阻作为测温元件,用电子自动平衡记录仪连续记录内桶水温度的变化。 当温度变化不大时,可以认为热敏电阻阻值变化与温度变化成正比;当阻值变化不大时,电桥的不平衡电势U 与阻值变化成正比。所以U ∞?T 由于U 与记录仪的记录曲线峰高?h 成正比,故 ?T=a ?h (2) 式中a 为比例常数。设系统(包括所有内水桶中的物质)的热容C 为常数,则当某样品连同辅助物质棉线、金属丝燃烧后,下式成立: B c B B m U C T Ca h K h M ??=?=?=?∑ (3) 式中:c B U ?--------物质B 的摩尔燃烧内能变,J ·mol -1 B m ---------物质B 的质量 ,kg B M ---------物质B 的摩尔质量 ,kg ·mol -1 C-----------系统热容,也称能当量或水当量 J ·K -1 K-----------仪器常数,J ·mm -1 h ?---------记录仪记录曲线峰高, mm 先燃烧已知燃烧焓的物质(如苯甲酸),标定仪器常数K ,再燃烧未知物质,便可由上式计算出摩尔燃烧内能变。 2 实验操作 2.1 实验药品、仪器型号及测试装置示意图 实验仪器: GR3500型弹式量热计1套; 热敏电阻1支(约2k Ω); 大学化学实验计算机接口; 温度计1支; 2000ml ,1000ml 容量瓶各1个; 3000ml 装水盆1个; 镊子1把。 压片机、镍丝、棉线、万用表、台秤、分析天平、剪刀、尺子、氧气瓶功用。

燃烧热-物化试验报告

. 燃烧热的测定 姓名:憨家豪学号:2012012026 班级:材23 同组人:赵晓慧 实验日期:2014年4月19日提交报告日期:2014年4月20日 实验老师姓名:郭勋 1 引言 1.1实验目的 (1)熟悉弹式量热计的原理、构造及使用方法; (2)明确恒压燃烧热与恒容燃烧热的差别及相互关系; (3)掌握温差测量的实验原理和技术; (4)学会用雷诺图解法校正温度改变值; 1.2实验原理 在指定温度及一定压力下,1 mol物质完全燃烧时的定压反应热,称为该物质在此温度下的摩尔燃烧热,记作△H。通常,完全燃烧是指C→CO(g),H→HO(l),S→SO(g),22m22c而N、卤素、银等元素变为游离状态。由于在上述条件下△H=Q,因此△H也就是该物质mpc燃烧反应的等压热效应Q。p在实际测量中,燃烧反应在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q(即燃烧反应的△U)。若反应系统中的气体均为理想气体,根据mcv 热力学推导,Q和Q的关系为vp (1) T式中:——反应温度,K;——反应前后产物与反应物中气体的物质的量之差; R——摩尔气体常数。 值,根据上式就可计算出,即燃烧热的值。通过实验测得 1 / 8 .

测量热效应的仪器称作量热计。量热计的种类很多。一般测量燃烧热用弹式量热计。内所示。2-2-2实验过程中外水套保持恒温,本实验所用量热计和氧弹结构如图2-2-1和图内水桶连这样,同时,还对内水桶的外表面进行了电抛光。水桶与外水套之间以空气隔热。同其中的氧弹、测温器件、搅拌器和水便近似构成一个绝热体系。弹式量热计的基本原理是能量守恒定律。样品完全燃烧所释放的能量使得氧弹本身及就可求算该样品测量介质在燃烧前后的变化值,周围的介质和量热计有关附件的温度升高。的恒容燃烧热。2 / 8 . (2) m——为待测物的质量,kg ;式中:

燃烧热的测定实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:燃烧热的测定

一、 实验预习(30分) 1. 实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2. 实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3. 预习报告(10分) 指导教师______(签字)成绩 (1) 实验目的 1.用氧弹量热计测定蔗糖的燃烧热。 2.掌握恒压燃烧热与恒容燃烧热的概念及两者关系。 3.了解氧弹量热计的主要结构功能与作用;掌握氧弹量热计的实验操作技术。 4.学会用雷诺图解法校正温度变化。 (2) 实验原理 标准燃烧热的定义是:在温度T 、参加反应各物质均处标准态下,一摩尔β相的物质B 在纯氧中完全燃烧时所放出的热量。所谓完全燃烧,即组成反应物的各元素,在经过燃烧反应后,必须呈显本元素的最高化合价。如C 经燃烧反应后,变成CO 不能认为是完全燃烧。只有在变成CO 2时,方可认为是完全燃烧。同时还必须指出,反应物和生成物在指定的温度下都属于标准态。如苯甲酸在298.15K 时的燃烧反应过程为: (液)(气)(气)(固)O H CO O COOH H C 22 256372 15 +?+ 由热力学第一定律,恒容过程的热效应Q v ,即ΔU 。恒压过程的热效应Q p ,即ΔH 。它们之间的相互关系如下: nRT Q Q V P ?+= (1) 或nRT U H ?+?=? (2) 其中Δn 为反前后气态物质的物质的量之差。R 为气体常数。T 为反应的绝对温度。本实验通过测定蔗糖完全燃烧时的恒容燃烧热,然后再计算出蔗糖的恒压燃烧ΔH 。在计算蔗糖的恒压

燃烧热的测定实验报告

实验二 燃烧热的测定 一、目的要求 1.用氧弹量热计测定萘的燃烧热。 2.了解氧弹量热计的原理、构造及使用方法。 二、实验原理 1摩尔物质完全氧化时的反应热称为燃烧热。所谓完全氧化是指C 变为CO 2(气),H 变为H 2O(液),S 变为SO 2(气),N 变为N 2(气),如银等金属都变成为游离状态。 例如:在25℃、1.01325×105Pa 下苯甲酸的燃烧热为-3226.9kJ/mol ,反应方程式为: 1.01325105165222225C H COOH()+7O ()7CO H O Pa s g g l ??????→℃ ()+3() 3226.9kJ/mol c m H O ?=- 对于有机化合物,通常利用燃烧热的基本数据求算反应热。燃烧热可在恒容或恒压条件下测定,由热力学第一定律可知:在不做非膨胀功的情况下,恒容燃烧热V Q U =?,恒压燃烧热p Q H =?。在体积恒定的氧弹式量热计中测得的燃烧热为Q V ,而通常从手册上查得的数据为Q p ,这两者可按下列公式进行换算 ()p V Q Q RT n g =+? (2-1) 式中,Δn(g)——反应前后生成物和反应物中气体的物质的量之差; R ——气体常数; T ——反应温度,用绝对温度表示。 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热

量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()V W W Q Q C W C M + =+样品 21总铁丝铁丝水水(T -T ) (2-2) 式中,W 样品,M ——分别为样品的质量和摩尔质量; Q V ——为样品的恒容燃烧热; W 铁丝,铁丝Q ——引燃用的铁丝的质量和单位质量的燃烧热 (-16.69kJ g Q =?铁丝); C W 水水,——分别为水的比热容和水的质量; C 总——是量热计的总热容(氧弹、水桶每升高1K ,所需的总 热量); 21T T -——即T ?,为样品燃烧前后水温的变化值。 若每次实验时水量相等,对同一台仪器C 总不变,则(C W C +总水水)可视为定值K ,称为量热计的水当量。 水当量K 的求法是:用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?,便可据式2-2求出K 。 三、仪器和药品 1.仪器 SHR-15氧弹量热计1台;SWC-ⅡD 精密温度温差仪1台;压片机 1台;充氧器1台;氧气钢瓶1个。部分实验仪器如图2.1和图2.2所示。

冰的熔解热的测定实验报告

实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统A和一个已知热容的系统B混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统C (C=A+B).这样A(或B)所放出的热量,全部为B(或A)所吸收。因为已知热容的系统在实验过程中所传递的热量Q,是可以由其温度的改变△T 和热容C计算出来,即Q = C△T,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块, 冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为Q 放 ,冰吸热溶成水, 继续吸热使系统达到热平衡温度,设吸收的总热量为Q 吸 。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为M(冰的温度和冰的熔点均认为是0℃,设为T0),数字温度计浸入水中的部分放出的热量忽略不计。设混

有机物燃烧焓的测定。实验报告

有机物燃烧焓的测定 一.实验目的 1.明确燃烧焓的定义,了解恒压热效应与恒容热效应的关系。 2.掌握有关热化学实验的一般知识和技术。 3.用氧弹式量热计测定有机物的燃烧焓。 二.实验原理 热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m 。通常,C 、H 等元素的燃烧产物分别为CO 2(g)、H 2O(l)等。由于上述条件下ΔH=Q p ,因此ΔC H m 也就是该物质燃烧反应的等压热效应Q p,m 。 在适当的条件下,许多有机物都能迅速而完全地进行氧化反应,这就为准确测定它们的燃烧焓创造了有利条件。 在实际测量中,燃烧反应常在恒容条件下进行,如在弹式量热计中进行,这样直接测得的是反应的恒容热效应Q V (即燃烧反应的热力学能变ΔC U )。若将应系统中的气体物质视为理想气体,根据热力学推导可得ΔC H m 和ΔC U m 的关系为: )(g RT U H B B m c m c ν∑+?=? 或 )(,,g RT Q Q B B m v m p ν∑== (1) 式中,T 为反应温度(K);ΔC H m 为摩尔燃烧焓(J·mol -1);ΔC U m 为摩尔燃烧热力学能变(J·mol -1 );v B (g)为燃烧反应方程中各气体物质的化学计量数,规定生产物取正值,反应物取负值。 通过实验测得Q V,m (J·mol -1 )值,根据上式就可计算出Q p,m (J·mol -1 ),即燃烧焓的值ΔC H m 。 本实验是用氧弹式量热计进行萘的燃烧焓的测定。量热计结构如图1所示,氧弹结构如图2所示。 实 验中,设质量为m a (g )的待测物质(恒容燃烧热为Q v,m )和质量为m b (g )的点火丝(恒容燃烧热为q ,J·g -1 )在氧弹中燃烧,放出的热可使质量为w m 的水(比热容为c w ,J·K -1 ·g -1 )及量热器本身(热容为C m ,J·K -1)的温度由T 1升高到T 2,则根据能量守恒定律可得到热平衡关系 )()]().[(1212,T T K T T w c C m q M m Q m w m b a m -?=-?+-=?+? ν (2) 式中,M 为该待测物的摩尔质量;规定系统放热时Q 取负数;K= -( C m +c w · w m ),同一套仪器、当内筒中的水量一定时,K 值恒定,称K 为仪器常数或水当量(J·K -1 ),常用已知燃烧热值Q v 的苯甲酸来测定。求

物化实验报告:溶解热的测定-KCl、KNO3

华南师范大学实验报告 课程名称 物理化学实验 实验项目 溶解热的测定 【实验目的】 1.用量热计简单测定硝酸钾在水中的溶解热。 2.掌握贝克曼温度计的调节和使用。 【实验原理】 盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。溶解热是这两种热效应的总和。最终是吸热还是放热,则由这两种热效应的相对大小来决定。 本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。 T C C W C W W M H m sol ??++-=?][322111 )( (3.1) 式中: m Sol H ?为盐在溶液温度和浓度下的积分溶解热,单位:kJ ·mo1–1; 1W 为溶质的质量,单位:kg ; T ?为溶解过程的真实温差,单位:K ; 2W 为水的质量,单位:kg ; M 为溶质的摩尔质量,单位:kg ·mo1–1 ; 21C C 、分别为溶质和水的比热,单位:11--?K kg kJ ; 度升 3C 为量热计的热容(指除溶液外,使体系温高1℃所需要的热量) ,单位:kJ 。 实验测得W 1、W 2、ΔT 及量热计的热容后,即 可按 图3.1溶解热测定装配图 1.磁力搅拌器; 2.搅拌磁子; 3.杜瓦瓶; 4.漏斗; 5.传感器; 6.SWC —IIC 数字贝克曼温度仪.

(3.1)式算出熔解热m Sol H 。 【仪器与药品 】 溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.) 【实验步骤】 1.量热计热容的测定: 本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。然后用普通水银温度计测出量热计中溶液的温度,倒掉溶液。 2.硝酸钾溶解热的测定:用硝酸钾代替氯化钾重复上述实验,区别是称取硝酸钾的质量为7克(准确至0.01g)。完成一次实验后,溶液不倒掉。同样连续读数8次后,再向溶液中加入7克硝酸钾,再读取12次温度完成第二次测量。实验结束,倒掉溶液 【数据的处理】 1.各样品溶解前后温差的雷诺校正图

燃烧热的测定 实验报告

燃烧热的测定 一、实验目的 ●使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并 由此求算其摩尔燃烧热。 ●了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的 使用方法,熟悉贝克曼温度计的调节和使用方法 ●掌握恒容燃烧热和恒压燃烧热的差异和相互换算 二、实验原理 摩尔燃烧焓?c H m 恒容燃烧热Q V ?r H m = Q p ?r U m = Q V 对于单位燃烧反应,气相视为理想气体 ?c H m = Q V +∑νB RT=Q V +△n(g)RT 氧弹中 放热(样品、点火丝)=吸热(水、氧弹、量热计、温度计) 待测物质 QV-摩尔恒容燃烧热Mx-摩尔质量 ε-点火丝热值bx-所耗点火丝质量q-助燃棉线热值cx-所耗棉线质量 K-氧弹量热计常数?Tx-体系温度改变值

三、仪器及设备 标准物质:苯甲酸待测物质:萘 氧弹式量热计 1-恒热夹套2-氧弹3-量热容器4-绝热垫片5-隔热盖盖板6-马达7,10-搅拌器8-伯克曼温度计9-读数放大镜11-振动器12-温度计

四、实验步骤 1.量热计常数K的测定 (1) 苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2 (2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线 (3) 盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止 (4)把氧弹放入量热容器中,加入3000ml水 (5) 调节贝克曼温度计,水银球应在氧弹高度约1/2处 (6) 接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。约10min后,若温度变化均匀,开始读取温度。读数前5s振动器自动振动,两次振动间隔1min,每次振动结束读数。 (7)在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。加大点火电流使点火指示灯熄灭,样品燃烧。灯灭时读取温度。 (8)温度变化率降为0.05°C·min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。先取出贝克曼温度计,再取氧弹,旋松放气口排除废气。 (9)称量剩余点火丝质量。清洗氧弹内部及坩埚。 实验步骤 2. 萘的恒容燃烧热的测定 取萘0.6g压片,重复上述步骤进行实验,记录燃烧过程中温度

溶解热实验报告

溶解热的测定 名字:程伊伊学号:06 班级:药学日期:2016.3.15 (一)实验原理 1.溶解热概念溶质溶解于溶剂的过程由溶质晶格破坏、电离的吸热过程和溶质溶剂化的放热过程组成,总的热效应取决于两者之和,可能是吸热的,也可能是放热的。在一定温度和压力下,热效应的大小与溶质和溶剂的相对量有关,例如硝酸钾溶解在水中的热效应(吸热)随溶剂水的量增加而增加。 2.电热补偿法原理硝酸钾溶解于水的过程是吸热过程,反应热可以用电热补偿法来进行测定。其基本做法是,在反应前确定系统的温度,在反应中,给予系统电加热,直到反应结束后,系统的温度恢复到起始状态,计算电热量即为反应热。 △Hm=Cp*△T1*M/m Cp=Q/△T2 Q=IVt (二)实验步骤 (1)在分析天平上称取1份重量为8.2345g的硝酸钾样品,放在干燥器中待用。 (2)将蒸馏水加入干燥的保温杯中,同时记录水温,作为实验温度。 (3)插上电源,搭好装置,开启磁力搅拌器,调整转速。观察数字贝克曼温度计,记录初始温度T1,每1min观察1次,记录3次,直至恒温。 (4)将预先称好的硝酸钾8.2345g迅速、全部倒入保温杯中,盖好瓶盖,磁力搅拌器均匀地搅拌,由于硝酸钾溶解为吸热过程,溶解时温度下降,每30s读取温度一次,直至温度不变,即为T2。T2每1min观察1次,记录3次。 (5)开启电源,接上加热器,调整功率(电压约10V,电流约1A),准确记录电流电压值。当贝克曼温度计度数上升0.5℃时,记作标记温度,并按下秒表开始计时。 (6)计时的同时,观察温度上升,直至接近T1,取下加热器,记录温度T3,每1min 观察1次,记录3次。 (三)数据记录和处理 实验温度的测定 通电时间:3min14s 电流:1.435A 电压:10.46V 实验温度:13.92℃ 每1min记录1次第1次第2次第3次 T1 13.93 13.93 13.93 T2 11.16 11.14 11.13 T3 14.18 14.22 14.26

溶解热的测定实验报告

学号:201114120222 基础物理化学实验报告 实验名称:溶解热的测定 应用化学二班班级 03 组号 实验人姓名: xx 同组人姓名:xxxxx 指导老师:李旭老师 实验日期: 2013-11-19 湘南学院化学与生命科学系

一、实验目的 1、掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。 2、用电热补偿法测定KNO3在不同浓度水溶液中的积分溶解热。 3、用作图法求KNO3在水中的微分冲淡热、积分冲淡热和微分溶解热。 二、实验原理 1、在热化学中,关于溶解过程的热效应,有下列几个基本概念。 溶解热:在恒温恒压下,n 2mol 溶质溶于n 1mol 溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示,溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。 积分溶解热:在恒温恒压下,1mol 溶质溶于n 0mol 溶剂中产生的热效应,用Qs 表示。 微分溶解热:在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以 表示简写为 。 冲淡热:在恒温恒压下,1mol 溶剂加到某浓度的溶液中使之冲淡所产生的热效应。冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。 积分冲淡热:在恒温恒压下,把原含1mol 溶质及n 01mol 溶剂的溶液冲淡到含溶剂为n 02时的热效应,亦即为某两浓度溶液的积分溶解热之差,以Qd 表示。 微分冲淡热 在恒温恒压下,1mol 溶剂加入某一确定浓度的无限量的溶液中产生的热效应,以 可以简写为 。 2、积分溶解热QS 可由实验直接测定,其它三种热效应则通过QS -n 0曲线求得。 设纯溶剂和纯溶质的摩尔焓分别为m H (1)和Hm ? (2),当溶质溶解于溶剂变成溶液后,在溶液中溶剂和溶质的偏摩尔焓分别为H 1,m 和H 2,m ,对于由n 1mol 溶剂和n 2mol 溶质组成的体系,在溶解前体系总焓为H 。 H =n1Hm(1)+n2Hm(2) (1) 设溶液的焓为H ′, H ′=n1H1,m +n2H2,m (2) 此混合(即溶解)过程的焓变为 H H H nA Hm A H*m A nB Hm B H*m B ??==+(,,)(,,) nA Hm A nB Hm B =?+?,, 式中,Hm ?,A 即为该浓度溶液的微分稀释热,ΔHm ,B 即为该浓度溶液的1,,2n p T n Q ???? ????1 2n n Q ???? ????2,,2n p T n Q ???? ????22n n Q ???? ????

燃烧热的测定实验报告

燃烧热实验报告 一、实验目的 1、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。 2、掌握量热技术的基本原理,学会测定奈的燃烧热。 3、了解氧弹卡计主要部件的作用,掌握氧弹量热计的实验技术。 4、学会雷诺图解法校正温度改变值。 二、实验原理 燃烧热是指1摩尔物质完全燃烧时所放出的热量。在恒容条件下测得的燃烧 热称为恒容燃烧热(Q v,m ),恒容燃烧热这个过程的内能变化(Δ r U m )。在恒压条 件下测得的燃烧热称为恒压燃烧热(Q p,m ),恒压燃烧热等于这个过程的热焓变化 (Δ r H m )。若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列 关系式: c H m = Q p,m =Q v,m +ΔnRT (1) 本实验采用氧弹式量热计测量萘的燃烧热。测量的基本原理是将一定量待测物质样品在氧弹中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。 氧弹是一个特制的不锈钢容器。为了保证化妆品在若完全燃烧,氧弹中应充以高压氧气(或者其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周围环境发生热交换。 但是,热量的散失仍然无法完全避免,这可以是同于环境向量热计辐射进热量而使其温度升高,也可以是由于量热计向环境辐射出热量而使量热计的温度降低。因此燃烧前后温度的变化值不能直接准确测量,而必须经过雷诺矫正作图法进行校正。 放出热(样品+点火丝)=吸收热 (水、氧弹、量热计、温度计) 量热原理—能量守恒定律 在盛有定水的容器中,样品物质的量为n摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容为C(通常称为仪器的水当量,

【免费下载】溶解热的测定实验报告 南昌大学

南昌大学物理化学实验 溶解热的测定实验报告一、 实验目的 1 .了解电热补偿法测定热效应的基本原理及仪器使用。 2.测定硝酸钾在水中的积分溶解热,并用作图法求得其微分稀释热、积分稀释热和微分溶解热。 二、 基本原理1.物质溶解于溶剂过程的热效应称为溶解热。它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。前者是1mol 溶质溶解在n 0mol 溶剂中时所产生的热效应,以Q s 表示。后者是1mol 溶质溶解在无限量某一定浓度溶液中时所产生的热效应,即。 溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。前者是把原含1mol 溶质和n 01mol 溶剂的溶液稀释到含溶剂n 02mol 时所产生的热效应,以Q d 表示,显然。后者是1mol 溶剂加到无限量某一定浓度溶液中时所产生的热效应,即。 2.积分溶解热由实验直接测定,其它三种热效应则需通过作图来求:设纯溶剂、纯溶质的摩尔焓分别为H *m ,A 和H *m ,B ,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为H m ,A 和H m ,B ,若由n A mol 溶剂和n B mol 溶质混合形成溶液,则混合前的总焓为 H = n A H *m ,A + n B H *m ,B (1)混合后的总焓为 H ? = n A H m ,A + n B H m ,B (2)此混合(即溶解)过程的焓变为 ΔH = H ? – H = n A (H m ,A – H *m ,A )+ n B (H m ,B – H *m ,B ) = n A ΔH m ,A + n B ΔH m ,B (3)根据定义,ΔH m ,A 即为该浓度溶液的微分稀释热,ΔH m ,B 即为该浓度溶液的微分溶解热,积分溶解热则为: 故在Q s ~ n 0图上,某点切线的斜率即为该浓度溶液的微分稀释热,截距即为该浓度溶液的微分溶解热。如图所示:、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

冰的熔解热的测定实验报告

学院:信息工程学院 班级:通信152 学号:6102215051 姓名:潘鑫华 实验时间:第六周星期二下午八九十节

T T' θ J K T 1 T 1' 实验名称 测定冰的熔解热 一、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 二、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统 A 和一个已知热容的系统 B 混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 C (C =A +B ).这样 A (或 B )所放出的热量,全部为 B (或 A )所吸收。因为已知热容的系统在实验过程中所传递的热量 Q ,是可以由其温度的改变 △T 和热容 C 计算出来,即 Q = C △T ,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块,冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为 Q 放 ,冰吸热溶成水,继续吸热使系统达到热平衡温度,设吸收的总热量为 Q 吸。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T 1,其中热水质量为m2(比热容为c0)。冰的质量为m1(冰的温度和冰的熔点均认为是0℃,设为T 0),数字温度计浸入水中的部分放出的热量忽略不计。设混合后系统达到热平衡的温度为T ℃(此时应低于室温10℃左右),冰的溶解热由L 表示,根据(1)式有 ML +m1c0(T - T 0)=m2c0(T 1- T ) 因T r=0℃,所以冰的溶解热为: L=[m2c0(T1-T2)-T2c0m1]/m1 (2) 综上所述,保持实验系统为孤立系统是混合量热法所要求的基本实验条件。为此整个实验在量热器内进行,但由于实验系统不可能与环境温度始终一致,因此不满足绝热条件,可能会吸收或散失能量。所以当实验过程中系统与外界的热量交换不能忽略

一、燃烧焓的测定实验报告

物理化学实验报告 实验名称: ________________ 燃烧焓的测定 __________ 学 院: _________ 化学工程学院 __________ 专 业: 化学工程与工艺 __________ 班 级: ________________________________ 姓 名: _______ 学号: __________________ 指导教师: _______________________________________ 日 期: ________________________________

、实验目的 1、用氧弹式量热计测定萘的燃烧焓。 2、明确燃烧焓的定义,了解恒压燃烧热与恒容燃烧热的差别。 3、了解氧弹式量热计中主要部分的作用,掌握氧弹式量热计的实验技术。 4、学会用雷诺作图法校正温度变化值。 二、实验原理 1、燃烧焓是热化学中重要的基本数据,在非体积功为零的情况下,物质的燃烧焓 常以物质燃烧时的燃烧热来表示,即厶c Hm=Qp,m。测定物质的燃烧焓实际就是测定 物质在等温、等压下的燃烧热。 2、量热法是热力学实验的一个基本方法。等压燃烧热(Qp)与等容燃烧热 (Q v)之间的关系为:Qp,m =Q v,m + E(g)RT 3、氧弹式量热计属于一个等容系统,且热力学能变厶U =0o 即厶 c U B+A c U 引燃丝+ △ U 量热计=0 ; 可化作:m B Q v,B+IQ B+K △ T=0 三、实验准备 1、主要药品:萘约0.6g,苯甲酸约0.8g。 2、主要仪器:氧弹式量热计、压片机、贝克曼温度计、温度计 (丝(15 cm)、量筒(2000ml)、氧气钢瓶及减压阀等。 四、实验装置图 四、实验步骤 1、热容量K的测定 (1)截取15cm引燃丝,将其中部绕成环状。 (2)称取苯甲酸约0.8g,压成片状,并放桌上敲击2次,去除没压紧的部分,再次称量。 100C)、弓|燃 I…込:2—幡抻膿钏I: 3:呻左潘=4绝盘 皿in乳竝*?内桶:&丹套内壁;齐醮量计夕 卜臺+ 8- 灘水=9-辄邨=10 水惶钉飞 I l \ Mi立垦册虚$卜小囤噩:

相关主题
文本预览
相关文档 最新文档