当前位置:文档之家› 遗传学(第3版) 刘祖洞、乔守怡、吴燕华、 赵寿元 高等教育出版社 (2013-01)课后习题答案8

遗传学(第3版) 刘祖洞、乔守怡、吴燕华、 赵寿元 高等教育出版社 (2013-01)课后习题答案8

遗传学(第3版) 刘祖洞、乔守怡、吴燕华、 赵寿元 高等教育出版社 (2013-01)课后习题答案8
遗传学(第3版) 刘祖洞、乔守怡、吴燕华、 赵寿元 高等教育出版社 (2013-01)课后习题答案8

Chapter 8 DNA Methylation in the Pathogenesis of Head and Neck Cancer

Zvonko Magi?, Gordana Supi?,

Mirjana Brankovi?-Magi? and Neboj?a Jovi?

Additional information is available at the end of the chapter

https://www.doczj.com/doc/bc7176585.html,/10.5772/51169

1. Introduction

Head and neck cancer is the sixth most common cancer worldwide and one of the most ag‐gressive malignancies in human population. The most common histologic type among the head and neck tumors are the squamous cell carcinomas (SCC). Despite the significant ef‐forts committed during the last decades in its early detection, prevention and treatment, head and neck cancer prognosis remains very poor with the rising incidence in developed countries and younger population. Carcinogenesis of Head and Neck Squamous Cell Carci‐noma (HNSCC) is a multistep process, which arises through an accumulation of genetic and epigenetic alterations. Although the impact of genetic changes in oral carcinogenesis is well-known, over the last decade it has been demonstrated that epigenetic changes, especially aberrant DNA methylation, play a significant role in HNSCC.

1.1. Head and neck cancer – Etiology and risk factors

Head and Neck Squamous Cell Carcinoma is the sixth most common cancer in males and tenth in females worldwide [1]. Despite the fact that significant results have been achieved during the last decades in its early detection, prevention and treatment, the survival rate has remained less than 40%, and HNSCC remains one of the most aggressive malignancies. Fur‐thermore, the incidence of this carcinoma is rising in developed countries and younger pop‐ulation, particularly young women [2, 3]. Early stages of the disease are associated with minimal symptoms, thus small percentage of HNSCC has been diagnosed at an early clinical stage. Advanced stages respond poorly to current cancer therapies, with high incidence of local and regional relapse and lymph node metastasis [2, 4, 5].

? 2013 Magi? et al.; licensee InTech. This is an open access article distributed under the terms of the Creative

Commons Attribution License (https://www.doczj.com/doc/bc7176585.html,/licenses/by/3.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.

Head and neck cancers include malignancies arising from different anatomical sites within the upper aero-digestive tract. Head and neck cancers are characterized by heterogeneous histology. The majority carcinomas that arise from squamous cell epithelia are head and neck squamous cell carcinomas (HNSCC ), while other cancer types that can occur in the head and neck include thyroid cancer, malignant salivary gland tumors, lymphomas and sarcomas. HNSCC include cancers of the oral cavity, larynx, pharynx (oropharynx, hypo‐pharynx, nasopharynx), and esophagus, [4, 5], Figure 1.

1.2. Risk factors for HNSCC

Both environmental and genetic factors play an important role in the etiology of head and neck cancers but the causal relationship between environmental factors, lifestyle and tumor development is not yet fully elucidated. The mucosa of the upper aerodigestive tract is ex‐posed to number of carcinogens attributed to cause genetic and epigenetic changes that ulti‐mately lead to head and neck cancer development. HNSCC incidence is influenced by age,genetic factors, geographic region and different lifestyle factors, including alcohol, smoking,betel quid use, oral hygiene, and Human Papilloma Virus (HPV) infection [5]. Emerging evi‐dences are indicating that environmental factors, such as smoking, alcohol and diet could directly or indirectly affect epigenetic mechanisms of gene expression regulation and DNA methylation in HNSCC .

1.3. Tobacco and alcohol use in HNSCC

Smoking and alcohol consumption are the major risk factors for head and neck cancers [6,7]. In addition, the combination of both alcohol and tobacco use synergically increases the risk for HNSCC development more than 10 times [8]. Cigarette smoking is the major cause of lung cancer and is associated with head and neck, esophagus, bladder, breast and kidney cancer [9]. Increased risk with smoking may be due to the direct effect of tobacco carcino‐gens or due to genetic polymorphisms in enzymes that activate or detoxify carcinogens.

Several carcinogens present in cigarette smoke are inactivated by a family of enzymes cyto‐chrome P-450 (CYP), which convert carcinogens into reactivated intermediates. These inter‐mediates form DNA adducts that need to be detoxified by a number of enzymes, including glutathione S-transferase [GST) [10]. Single nucleotide polymorphisms (SNPs) in these genes could be an alternative mechanism that modulates the effects of cigarette smoke. Even though alcohol and smoking are known risk factors, only a fraction of smokers and alcohol consumers develop HNSCC, suggesting that genetic susceptibility and interactions between genetic, epigenetic and environmental factors could play an important role in the etiology of HNSCC [11, 12].

Alcohol consumption has been associated with an increased risk of the head and neck,esophagus, liver, colorectal, and breast cancer [13]. Possible mechanisms by which alcohol exerts its harmful effect includes the genotoxic effect of ethanol metabolite acetaldehyde,production of reactive oxygen- and nitrogen species, changes in folate metabolism, genera‐tion of DNA adducts and inhibition of DNA repair. Also, alcohol could exert its damaging

Methylation - From DNA, RNA and Histones to Diseases and Treatment

186

effect directly, either acting as a solvent of carcinogens from tobacco smoke or damaging the oral mucosa, that enhances the penetration of carcinogens from tobacco smoke [7]. Genetic polymorphisms of ethanol-metabolizing enzymes, including alcohol dehydrogenases (ADH) (which metabolizes alcohol into acetaldehyde), with a different ability to generate carcinogen acetaldehyde, may determine individual susceptibility to head and neck cancer.Acetaldehyde can form adducts with DNA, interfering with DNA synthesis and repair [7,13]. “Fast-metabolizing” ADHs genotype was associated with the increase of OSCC and HNSCC risk [14, 15, 16]. By the contrast, in other studies “fast-metabolizing” ADHs geno‐type was found to be associated with decreased risk of HNSCC [11, 17, 18]. Therefore, the mechanism by which smoking and alcohol causes increased risk for HNSCC and the role of

alcohol and tobacco-related polymorphisms have not been fully elucidated.

Figure 1. Diverse anatomical localization of Head and Neck Squamous Cell Carcinomas. Although head and neck can‐cers are characterized by heterogeneous histology, the majority carcinomas arise from squamous cell epithelia of the oral cavity (tongue, buccal mucosa, floor of the mouth), oropharynx (soft palate, base of tongue, tonsils), hypophar‐ynx, nasopharynx, larynx (supraglotis, glottis, subglotis) and esophagus.

1.4. HPV infection in HNSCC

In addition to alcohol and tobacco exposure, human papilloma virus (HPV) infection has al‐so a significant part in the etiology of head and neck cancer. HPV cancers predominantly arise from tongue and palatine tonsils within the oropharynx [5, 19]. Acting in synergy with tobacco use and heavy alcohol consumption, HPV infection with high-risk types is consid‐ered as an etiological factor in the development of HSCC and OSCC [5]. Reported incidence DNA Methylation in the Pathogenesis of Head and Neck Cancer

https://www.doczj.com/doc/bc7176585.html,/10.5772/51169187

of high-risk HPVs in oral carcinoma patients varied from 0% to 100% [20], depending on the methods used for HPV detection, tumor-host characteristics of the examined group of pa‐tients, varying numbers of included tissue samples, but it is also affected with different dis‐tribution of oncogenic HPVs in different world regions. The DNA of oncogenic HPVs is present in 20% of all HNSSCs and in nearly 60% of tonsillar cancers [5, 8]. There is increasing evidence that HPV-associated HNSCC carcinomas are distinct clinical and pathological tu‐mor entity from alcohol and smoking-associated HNSCC s with regards to risk factors, tumor biology and progression [5]. Infection with oncogenic HPV types, predominantly HPV16and HPV18 is associated with increased risk of HNSSC [5, 19].

HPV infection causes deregulation of cell cycle and apoptosis by inactivation of Rb and p53 tu‐mor suppressor gene protein products, involved in the maintenance of genome stability. E6protein of high risk HPVs affects the p53 protein function by ubiquitin-dependent degrada‐tion. Although p53 tumor suppressor gene is the most often mutated gene in human oncology,in tumors with HPV etiology is not clear in which extent the mechanism of p53 mutation is in‐cluded in p53 inactivation. It can be assumed that p53 mutations occur most frequently in HPV negative than in the HPV positive head and neck cancers, but it is questionable if the presence of p53 mutation in HPV infected tumors additionally influences prognosis of the patients. Nu‐merous studies with conflicting results deal with the influence of oncogenic HPV types and prognosis of HSCC . The majority of them reported that HSCC patients with HPV infection have better prognosis than the patients who are HPV negative [5, 21, 22]. On the contrary, our previous results concerning OSCC patients in stage III of the disease showed worse overall and disease-free survival for patients infected with high-risk HPV types (HPV 16, 18 and 31) [23],indicating the presence of more aggressive disease in these patients. Our study comparing dis‐ease-free interval (DFI) and overall survival (OS) between patients with HPV infection only and the patients with HPV infection and p53 mutation showed significantly shorter disease-free interval as well as overall survival in patients with both HPV infection and p53 mutation.Presence of p53 mutations in HPV infected tumors confer a higher risk of recurrence in this dis‐ease. In addition, since all patients were treated with postoperative radiotherapy, shorter DFI indicate that the response to radiotherapy may be influenced by p53 status [24]. However, it has been recently reported that it is unlikely that HPV infection plays significant role in mobile tongue carcinogenesis in young OSCC patients [25].

The role of HPV infection in the etiology, as well as in prognosis of head and neck cancers varies and it depends on head and neck cancer subtypes and different anatomic site of tu‐mors. From that point of view, it is clear that HPV typing, together with other molecular markers may help in defining a particular group of tumors in regard to prognosis and re‐sponse to anti cancer therapies.

1.5. Diet and HNSCC

Recent studies provide growing evidence that some dietary components, might affect the process of carcinogenesis. There is a growing body of evidence that bioactive food compo‐nents, such as isothiocyanates from cruciferous vegetables (cauliflower, cabbage, and broc‐coli), diallyl sulfide (an organosulphur compound from garlic), green tea flavonoids, folate,and selenium, effect on cancer might be mediated through epigenetic mechanisms. Several

Methylation - From DNA, RNA and Histones to Diseases and Treatment

188

recent studies indicate that dietary habits and fruit and vegetable intake could be associated with cancer risk [26, 27]. Increased fruit and vegetable consumption was recently associated with reduced occurrence of HNSCC [28]. However, the findings of association of diet and

cancer risk are still confounding.

Figure 2. Schematic presentation of synergistic effect of different genetic alterations in transformation of normal to malignant cell. Gene mutations can be inherited (BRCA1, BRCA2, RET, VHL, APC) and associated with a predisposition to certain cancer or cancer syndromes. Also, mutations can be acquired leading to the strong predisposition to malig‐nant transformation of cells (K-ras , p53, HER2, bcr-abl, bcl-2, Rb). The human genome is characterized with enormous number of genetic polymorphisms that sometimes results with impaired function of the gene product, especially when cells are exposed to environmental or host risk factors. Hypermethylation of gene promoter sequences causes gene silencing that is of great importance for tumor suppressor genes. All these genetic alterations can impair func‐tion of other genes and further contribute to increased risk of malignant transformation.

2. Molecular changes In HNSCC

Second half of 20th century and beginning of 21st century are marked with almost revolution‐ary breakthrough in our understanding of human gene structure and functions. The rapid development of biotechniques led to the sequencing of complete human genome and later of genome and transcriptome of many human tumors [29, 30]. Even before these achievements,it was well accepted that malignant tumors, on the molecular level, are disease of genes.This knowledge led to enormous number of worldwide research projects and publications concerning association of gene alterations in tumor cells with cancerogenesis and early diag‐nosis, tumor progression, tumor staging and response to therapy. In spite of many practical/DNA Methylation in the Pathogenesis of Head and Neck Cancer

https://www.doczj.com/doc/bc7176585.html,/10.5772/51169189

clinical results of these studies [Her-2/neu, BRCA-1 and BRCA-2 in Breast Cancer; K-ras and EGFR in Colon Cancer; bcr-abl in Chronic Myeloid Leukemia; B-RAF and c-KIT in Melano‐ma; detection of dominant clone of B- and T-lymphocytes in tracking minimal residual dis‐ease in lymphomas and leukemia’s [29-33], still much more questions concerning significance of gene alterations for tumor development and treatment remains unanswered.In the last 10-15 years significant efforts are done to fulfill these gaps in our understanding of molecular pathogenesis of cancer by studying epigenetic changes of tumor tissues.

These alterations are of special interest because epigenetic changes are tumor/tissue specific,although inheritable epigenetic alterations are under strong influence of environmental risk factors and patient behavior and they are potentially reversible. Intensive research of epige‐netic alterations in human tumors and their association with environmental risk factors and patient behavior put an attention to another group of gene alterations, i.e. on inherited gene polymorphisms. These researches tried to elucidate connection of certain gene polymor‐phisms with environmental and host risk factors and epigenetic alterations in different hu‐man tumors and in HNSCC [12, 16, 34-36], Figure 2.

Carcinogenesis of HNSCC is a multistep process, which arises through an accumulation of genetic and epigenetic alterations. These genetic alterations result in inactivation of multiple tumor suppressor genes and activation of proto-oncogenes by deletions, point mutations,promoter methylation, and gene amplification [3], Table 1.

Genetic changes Locus / gene

Cancer type Frequency Ref.LOH 9p21-22/ p16INK4a/p14ARF HNSCC

OSCC

70–80%37, 38,39, 403p/ RASSF1A, FHIT, RARB2OSCC

HNSCC

30–70%37, 39, 40, 4717p13/p53HNSCC

76%3911q OSCC

20-33%3713q14/Rb HNSCC

68%398p OSCC

53-83%37Mutation 9p21-22/ p16OSCC

70%415q21-22/APC OSCC

50%3717p13/p53HNSCC

40-79%4911p15/H-ras OSCC

35-55%37Amplification 11q13/(PRAD-1/Cyclin D1/hst-1/int-2)

HNSCC

30–50%46, 477p12/EGFR OSCC 30%53, 54

Table 1. Frequent genetic abnormalities in head and neck cancer.

Methylation - From DNA, RNA and Histones to Diseases and Treatment

190

Genetic instability in regions leads to loss of chromosomal region that contains tumor suppres‐sor genes. A high incidence of Loss of heterozygosity (LOH) observed at 9p, 8p, 3p, 9q, and 11q regions were associated with tumor stage, and poor histological differentiation in HNSCC [37].Loss of heterozygosity (LOH) of 9p21 appears is an early and frequent event in head and neck carcinogenesis [37, 38-40]. The CDKN2A gene locus found in 9p21 region encodes two differ‐ent transcripts, p16 and p14ARF, which are responsible for G1 cell cycle regulation and MDM2mediated degradation of p53. P16 and p14 are often inactivated in HNSCC through homozy‐gous deletion, by promoter methylation, and by point mutations [41-44].

Loss of chromosome region 3p is a common early genetic event in HNSCC [2, 40, 45]. Genet‐ic alterations at 3p that are common in HNSCC and OSCC contains tumor suppressor genes Fragile histidine triad (FHIT ) gene mapped at 3p14, Ras association family (RASSF1A ) gene,mapped at 3p21, and Retinoic acid receptor B2 gene (RARB2), mapped to chromosome re‐gion 3p24 [37, 40]. Amplification of 11q13 leads to overexpression of cyclin D1 [46], detected in 30–60% of HNSCC and 40% of cases of oral squamous dysplasia [47].

There has been much research on the tumor suppressor gene p53 and its role in HNSCC and OSCC carcinogenesis. The p53 protein blocks cell division at the G1 to S boundary, stimu‐lates DNA repair after DNA damage, and induces apoptosis. P53 has been shown to be functionally inactivated in oral and head and neck tumors [48]. LOH of 17p13, which con‐tains p53 and point mutations of the p53 are seen in more than 50% of HNSCC cases [39, 49].Cigarette smoking has been associated with the mutation of p53 in head and neck cancers [14]. Investigations about the prognostic value of p53 status in head and neck cancer sub‐types hardly can get a clear result due to the presence of large heterogeneity in regard to patients characteristics, and methods for p53 detection. Meta-analysis of Tandon et al [50]pointed out that evidence about the prognostic value of p53 in head and neck cancer squa‐mous cell carcinomas has been inconclusive. However, determination of p53 status of HNSCC may be of particular interests due to its possible role in prediction of the response to cisplatin based chemotherapy. Cisplatin chemotherapy is widely used chemotherapeutical approach in the treatment of head and neck cancers and data that patients with p53 muta‐tions respond better to cisplatin chemotherapy need further confirmation [51]. Chemothera‐py responses in HNSCC patients is also influenced by polymorphism at codon 72 of p53gene. In patients with wild type p53, arginine at codon 72 is associated with better response to chemotherapy. On the contrary, if p53 is mutated, proline at position 72 is better option [52]. Better understanding of cellular processes and their actors such as p53 network and their relation to clinical settings will help in appropriate biomarker characterization. Epider‐mal growth factor receptor (EGFR ) is overexpressed in 90% of HNSCC [53], often due to am‐plification [54]. Thus, frequent molecular abnormalities in head and neck squamous cell carcinoma include alterations in tumor suppressor genes p16INK4A, p53, p14ARF, FHIT ,RASSF1A , Rb , cyclin D1, and activation of oncogenes, such as members of the ras gene fami‐ly, c-myc , and EGFR [2-4], Table 1.

A large number of previous studies have also suggested the correlation between polymor‐phisms of genes involved in cell cycle control, angiogenesis and metabolism of alcohol and carcinogens and susceptibility to head and neck cancer [10, 16, 34-36].

DNA Methylation in the Pathogenesis of Head and Neck Cancer

https://www.doczj.com/doc/bc7176585.html,/10.5772/51169191

Although the impact of genetic changes in oral carcinogenesis is well-known, over the last decade it has been demonstrated that epigenetic changes, especially aberrant DNA methyla‐tion, play a significant role in HNSCC [55]. Epigenetic modifications are heritable changes in gene expression that are not coded in the DNA sequence [56]. These changes are mitoticaly (clonally) heritable and potentially reversible, which provides large possibilities of epigenet‐ic therapy. Additionally, epigenetic changes could be modulated by the nutrition, environ‐mental and genetic factors and/or gene-by-environment interactions. Main mechanisms of epigenetic control in mammals include DNA methylation, histone modifications and RNA interference (RNA silencing).

3. DNA methylation

DNA methylation of cytosine in a CpG dinucleotide is the key epigenetic modifica‐tion in mammals. The covalent addition of a methyl group to the 5-carbon (C5) po‐sition of cytosine that are located 5' to a guanosine base in a CpG dinucleotide are catalyzed by a family of enzymes DNA methyltransferases (DNMTs ). CpG dinucleoti‐des are asymmetrically distributed in the genome. Throughout the genome rare soli‐tary CpGs are heavily methylated. In contrast, CpG clustered in small stretches of DNA (0.5-4kb regions), with greater than 50% GC content, are termed ‘CpG is‐lands’. Of approximately 50% the genes in the genome CpG islands are associated with promoter regions. In normal cells, most CpG sites outside of CpG islands are methylated, whereas CpG islands in gene promoters are usually unmethylated, inde‐pendently of the gene transcription status [56]. During the process of cancerogenesis paradoxical changes in DNA methylation patterns occurs, with simultaneous global hy‐pomethylation and regional hypermethylation changes. Global DNA hypomethylation may activate, ‘unlock’ repetitive elements that could affect genome stability or could lead to transcriptional activation of latent viruses or oncogenes. Simultaneously, region‐al hypermethylation leads to transcriptional silencing of tumor suppressor genes. Cy‐tosine methylation of CpG islands in the promoters of tumor suppressor genes causes their inactivation, transcriptional silencing and consequently malignant transforma‐tion. Investigations showed that the number of cancer-related genes that are inactivat‐ed by epigenetic modifications equals or even exceeds the number of genes inactivated by mutation. Furthermore, genetic and epigenetic changes have almost identical biolog‐ical effect and pattern of gene expression [56]. Pattern of tumor suppressor genes hy‐permethylation shows tumor-type specificity.

While DNMT3A and DNMT3B are mostly involved in de novo methylation, DNMT1 is in‐volved in the maintenance of DNA methylation after replication [56]. Several studies have shown DNMT overexpression (mainly DNMT1 and DNMT3B ) in cancer, including HNSCC [57]. The analysis of DNMT knockout cells revealed that individual enzymes also interact between each other, and interact with other chromatin modifying enzymes, histone deacety‐lases (HDAC ) and methyl-CpG binding proteins (MBPs). Methylation of cytosine within CpG islands is associated with binding of MBPs, which recruit HDAC to methylated DNA in regions of transcriptional silencing. Histone deacetylation, catalyzed by HDACs , leads to the

Methylation - From DNA, RNA and Histones to Diseases and Treatment

192

chromatin condensation and suppression of DNA transcription. Thus, DNA methylation and histone modifications are not isolated events, but highly coordinated [56].

3.1. DNA methylation in HNSCC

Frequent hypermethylation of tumor-related genes were observed in cancer tissue of OSCC and HNSCC, in the normal adjacent mucous in the OSCC [58], dysplastic tissue [59], and leu‐koplakia [60]. Promoter hypermethylation can also be detected in buccal swabs samples of tobacco and alcohol users [58], Thus, DNA methylation has been considered as an early event in head and neck carcinogenesis.

The list of genes that are found to be inactivated by DNA methylation events in HNSCC is growing rapidly and includes genes involved in the cell cycle control (p14, p15, p16and p53), DNA damage repair (MGMT, hMLH1, and ATM), apoptosis (DAPK, RASSF1A, and RARβ), Wnt signalling (APC, RUNX3, WIF1, E-cad and DCC) SFRP family genes, TCF21, etc. [42, 44, 55, 58-62], Table 2.

FUNCTION Gene Gene name Locus Gene Action HNSCC methylation

Ref.

Cell Cycle Control p16

Cyclin-dependent

kinase inhibitor

2A (CDKN2A)

9p21

Regulation of

the Rb pathway

10-70%42, 96 p15

Cyclin-dependent

kinase inhibitor 2B

9p21

TGF beta-mediated

cell cycle arrest

23-80%151

Apoptosis p14

Alternative open

reading frame (ARF)

of INK4a locus

9p21Pro-apoptosis18-46%75-77, 96 DAPK1

Death-associated

protein kinase 1

19q34

p53-dependent

apoptosis

18-77%

42, 44, 61,

68, 72, 78

Wnt signaling pathway APC

Adenomatous

polyposis coli

5q21-

22

Wnt signaling

and adhesion

20-68%44, 92-95

CDH1E-cad herin16q22Cell–cell adhesion2-66%44, 72, 81-88

SFRP

Soluble frizzled

receptor protein

genes family

10q24

Antagonists of

the Wnt pathway

30-94%97-99

DNA Methylation in the Pathogenesis of Head and Neck Cancer

https://www.doczj.com/doc/bc7176585.html,/10.5772/51169

193

FUNCTION Gene Gene name

Locus Gene Action HNSCC methylation Ref.WIF1Wnt inhibitory

factor 112q14Secreted Wnt antagonist

25-90%62, 97, 102

RUNX3Runt-related

transcription factor 31p36Wnt signaling inhibitor,

TGF-β-induced tumor suppression

18-36%62, 99-101

DNA damage

repair hMLH1human mutL homolog 13p21DNA mismatch repair 8-76%96, 106, 107MGMT

O 6-mehylguanine DNA methyltransferase 10q26DNA repair for alkylated guanine 10-57%59, 44, 72,103-105Tumor

suppressor

FHIT Fragile Histidine Triad

3p14Control of cell cycle 33-84%96, 110RASSF1A

Ras association

(RalGDS/AF-6)domain family member 1A 3p21RAS pathway regulation and tumor suppression 10-76%45, 72, 78,79, 96DCC Deleted in

Colorectal Cancer

18q21Cell–cell adhesion 17-75%108, 109RARβRetinoic acid

receptor beta 3p24Regulatory protein and apoptosis 53-88%59, 78

Table 2. Genes commonly methylated in HNSCC .

3.2. DNA methylation association with progression and prognosis in HNSCC

A number of tumor suppressor genes hypermethylation has been associated with worse outcome in various cancer types. Hypermethylation of the p16 and WIF1 genes [63] and RASSF1A and RUNX3 methylation status [64] were found to be independent prognos‐tic factors non-small cell lung cancers. DAPK promoter hypermethylation has been asso‐ciated with tumor aggressiveness and poor prognosis in lung cancer [65]. E-cad herin promoter hypermethylation was found to be the prognostic factor of worse prognosis in diffuse gastric cancer [66], and in non-small cell lung carcinoma [67]. Epigenetic in‐activation of several genes by DNA methylation has been found to associate with HNSCC progression [44, 58, 61, 68].

p16INK4a is cyclin-dependent kinase inhibitor which regulates the Rb pathway, leading to in‐hibition of cell cycle progression. An alternate spliced product of the same INK4a locus is another tumor suppressor gene p14ARF (Alternative open reading frame). Loss of p16 in head and neck and oral tumors has been frequently reported [69, 70]. p16 methylation was correlated with malignant transformation of oral epithelial dysplasia and is a potential bio‐marker for prediction of prognosis of mild or moderate oral epithelial dysplasia, with the overall sensitivity and specificity of >60% [71]. Previously, p16 methylation status has been correlated with tumor stage, lymph node metastasis and tumor size in HNSCC [72], and

Methylation - From DNA, RNA and Histones to Diseases and Treatment

194

poorly differentiated HNSCC [73]. p16 hypermethylation has been associated with poor prognosis in HNSCC [55, 74] and OSCC [75]. Interestingly, p16I NK4A and p14ARF genes,transcribed from the same locus INK4A by alternate splicing, could have a diametrically op‐posite clinical effect in oral cancer patients when methylated. Promoter methylation of p16was associated with increased disease recurrences and worse prognosis, whereas p14 meth‐ylation was strongly associated with lower disease recurrence and was found to be a good prognostic predictor for oral carcinoma [75]. However, other studies associated p14 methyla‐tion with tumor stage and lymph node involvement of OSCC [76] and poor prognosis [77].These findings indicate that DNA methylation status of INK4A/ARF locus could be used as a prognostic biomarker for assessing the aggressiveness of disease in oral and head and neck carcinoma patients.

Death associated protein-kinase (DAPK), plays a critical role in apoptosis regulation in tu‐mor development, and commonly is hypermethylated in HNSCC [42] and OSCC [68].DAPK promoter methylation showed the positive correlation with lymph node involve‐ment [42, 72, 78] and advanced disease stage in HNSCC [42, 72]. The presence of DAPK promoter hypermethylation detected in surgical margins was associated with the de‐creased overall survival and was shown to be an independent prognostic factor for over‐all survival in OSCC patients [61].

RASSF1A Ras association (RalGDS/AF-6) domain family member 1A, involved in RAS path‐way regulation and tumor suppression, is frequently inactivated by promoter hypermethy‐lation in HNSCC [45, 72]. RASSF1A methylation correlates with head and neck tumor stage [72], poor disease-free survival of OSCC [79] and lymph node metastasis in nasophageal car‐cinomas [78].

E-cadherin (E-cad ) has a dual role in a mammalian cell, as a Ca +2-dependent cell adhesion molecule, and as a part of the complex signaling Wnt pathway interacting with β- and α-catenine [80]. Hypermethylation of E-cad is a common event in HNSCC [44, 72, 81, 82]. Re‐duced E-cad expression as a consequence of promoter hypermethylation leads to the development of the invasive phenotype in the OSCC [83], and is associated with lymph node metastasis in the OSCC [84] and HNSCC [85]. Hypermethylation of E-cad has previous‐ly been associated with tumor stage of HNSCC [72] and nasopharyngeal carcinomas [86]and lymph node metastasis of oral [82] and nasopharyngeal carcinomas [87]. Down-regula‐tion of CDH1 due to hypermethylation contributed to the progression of esophageal cancer [88], led to poor differentiation and the development of the invasive phenotype in the OSCC [83], and salivary gland carcinomas [89]. Furthermore, E-cad hypermethylation was associat‐ed with poor survival in the OSCC [84] and HNSCC [85]. Recently published investigations showed that E-cad gene hypermethylation was associated with the decreased survival in HNSCC patients [90]. In addition, advanced OSCC patients with E-cad promoter methylation had significantly worse 3- and 5-year survival rates [44], and E-cad hypermethylation was found to be an independent prognostic factor in oral tongue carcinoma [81]. However,HNSCC patients with E-cad promoter methylation had lower rates of local recurrences and better disease-specific survival and outcome [91], which indicates that the role of E-cad gene methylation in head and neck carcinomas has not been fully elucidated.

DNA Methylation in the Pathogenesis of Head and Neck Cancer

https://www.doczj.com/doc/bc7176585.html,/10.5772/51169195

APC gene plays an integral role in the Wnt signaling pathway in binding and degrading of β-catenine. Hypermethylation of the APC gene promoter is frequent in HNSCC [92-94], and OSCC [44]. APC methylation status has previously been associated with worse prognosis of esophageal carcinoma [95]. However, in another study on esophageal cancer, hypermethyla‐tion of the APC gene was related to a lower number of metastatic lymph nodes and better recurrence rates [96].

SFRP (soluble frizzled receptor protein) family genes are involved in the inhibition of Wnt signaling. Promoters of SFRP-2, SFRP-4, SFRP-5 genes showed methylation in OSCC , where‐as SFRP-1 was demethylated in oral cancer [97]. SFRP-1 has been associated with tumor grade in OSCC [98]. Hypermethylation of SFRP-1 was associated with an increased risk of esophageal cancer recurrence [99].

RUNX3 Runt-related transcription factor 3 gene plays a role in the transforming growth fac‐tor-beta (TGF-β) -induced tumor suppression pathway. RUNX3 may have an oncogenic role in HNSCC and its expression may predict malignant behavior [100]. In contrast to HNSCC ,in OSCC the RUNX3 gene is downregulated due to promoter hypermethylation [101] and associated with lymph node involvement and tumor stage in tongue carcinomas [62]. Hy‐permethylation of RUNX3 detected in the plasma of esophageal cancer patients was signifi‐cantly associated with an increased risk of cancer recurrence [99].

WIF1 Wnt inhibitory factor 1, gene involved in the inhibition of Wnt signaling, is commonly methylated in the HNSCC [102] and OSCC [62, 97]. Its methylation status was correlated with lymph node metastasis in nasopharyngeal carcinoma [102].

MGMT O(6)-methylguanine-DNAmethyltransferase a DNA repair gene that removes muta‐genic O 6-guanine adducts from DNA, is inactivated by hypermethylation in HNSCC [59]and OSCC [44]. MGMT promoter hypermethylation was associated with tumor stage of HNSCC [72] and with lymph node involvement in laryngeal carcinomas [103]. In addition,the methylation of MGMT was associated with poor survival and reduced disease-free sur‐vival in OSCC [104] and increased recurrences rate and poor prognosis of HNSCC [105].

hMLH1 mutL homolog 1 is involved in the DNA repair process. The hMLH1 promoter meth‐ylation occurred in high frequency of the majority of the early stage OSCC and in about half of the late stage carcinomas [106], indicating its potential role in the tumor progression. Pro‐moter methylation of hMLH1 gene is also a common event in HNSCC , and was correlated with poor survival in HNSCC [107].

RAR? Retinoic acid receptor beta is commonly methylated in HNSCC [59] and associated with highly differentiated tumors, advanced tumor stage and the presence of lymph node metastasis of nasopharyngeal carcinomas [78].

TIMP3 Tissue inhibitor of metalloproteinases 3 gene is involved in the inhibition of angio‐genesis and tumor growth. Promoter methylation of TIMP3 predicts better outcome in HNSCC treated by radiotherapy [91].

DCC Deleted in colorectal cancer, tumor suppressor gene highly methylated in HNSCC [108]was correlated with mandibular invasion and poor survival in oral cancer [109].

Methylation - From DNA, RNA and Histones to Diseases and Treatment

196

FHIT Fragile Histidine Triad gene is associated highly methylated in HNSCC [96], and asso‐ciated with poor prognosis in early stage esophageal squamous cell carcinoma [110].

MINT1 and MINT 31, are the members of Methylated in tumor gene family, which methyla‐tion was previously associated with invasiveness and poor survival in the OSCC [109].

A number of recent data suggests that promoter hypermethylation of specific genes does not occur independently or randomly, but concurrently, which indicate that during the tumor progression progressive accumulation of epigenetic alterations could occur. High degree of methylation of multiple genes CpG island regions, associated with microsatellite instability and hMLH1 gene hypermethylation, has been defined as a CpG island methylator pheno‐type (CIMP) in colorectal cancer, and is characterized by a poor outcome [111]. It has been suggested that a form of the CpG island methylator phenotype (CIMP) exists in other solid tumors, including HNSCC [112]. As opposed of CIMP positive colorectal cancers In oral can‐cer CIMP is characterized by less aggressive tumor biology [113],. The panel of tumor-relat‐ed genes used to classify multiple methylation and CIMP differs substantially between studies [12, 112, 113], which could likely affect the results of association with clinical param‐eters and prognosis. Future extensive investigations are needed to establish a reliable set of reference cancer-related genes whose methylation status should be examined in the specific types of tumors. Further investigations are needed to better characterize the etiology of this methylation phenotype as well as to determine if this phenotype has important prognostic or clinical use.

3.3. DNA methylation in early detection of HNSCC

The detection of aberrant DNA hypermethylation emerged as a potential biomarker strategy for early detection of various carcinomas. Since DNA methylation is an early event in tu‐morigenesis of HNSCC , identification of methylation markers could provide great promise for early detection and treatment in HNSCC [68]. As opposed to advanced HNSCC diagno‐sis, early HNSCC detection increases survival to 80%. Therefore, early detection markers may potentially serve as a predictive tool for diagnosis and recurrence of HNSCC . However,even though such markers provide great promise for early detection, epigenetic biomarkers have not yet been clinically implemented [114, 115].

Routine oral visual screening could significantly reduce oral cavity mortality [116]. Howev‐er, oral cavity screening will not identify cancers deep in the pharynx or larynx which re‐quires special instrumentation and examination. In addition, screening of HNSCC should involve noninvasive detection of OSCC and HNSCC , such as detection in saliva and oral rinses, or minimally invasive detection, such as blood and serum analysis. Saliva presents an ideal means for HNSCC biomarker detection because of its proximity to the primary tumor site, availability of exfoliated cancer cells, and ease of sampling [117, 118].

Soluble CD44 promoter gene hypermethylation detected in saliva samples has been indicat‐ed as an early detection marker in HNSCC screening [119]. Recently, NID2 and HOXA9 pro‐moter hypermethylation have been identified as biomarkers for prevention and early detection in oral carcinoma tissues and saliva [120]. Hypermethylation of multiple tumor-DNA Methylation in the Pathogenesis of Head and Neck Cancer

https://www.doczj.com/doc/bc7176585.html,/10.5772/51169197

related genes (RAR-β, DAPK , CDH1, p16 and RASSF1A ) analyzed in combination could serve as a biomarker for early diagnosis of esophageal squamous cell carcinoma [57]. More‐over, these multiple tumor-related gene hypermethylation were associated with the increase of DNMT3b expression in early stages of esophageal cancer [57].

The development methylation-specific polymerase chain reaction (PCR) techniques has re‐sulted in the identification of methylated genes specific to HNSCC detected in tumor sam‐ples [68], including DAPK [42], and RASSF1A [72].

Saliva and oral rinses could be ideal diagnostic and predictive biofluids for head and neck cancer since they samples cells from the entire lesion and the entire oral cavity. The detec‐tion of hypermethylated marker genes from oral rinse and saliva samples has a great poten‐tial for the noninvasive detection of OSCC and HNSCC [118, 68, 121, 122, 123, 124]. DNA hypermethylation of p16, MGMT , and DAPK in saliva showed aberrant methylation in 56%of samples from HNSCC patients, and only in one of the 30 control subjects [68]. The aber‐rant methylation of a combination of marker genes E-cadherin , transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2), and MGMT , present in oral rinses was used to detect OSCC with >90% sensitivity and specificity [124].

Using the approach of gene selection according to previous studies on promoter methyla‐tion in HNSCC Carvalho et al. analyzed both saliva and serum in 211 HNSCC patients and 527 normal controls, and showed high specificity of promoter hypermethylation in HNSCC patients compared with normal subjects (>90%); however, the sensitivity of this panel was 31.4% [118]. In another study with different approaches, genome-wide methylation array analysis of 807 cancer-associated genes, was conducted on the matched preoperative saliva,postoperative saliva, and oral cancer tissue, and compared to saliva of normal subjects. Mul‐tiple potential diagnostic gene panels that consisted of 4 to 7 genes ranged in their sensitivi‐ty from 62% to 77% and in their specificity from 83% to 100% [123], significantly higher than previous studies of aberrant methylation detected in saliva in head and neck cancer patients

[121, 122, 118]. Using this approach, new genes could be discovered that can be used as a reliable biomarker for the early detection of oral and head and neck cancer.

The KIF1A (Kinesin family member 1A) gene, that encodes a microtubule-dependent molec‐ular motor protein involved in organelle transport and cell division, has recently been asso‐ciated with aberrant DNA methylation in HNSCC [125]. EDNRB (Endothelin receptor type

B) is a G protein coupled receptor, which activates a phosphatidylinositol calcium second messenger system, has previously been associated with nasopharyngeal carcinomas [126]and HNSCC [125]. Promoter hypermethylation of KIF1A and EDNRB is a frequent event in primary HNSCC , and these genes are preferentially methylated in salivary rinses from HNSCC patients. KIF1A (97.8% specificity and 36.6% sensitivity) and EDNRB (93.2% specif‐icity and 67.6% sensitivity) are highly sensitive markers that could potentially be used as bi‐omarkers for HNSCC detection. In addition, combining the markers improves sensitivity while maintains good specificity (93.1% specificity and 77.4% sensitivity) [125].

Methylation - From DNA, RNA and Histones to Diseases and Treatment

198

3.4. Predictive significance of DNA methylation

Epigenetic alterations such as DNA methylation could be a marker of response to radio and/or chemotherapy in the treatment of cancer. DNA methylation could play an important role in the regulation of gene expression for genes involved in cell cycle and apoptosis, thus affecting the chemosensitivity of cancers. Treatment of cancer cells with demethylating agent could lead to re-expression of gene involved in the activation of the apoptotic process and restore the sensitivity to the chemotherapy. Targeting the epigenetic mechanisms of apoptosis related genes inactivation may increase the efficacy of chemotherapy in various cancer types. Studies in vitro and in model systems certainly suggest that treatment with ep‐ipgenetic agents can reverse drug resistance.

The best known example of DNA promoter hypermethylation and response to chemothera‐py is MGMT promoter methylation in glioma patients treated with alkylating agents [127].The expression of DNA repair gene MGMT , which removes alkyl groups added to guanine in DNA, is controlled by its promoter methylation. A cell that expresses a low amount of MGMT is known to be more sensitive to the antiproliferative effects of alkylating agents. It has been shown that hypermethylation of MGMT is the predictor of good response to temo‐zolomide therapy in gliomas [128], to carmustine therapy in gliomas [127], and to cyclo‐phosphamide therapy in diffuse B cell lymphoma [129]. Acquired hypermethylation of DNA mismatch repair gene hMLH1 (detectable in peripheral blood) during carboplatinum/taxane therapy of ovarian cancer predicts poorer outcome [130]. In addition, WRN gene pro‐moter hypermethylation was associated with hypersensitivity to topoisomerase inhibitor iri‐notecan in primary colon cancer [131].

It has been shown that DNA methylation could have the predictive significance in OSCC and HNSCC . Hypermethylation of MGMT was the predictor of good response to temozolo‐mide therapy in oral squamous cell carcinoma [105]. GPx3 promoter hypermethylation was associated with tumorigenesis and chemotherapy response in HNSCC [132]. A correlation between methylation of mitotic checkpoint gene CHFR (checkpoint with ring finger) and sensitivity to microtubule inhibitors (docetaxel or paclitaxel) was observed in OSCC cells [133]. Downregulation of SMG-1 (suppressor with morphogenetic effect on genitalia) due to promoter hypermethylation in HPV-Positive HNSCC resulted in increased radiation sensi‐tivity and correlated with improved survival, whereas SMG-1 overexpression protected HPV-positive tumor cells from irradiation [134]. DNA methylation could be a regulatory mechanism for chemosensitivity to 5-fluorouracil and cisplatin by zebularine, a novel DNA methyltransferase inhibitor, in oral squamous cell carcinomas [135]. It has been shown that zebularine suppresses the apoptotic potential of 5-fluorouracil via cAMP/PKA/CREB path‐way in human oral carcinoma cells [136].

Radiotherapy is the standard adjuvant treatment for OSCC and the Ras/PI3K/AKT pathway plays an important role in OSCC radioresistance. A combination of RASSF1A , RASSF2A ,and HIN-1 methylation was found to be significantly associated with poor disease-free sur‐vival in patients treated with radiotherapy after surgery but not in patients treated with sur‐gery alone [79].

DNA Methylation in the Pathogenesis of Head and Neck Cancer

https://www.doczj.com/doc/bc7176585.html,/10.5772/51169199

TGF-β signaling has been found to be disrupted in HNSCC progression [137], thus this path‐way has been targeted for therapy [138]. Downregulation of disabled homolog 2 (DAB2)gene expression via promoter DNA methylation frequently occurs in HNSCC and acts as an independent predictor of metastasis and poor prognosis [139]. Epigenetic downregulation of DAB2 switches TGF-β from a tumor suppressor to a tumor promoter, suggest a way to strat‐ify patients with advanced SCC who may benefit from anti-TGF-β therapies [139].

Although methylation of certain genes appears to influence the sensitivity to chemothera‐peutic drugs, the majority of studies were performed on cell line models, or a small number of subjects. In addition, combination therapies of epigenetic agents and standard chemother‐apy/radiotherapy have to be carefully investigated due to potential harmful effects in the clinical application of DNMT inhibitors. Epigenetic profile in predicting the chemosensitivi‐ty of individual cancers would contribute to personalized therapy [140]. Studies of pharma‐coepigenomics will require large-scale analyses and genome-wide methylation analyses using microarrays and next-generation sequencers, necessary to confirm the usage of epige‐netic changes in predicting responses to chemotherapeutic drugs.

3.5. Epigenetic therapy of HNSCC

Unlike mutations, epigenetic changes are reversible, which provides large possibilities of ep‐igenetic therapy [141]. Demethylating agents that inhibit DNA methyltransferases DNMTs ,could have a utility to effectively activate expression of previously epigenetically silenced genes. 5-azanucleosides, nucleoside analogs that inhibit DNMTs , with consequent hypome‐thylation of DNA, have long been known to have DNA demethylating activities, but are too toxic for clinical use [141]. However, recent studies have shown that therapeutic efficacy could be achieved at low drug doses [142 -4]. 5-Azacytidine, a cytosine analog treatment has been tested in multiple cancer cell lines and are shown to reexpress methylated genes in myelodysplastic syndromes (MDS) [142, 143]. Low doses were used in a large trial in pa‐tients with MDS, and showed an increase in the time of conversion of MDS to leukemia, and increased overall survival [144].

5-Azacytidine application resulted in partial demethylation of the MGMT and RASSF1A tu‐mor suppressor genes and reduced proliferation of the tumor cells suggesting further inves‐tigation of 5-azacytidine for HNSCC treatment [145]. Methylation status and expression of HIC1, a potential tumor suppressor gene, was restored after demethylation treatment of HNSCC cell lines with 5-azacytidine [146].

Epigenetic therapy in monotherapy could reactivate tumor suppressor genes or in combina‐tion therapy may enhance the anti-proliferative effect of standard chemotherapy, such as cisplatin, 5-fluorouracil, etc. The low dose of a novel DNA methyltransferase inhibitor, ze‐bularine may sensitize oral cancer cells to cisplatin, an important characteristic of solid can‐cer treatment. DNA methylation could be a regulatory mechanism for dihydropyrimidine dehydrogenase (DPD), known to be a principal factor in 5-fluorouracil (5-FU) resistance and that DPD activated by zebularine in OSCC could be an inhibiting factor in the response to apoptosis induced by 5-FU [135].

Methylation - From DNA, RNA and Histones to Diseases and Treatment

200

The epidermal growth factor receptor (EGFR ) has been extensively investigated and validat‐ed as a therapeutic target in lung, colorectal, pancreatic, and head and neck cancers. Howev‐er, patients with wild type EGFR obtain little sustained benefit from anti-EGFR monotherapy Broad restoration of tumor suppressor function by demethylation could en‐hance the anti-proliferative and pro-apoptotic effect of EGFR blockade in solid malignancy.Re-expression of p15, p21, or p27, cell cycle inhibitors downstream of EGFR , or PTEN , a PI3K/Akt inhibitory protein, may have particular synergy with anti-EGFR therapy. Recent phase I study evaluated the combination of anti-EGFR erlotinib and 5-azacytidine in solid carcinomas showed the beneficial clinical effect in lung and head and neck cancers [147]. Ef‐ficacy of erlotinib could be enhanced by concurrent hypomethylating therapy with 5-azacy‐tidine, secondary to re-expression of tumor suppressors interacting with the EGFR signaling cascade. In recent study of resistance to anti-EGFR therapy agents, promoter methylation of commonly methylated genes was investigated in two parental non-small cell lung cancer (NSCLC ) and HNSCC cell lines and their resistant derivatives to either erlotinib or cetuxi‐mab [148]. It was found that DAPK gene promoter was hypermethylated in drug-resistant derivatives generated from both parental cell lines. Restoration of DAPK into the resistant NSCLC cells by stable transfection re-sensitized the cells to both erlotinib and cetuximab [148], thus indicating that DAPK promoter methylation could be a potential biomarker of drug response.

These results demonstrate that DNA methylation could play an important role in both che‐motherapy and radiotherapy resistance, and that gene silencing through promoter methyla‐tion is one of the key mechanisms of developed resistance to anti-EGFR therapeutic agents.Epigenetic therapy could be a novel treatment to overcome chemo- and/or radiotherapy re‐sistance and to improve the benefits of current therapies.

3.6. DNA methylation in HNSCC and etiological factors

Epidemiological studies have reported the association of DNA methylation status in HNSCC with exposure to environmental factors, including tobacco smoke, alcohol intake, genotoxic betel quid consumption, HPV infection, diet and environmental pollutants.

Recent studies have shown a correlation between tobacco and/or alcohol use and hyperme‐thylation of tumor related genes. DNA global hypomethylation was associated with alcohol consumption [149]. p16 methylation has been correlated with alcohol use and smoking [72].Promoter methylation of p16 was previously correlated with alcohol intake [150], while RASSF1A methylation was associated with tobacco use in HNSCC [72]. Smoking and drink‐ing was associated with p15 promoter methylation in the upper aerodigestive tract of healthy individuals and HNSCC patients [151]. Promoter methylation of SFRP1 occurred more often in both heavy and light drinkers compared to nondrinkers in head and neck squ‐amous cell carcinoma [152]. Significant association of tumor-associated genes hypermethyla‐tion with alcohol use was observed in HNSCC [153].

Recent studies are indicating that increased fruit and vegetable consumption are associated with reduced head and neck cancer risk [28]. There is a growing body of evidence that bio‐active food components, such as isothiocyanates from cruciferous vegetables (cauliflower,DNA Methylation in the Pathogenesis of Head and Neck Cancer

https://www.doczj.com/doc/bc7176585.html,/10.5772/51169201

cabbage, and broccoli), diallyl sulfide, an organosulphur compound from garlic, isoflavone,phytosterole, folate, selenium, vitamin E, flavonoids might reduce cancer risk through epi‐genetic mechanisms. The chemoprevention of cancer by natural compounds could be a promising approach with less side effects and toxicity. Main polyphenols with the proper‐ties of DNMT inhibition are tea polyphenols, soy isoflavones, organosulphur compounds from garlic, and isothiocyanates from cruciferous vegetables. Dietary folate intake was asso‐ciated with p16 promoter methylation in head and neck squamous cell carcinoma [154]. Epi‐gallocatechin-3-gallate (EGCG ), the major polyphenol in green tea, is believed to be a key active ingredient with anti-cancer properties. EGCG is methylated by catechol-O-methyl‐transferase and inhibits DNA methyltransferase (DNMT ), thus reversing the hypermethyla‐tion and inducing the re-expression of the silenced genes [141].

EGCG has been reported to reverse hypermethylation and reactivate several tumor suppres‐sor genes in human esophageal squamous cell carcinoma cell lines [155]. The reversion-in‐ducing cysteine-rich protein with Kazal motifs (RECK ), a novel matrix metalloproteinases (MMP ) inhibitor, is involved in the inhibition of tumor angiogenesis, invasion, and metasta‐sis. EGCG treatment enhanced RECK expression by reversal of hypermethylation of RECK promoter and inhibiting MMP activities and invasion in OSCC cell lines [156]. Genistein, soy dietary isoflavone, reversed DNA hypermethylation and reactivated RARβ, p16, and MGMT in esophageal cancer cells [157]. However, the findings of association of diet and epigenetic modifications in the head and cancer and other carcinomas are still confounding.

4. Conclusions

Head and neck squamous cell carcinoma (HNSCC ) is one of the most common and highly aggressive malignancies worldwide, despite the significant efforts committed in the last dec‐ades in its detection, prevention and treatment. Therefore, early detection and better disease prediction via genetic and epigenetic biomarkers is crucial. However, very few reliable markers are currently known. Recent studies provide strong evidence that DNA methyla‐tion could have an important role in head and neck cancer. The detection of promoter meth‐ylation status may be a useful molecular marker for early detection of HNSCC from tissue,saliva, and serum samples and in real time analysis of margins during surgery. In addition,the creation of methylation gene panels could be useful for HNSCC screening in the timely inclusion of treatment and thorough surveillance during follow-up period. Unlike genetic changes, epigenetic modifications are heritable and potentially reversible, thus providing the potential for therapy. Frequent DNA methylation detected in HNSCC and association with tumor progression and survival indicates that DNA methylation plays an important role in head and neck carcinogenesis and may be a useful diagnostic marker and a potential therapeutic target for HNSCC .

Methylation - From DNA, RNA and Histones to Diseases and Treatment

202

Author details

Zvonko Magi?1,2*, Gordana Supi?1,2, Mirjana Brankovi?-Magi?3 and Neboj?a Jovi?4,2

*Address all correspondence to: zvonkomag@https://www.doczj.com/doc/bc7176585.html,

1 Institute for Medical Research, Military Medical Academy, Belgrade, Serbia

2 Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia

3 Institute for Oncology and Radiology of Serbia, Belgrade, Serbia

4 Clinic for Maxillofacial Surgery, Military Medical Academy, Belgrade, Serbia

References

[1]Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2007). Cancer statis‐tics. CA Cancer J Clin., 57(1).

[2]Perez-Ordonez, B., Beauchemin, M., & Jordan, R. (2006). Molecular biology of squa‐mous cell carcinoma of the head and neck. J. Clin Pathol , 57, 445-453.

[3]Williams, H.K. (2000). Molecular pathogenesis of oral squamous carcinoma. Mol Pathol., 53(4), 165-72.

[4]Forastiere, A., Koch, W., Trotti, A., & Sidransky, D. (2001). Head and neck cancer. N Engl J Med., 345(26), 1890-900.

[5]Ragin, C. C., & Taioli, E. (2007). Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int J Cancer., 121, 1813-1820.

[6]Pelucchi, C., Talamini, R., Negri, E., et al. (2003). Folate intake and risk of oral and pharyngeal cancer. Ann Oncol., 14, 1677-1681.

[7]P?schl, G., & Seitz, H. K. (2004). Alcohol and cancer. Alcohol Alcohol., 39(3), 155-65.

[8]Gillison, M. L., Koch, W. M., Capone, R. B., Spafford, M., Westra, W. H., Wu, L., et al.(2000). Evidence for a causal association between human papillomavirus and a sub‐set of head and neck cancers. J Natl Cancer Inst., 92, 709-720.

[9]Doll, R. (1998). Uncovering the risks of smoking: historical perspective. Stat. Meth.Med Res., 7, 87-11.

[10]Zhang, Z. J., Hao, K., Shi, R., Zhao, G., Jiang, G. X., Song, Y., Xu, X., & Ma, J. (2011).Glutathione S-transferase M1 (GSTM1) and glutathione S-transferase T1 (GSTT1) null polymorphisms, smoking, and their interaction in oral cancer: a HuGE review and meta-analysis. Am J Epidemiol., 173(8), 847-57.

DNA Methylation in the Pathogenesis of Head and Neck Cancer

https://www.doczj.com/doc/bc7176585.html,/10.5772/51169203

[11]Solomon, P., Selvam, G., & Shanmugam, G. (2008). Polymorphism in ADH and

MTHFR genes in oral squamous cell carcinoma of Indians. Oral Diseases., 14, 633-639.

[12]Supic, G., Jovic, N., Kozomara, R., Zeljic, K., & Magic, Z. (2011). Interaction between

the MTHFR C677T polymorphism and alcohol--impact on oral cancer risk and multi‐ple DNA methylation of tumor-related genes. J Dent Res., 90, 65-70.

[13]Seitz, H. K., & Stickel, F. (2007). Molecular mechanisms of alcohol-mediated carcino‐

genesis. Nat Rev Cancer , 7(8), 599-612.

[14]Brennan, A., Boyle, J. O., & Koch, W. M. (1995). Association between cigarette smok‐

ing and mutation of the 53 gene in squamous cell carcinoma of the head and neck. N Engl J Med., 332, 712-17.

[15]Visapaa, J. P., Gotte, K., Benesova, M., et al. (2004). Increased cancer risk in heavy

drinkers with the alcohol dehydrogenase 1C*1 allele, possibly due to salivary acetal‐dehyde. Gut., 53, 871-6.

[16]Brocic, M., Supic, G., Zeljic, K., Jovic, N., Kozomara, R., Zagorac, S., Zlatkovic, M., &

Magic, Z. (2011). Genetic polymorphisms of ADH1C and CYP2E1 and risk of oral squamous cell carcinoma. Otolaryngol Head Neck Surg., 145(4), 586-93.

[17]Schwartz, S., Doody, D., Fitzgibbons, E., Ricks, S., Porter, P., & Chen, C. (2001). Oral

squamous cell cancer risk in relation to alcohol consumption and alcohol dehydro‐genase-3 genotypes. Cancer Epidemiol Biomarkers Prev., 10, 1137-44.

[18]Peters, E., Mc Clean, M., Liu, M., Eisen, E., Mueller, N., & Kelsey, K. T. (2005). The

ADH1C polymorphism modifies the risk of squamous cell carcinoma of the head and neck associated with alcohol and tobacco use. Cancer Epidemiol Biomarkers Prev., 14,476-82.

[19]Klussmann, J. P., Weissenborn, S., & Fuchs, P. G. (2001). Human papillomavirus in‐

fection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med., 345, 376-81.

[20]Termine, N., Panzarella, V., Falaschini, S., Russo, A., Matranga, D., Lo, Muzio. I., &

Campisi, G. (2008). HPV in oral squamous cell carcinoma vs Head and Neck squa‐mous cell carcinoma biopsies: a meta-analysis (1998-2007). Ann Oncol., 19, 1681-1690.

[21]Dahlgren, L., Dahlstrand, H. M., Linquist, D., Hogmo, A., Bjornestal, L., Lindholm, J.,

Lundberg, B., Dalianis, T., & Munck-Wikland, E. (2004). Human papillomavirus is more common in base of tongue than in mobile tongue and is a favorable prognostic factor in base of tongue cancer patients. Int J Cancer., 112, 1015-1019.

[22]Mellin, H., Friesland, S., Lewensohn, R., Dalianis, T., & Munck Wikland, E. (2000).

Human papillomavirus (HPV) DNA in tonsillar cancer: clinical correlates, risk of re‐lapse, and survival. Int J Cancer., 89, 300-304.

Methylation - From DNA, RNA and Histones to Diseases and Treatment

204

最新遗传学复习(刘祖洞_高等教育出版社_第二版)资料

一.绪论 遗传学:是研究生物遗传和变异的科学 遗传: 亲代与子代之间相似的现象 变异: 亲代与子代之间,子代与子代之间,总是存在不同程度差异的现象 遗传与变异:没有变异,生物界就失去了前进发展的条件,遗传只能是简单的重复;没有遗传,变异不能积累,就失去意义,生物也就不能进化了。 二.孟德尔定律 1. 性状:生物体或其组成部分所表现的形态特征和生理特征称为性状 2. 单位性状:生物体所表现的性状总体区分为各个单位作为研究对象,这些被区分开得每一个具体性状称为单位性状,即生物某一方面 的特征特性。 3. 相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差异称为相对性状 显性性状(dominant character ):F1中表现出来的那个亲本的性状。如红花。 隐性性状(recessive character ):F1中没有表现出来的那个亲本的性状。如白花。 F2中,两个亲本的性状又分别表现,称为性状分离。显性个体:隐性个体 = 3:1。 分离规律及其实现的条件? 分离规律 1)(性母细胞中)成对的遗传因子在形成配子时彼此分离、分配到配子中,配子只含有成对因子中的一个。 2) 杂种产生含两种不同因子(分别来自父母本)的配子,并且数目相等;各种雌雄配子受精结合是随机的,即两种遗传因子是随机结合到 子代中。 实现条件 1) 研究的生物体必须是二倍体(体内染色体成对存在),并且所研究的相对性状差异明显。 2) 在减数分裂过程中,形成的各种配子数目相等,或接近相等;不同类型的配子具有同等的生活力;受精时各种雌雄配子均能以均 等的机会相互自由结合。 3) 受精后不同基因型的合子及由合子发育的个体具有同样或大致同样的存活率。 4) 杂种后代都处于相对一致的条件下,而且试验分析的群体比较大。 三.遗传的染色体学说 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。答:有丝分裂 减数分裂 发生在所有正在生长着的组织中 从合子阶段开始,继续到个体的整个生活周期 无联会,无交叉和互换 使姊妹染色体分离的均等分裂 每个周期产生两个子细胞,产物的遗传成分相同 子细胞的染色体数与母细胞相同 只发生在有性繁殖组织中 高等生物限于成熟个体;许多藻类和真菌发生在合子阶段 有联会,可以有交叉和互换 后期I 是同源染色体分离的减数分裂;后期II 是姊妹染色单体分离的均等分裂 产生四个细胞产物(配子或孢子)产物的遗传成分不同,是父本和母本染色体的不同组合 为母细胞的一半

刘祖洞遗传学第三版标准答案第9章数量性状遗传

第九章数量性状遗传 1.数量性状在遗传上有些什么特点?在实践上有什么特点?数量性状遗传和质量性状遗传有什么主要区别? 解析:结合数量性状的概念和特征以及多基因假说来回答。 参考答案:数量性状在遗传上的特点: (1)数量性状受多基因支配 (2)这些基因对表型影响小,相互独立,但以积累的方式影响相同的表型。(3)每对基因常表现为不完全显性,按孟德尔法则分离。 数量性状在实践上的特点:(1)数量性状的变异是连续的,比较容易受环境条件的影响而发生变异。 (2)两个纯合亲本杂交,F1 表现型一般呈现双亲的中间型,但有时可能倾向于其中的一个亲本。F2的表现型平均值大体上与F1 相近,但变异幅度远远超过F1。F2 分离群体内,各种不同的表现型之间,没有显着的差别,因而不能得出简单的比例,因此只能用统计方法分析。 (3)有可能出现超亲遗传。数量性状遗传和质量性状遗传的主要区别:(1)数量性状是表现连续变异的性状,而质量性状是表现不连续变异的性状;(2)数量性状的遗传方式要比质量性状的遗传方式复杂的多,它是由许多基因控制的,而且它们的表现容易受环境条件变化的影响。 2.什么叫遗传率?广义遗传率?狭义遗传率?平均显性程度?解析:根据定义回答就可以 了。 参考答案:遗传率指亲代传递其遗传特性的能力,是用来测量一个群体内某一性状由遗传因素引起的变异在表现型变异中所占的百分率,即:遗传方差/总方差的比值。广义遗传 率是指表型方差(Vp )中遗传方差(Ve)所占的比率。狭义遗传率是指表型方差(V p )中加性方差(V A)所占的比率。平均显性程度是指V D /V A 。〔在数量性状的遗传分析中,对于单位点模型,可以用显性效应和加性效应的比值d/a 来表示显性程度。但是推广到多基因

刘祖洞遗传学课后题答案

第二章 孟德尔定律 1、 为什么分离现象比显、隐性现象有更重要的意义 答:因为 (1) 分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的; (2) 只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 9、真实遗传的紫茎、缺刻叶植株(AACC )与真实遗传的绿茎、马铃薯叶植株(aacc )杂交,F2结果如下: 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃薯叶 247 90 83 34 (1)在总共454株F2中,计算4种表型的预期数。 (2)进行2 测验。 (3)问这两对基因是否是自由组合的 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃 薯叶 观测值(O ) 247 90 83 34 预测值(e ) (四舍五入) 255 85 85 29 454 .129 )2934(85)85583(85)8590(255)255247()(2 22 222 =-+ -+-+ -=-=∑e e o χ 当df = 3时,查表求得:<P <。这里也可以将与临界值81.72 05.0.3=χ比较。 可见该杂交结果符合F 2的预期分离比,因此结论,这两对基因是自由组合的。 11、如果一个植株有4对显性基因是纯合的。另一植株有相应的4对隐性基因是纯合的,把这两个植株相互杂交,问F2中:(1)基因型,(2)表型全然象亲代父母本的各有多少 解:(1) 上述杂交结果,F 1为4对基因的杂合体。于是,F2的类型和比例可以图示如下: 也就是说,基因型象显性亲本和隐性亲本的各是1/28 。 (2) 因为,当一对基因的杂合子自交时,表型同于显性亲本的占3/4,象隐性亲 本的占1/4。所以,当4对基因杂合的F 1自交时,象显性亲本的为(3/4)4 ,象隐性亲本的 为(1/4)4 = 1/28 。 第三章 遗传的染色体学说

刘祖洞遗传学习题答案

第六章 染色体和连锁群 1、在番茄中,圆形(O )对长形(o )是显性,单一花序(S )对复状花序(s )是显性。这两对基因是连锁的,现有一杂交 得到下面4种植株: 圆形、单一花序(OS )23 长形、单一花序(oS )83 圆形、复状花序(Os )85 长形、复状花序(os )19 问O —s 间的交换值是多少 解:在这一杂交中,圆形、单一花序(OS )和长形、复状花序(os )为重组型,故O —s 间的交换值为:%20%10019 85832319 23=?++++= r 2、根据上一题求得的O —S 间的交换值,你预期 杂交结果,下一代4种表型的比例如何 解: O_S_ :O_ss :ooS_ :ooss = 51% :24% :24% :1%, 即4种表型的比例为: 圆形、单一花序(51%), 圆形、复状花序(24%), 长形、单一花序(24%), 长形、复状花序(1%)。 3、在家鸡中,白色由于隐性基因c 与o 的两者或任何一个处于纯合态有色要有两个显性基因C 与O 的同时存在,今有下列的交配: ♀CCoo 白色 × ♂ccOO 白色 ↓ 子一代有色 子一代用双隐性个体ccoo 测交。做了很多这样的交配,得到的后代中,有色68只,白

色204只。问o —c 之间有连锁吗如有连锁,交换值是多少 解:根据题意,上述交配: ♀ CCoo 白色 ccOO 白色 ♂ ↓ 有色CcOo ccoo 白色 ↓ 有色C_O_ 白色(O_cc ,ooC_,ccoo ) 416820468=+ 4 3 68204204=+ 此为自由组合时双杂合个体之测交分离比。 可见,c —o 间无连锁。 (若有连锁,交换值应为50%,即被测交之F1形成Co :cO :CO :co =1 :1 :1 :1的配子;如果这样,那么c 与o 在连锁图上相距很远,一般依该二基因是不能直接测出重组图距来的)。 4、双杂合体产生的配子比例可以用测交来估算。现有一交配如下: 问:(1)独立分配时,P= (2)完全连锁时,P= (3)有一定程度连锁时,p= 解:题目有误,改为:)2 1( )21 (aabb aaBb Aabb AaBb p p p p -- (1)独立分配时,P = 1/4; (2)完全连锁时,P = 0; (3)有一定程度连锁时,p = r /2,其中r 为重组值。 5、在家鸡中,px 和al 是引起阵发性痉挛和白化的伴性隐性基因。今有一双因子杂种公鸡 al Px Al px 与正常母鸡交配,孵出74只小鸡,其中16只是白化。假定小鸡没有一只早期死亡,而px 与al 之间的交换值是10%,那么在小鸡4周龄时,显出阵发性痉挛时,(1)在白化小鸡中有多少数目显出这种症状,(2)在非白化小鸡中有多少数目显出这种症状 解:上述交配子代小鸡预期频率图示如下: ♀W Al Px al Px Al px ♂

刘祖洞遗传学习题答案13

第七章细菌和噬菌体的重组和连锁 1.为什么说细菌和病毒是遗传学研究的好材料? 2.大肠杆菌的遗传物质的传递方式与具有典型减数分裂过程的生物有什么不同? 3.解释下列名词: (1)F-菌株,F+菌株,Hfr菌株; (2)F因子,F,因子,质粒,附加体; (3)溶源性细菌,非溶源性细菌; (4)烈性噬菌体,温和噬菌体,原噬菌体; (5)部分合子(部分二倍体); 4.部分合子在细菌的遗传分析中有什么用处? 5.什么叫转导、普遍性转导、特异性转导(局限性转导)? 6.转导和性转导有何不同? 7.一个基因型为a+b+c+d+e+并对链霉素敏感的E.coliHfr菌株与基因型为a-b-c-d-e-并对链霉素耐性的F-菌株接合,30分钟后,用链霉素处理,然后从成活的受体中选出e+型的原养型,发现它们的其它野生型(+)基因频率如下:a+70%,b+-,c+85%,d+10%。问a,b,c,d 四个基因与供体染色体起点(最先进入F-受体之点)相对位置如何? 解:根据中断杂交原理,就一对接合个体而言,某基因自供体进入受体的时间,决定于该基因同原点的距离。因此,就整个接合群体而论,在特定时间内,重组个体的频率反映着相应基因与原点的距离。 报据题目给定的数据,a、b、c、d与供体染色体的距离应该是: 8.为了能在接合后检出重组子,必须要有一个可供选择用的供体标记基因,这样可以认出重组子。另一方面,在选择重组子的时候,为了不选择供体细胞本身,必须防止供体菌株的继续存在,换句话说,供体菌株也应带有一个特殊的标记,能使它自己不被选择。例如供体菌株是链霉素敏感的,这样当结合体(conjugants)在含有链霉素的培养基上生长时,供体菌株就被杀死了。现在要问:如果一个Hfr菌株是链霉素敏感的,你认为这个基因应位于染色体的那一端为好,是在起始端还是在末端? 解:在起始端 9.有一个环境条件能使T偶数噬菌体(T-even phages)吸附到寄主细胞上,这个环境条件就是色氨酸的存在。这种噬菌体称为色氨酸需要型(C)。然而某些噬菌体突变成色氨酸非依

遗传学试题 刘祖洞版

第一章绪论 一、选择题: 1.涉及分析基因是如何从亲代传递给子代以及基因重组的遗传学分支是:( ) A) 分子遗传学B) 植物遗传学C) 传递遗传学D) 种群遗传学 2.被遗传学家作为研究对象的理想生物,应具有哪些特征?( ) A)相对较短的生命周期B)种群中的各个个体的遗传差异较大 C)每次交配产生大量的子代D)遗传背景较为熟悉E)以上均是理想的特征 二、名词解释 1.遗传学: 2.遗传: 3.变异: 4.进化遗传学: 5.发育遗传学: 6.免疫遗传学: 7.细胞遗传学: 8.人类遗传 学: 三、问答题 1.简述遗传学研究的对象和研究的任务。 2.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素? 3. 为什么研究生物的遗传和变异必须联系环境? 4.遗传学建立和开始发展始于哪一年,是如何建立? 5.为什么遗传学能如此迅速地发展? 6.简述遗传学对于生物科学、生产实践的指导作用。 7.什么是遗传学?主要研究内容是什么? 8.遗传学研究的对象是什么? 9.遗传学在工农业生产和医疗保健上有何作用? 10.在遗传学发展中大致分为几个阶段?有那些人做出了重大贡献? 11.写出下列科学家在遗传学上的主要贡献。 (1)Mendel (2) Morgan (3) Muller (4) Beadle 和Tatum (5)Avery (6) Watson 和Crick (7)Chargaff (8) Crick (9) Monod 和Jacob 第二章孟德尔定律 一、选择题 1、最早根据杂交实验的结果建立起遗传学基本原理的科学家是:( ) A) James D. Watson B) Barbara McClintock C) Aristotle D) Gregor Mendel 2、以下几种真核生物,遗传学家已广泛研究的包括:( ) A) 酵母B) 果蝇C) 玉米D) 以上选项均是 3、通过豌豆的杂交实验,孟德尔认为;( ) A) 亲代所观察到的性状与子代所观察到相同性状无任何关联 B) 性状的遗传是通过遗传因子的物质进行传递的 C) 遗传因子的组成是DNA D) 遗传因子的遗传仅来源于其中的一个亲本 E) A 和C 都正确 4、生物的一个基因具有两种不同的等位基因,被称为:( ) A) 均一体B) 杂合体C) 纯合体D) 异性体E) 异型体 5、生物的遗传组成被称为:( )

遗传学名解-刘祖洞版

遗传学名解刘祖洞版 1性状(character):遗传学中把生物体所表现的形态特征和生理特征,统称为性状。 2单位性状(unit character):孟德尔在研究豌豆等植物的性状遗传时,把植株所表现的性状总体区分为各个单位作为研究对象,这样区分开来的性状称为单位性状。 3相对性状(contrasting character):不同个体在单位性状上常有着各种不同的表现,例如:豌豆花色有红花和白花、种子形状有圆粒和皱粒。遗传学中同一单位性状的相对差异,称为相对性状。 4基因型(genotype) :个体的基因组合。基因型是性状表现必须具备的内在因素。 5表现型(phenotype):植株所表现出来的红花和白花性状(形态)就是表现型。表现型是指生物体所表现的性状。它是基因型和外界环境作用下具体的表现,是可以直接观测的。而基因型是生物体内在的遗传基础,只能根据表现型用实验方法确定。 6纯合的基因型(homozygous genotype):成对的基因都是一样的基因型。如CC或cc。也称纯合体(h omozygote)。 7杂合的基因型(heterozygous genotype),或称杂合体(heterozygote):成对的基因不同。如Cc。 8随体(Satellite)是指次缢痕区至染色体末端的部分,有如染色体的小卫星。随体主要由异染色质组成,是高度重复的DNA序列。 9无丝分裂(amitosis):细胞核拉长呈哑铃状分裂,中部缢缩形成2个相似的子细胞。分裂中无染色体和纺锤体形成。如:纤毛虫、原生生物、特化的动物组织。 10有丝分裂(mitosis):即体细胞分裂,通过分裂产生同样染色体数目的子细胞。在分裂中出现纺锤体。 11无性生殖(asexual reproduction):通过有丝分裂,从一共同的细胞或生物繁殖得到的基因型完全相同的细胞或生物。也即克隆(clone)。 12有性生殖(sexual reproduction):减数分裂和受精有规则地交替进行,产生子代的生殖方式。 13无融合生殖(apomixis)不经过雌雄配子融合而能产生种子的一种生殖方式。无融合生殖的方式根据无融合生殖最后形成胚是由减数后单倍雌配子直接发育而成,还是由未减数二倍细胞产生的,可以将无融合生殖分成三大类一类是减数胚囊中的无融合生殖另一类是未减数胚囊中的无融合生殖再一类是不定胚生殖 14反应规范(reaction norm):基因型决定着个体对这种或那种环境条件的反应。

刘祖洞遗传学习题答案

1、在番茄中,圆形(O )对长形(o )是显性,单一花序(S )对复状花序(s )是显性。这两对基因是连锁的,现有一杂交 得到下面4种植株: 圆形、单一花序(OS )23 长形、单一花序(oS )83 圆形、复状花序(Os )85 长形、复状花序(os )19 问O —s 间的交换值是多少? 解:在这一杂交中,圆形、单一花序(OS )和长形、复状花序(os )为重组型,故O —s 间的交换值为:%20%10019 85832319 23=?++++= r 2、根据上一题求得的O —S 间的交换值,你预期 杂交结果,下一代4种表型的比例如何? O_S_ :O_ss :ooS_ :ooss = 51% :24% :24% :1%, 即4种表型的比例为: 圆形、单一花序(51%), 圆形、复状花序(24%), 长形、单一花序(24%), 长形、复状花序(1%)。 3、在家鸡中,白色由于隐性基因c 与o 的两者或任何一个处于纯合态有色要有两个显性基因C 与O 的同时存在,今有下列的交配: ♀CCoo 白色 × ♂ccOO 白色 ↓ 子一代有色 子一代用双隐性个体ccoo 测交。做了很多这样的交配,得到的后代中,有色68只,白色204只。问o —c 之间有连锁吗?如有连锁,交换值是多少? 解:根据题意,上述交配: ♀ CCoo 白色 ccOO 白色 ♂

↓ 有色CcOo ccoo 白色 ↓ 有色C_O_ 白色(O_cc ,ooC_,ccoo ) 416820468=+ 4 3 68204204=+ 此为自由组合时双杂合个体之测交分离比。 可见,c —o 间无连锁。 (若有连锁,交换值应为50%,即被测交之F1形成Co :cO :CO :co =1 :1 :1 :1的配子;如果这样,那么c 与o 在连锁图上相距很远,一般依该二基因是不能直接测出重组图距来的)。 4、双杂合体产生的配子比例可以用测交来估算。现有一交配如下: 问:(1)独立分配时,P=? (2)完全连锁时,P=? (3)有一定程度连锁时,p=? 解:题目有误,改为:)2 1( )21 (aabb aaBb Aabb AaBb p p p p -- (1)独立分配时,P = 1/4; (2)完全连锁时,P = 0; (3)有一定程度连锁时,p = r /2,其中r 为重组值。 5、在家鸡中,px 和al 是引起阵发性痉挛和白化的伴性隐性基因。今有一双因子杂种公鸡 al Px Al px 与正常母鸡交配,孵出74只小鸡,其中16只是白化。假定小鸡没有一只早期死亡,而px 与al 之间的交换值是10%,那么在小鸡4周龄时,显出阵发性痉挛时,(1)在白化小鸡中有多少数目显出这种症状,(2)在非白化小鸡中有多少数目显出这种症状? 解:上述交配子代小鸡预期频率图示如下: ♀W Al Px al Px Al px ♂

遗传学(刘祖洞)下册部分章节答案

遗传学(刘祖洞)下册部分章节答案第九章遗传物质的改变(一)染色体畸变 1.什么是染色体畸变? 答:染色体数目或结构的改变,这些改变是较明显的染色体改变,一般可在显微镜下看到,称为染色体变异或畸变。 2.解释下列名词:缺失;重复;倒位;易位 答:缺失(deletion 或deficiency)——染色体失去了片段。 重复(duplication 或repeat)——染色体增加了片段。 倒位(inversion)——染色体片段作1800的颠倒,造成染色体内的重新排列。 易位(translocation)——非同源染色体间相互交换染色体片段,造成染色体间的重新排列。 3.什么是平衡致死品系,在遗传学研究中,它有什么用处? 答:同源染色体的两个成员各带有一个座位不同的隐性致死基因,由于两个致死基因之间不发生交换,使致死基因永远以杂合态保存下来,不发生分离的品系,叫平衡致死品系(balanced lethsl system)。在遗传研究过程中,平衡致死系可用于保存致死基因。 4.解释下列名词: (1)单倍体,二倍体,多倍体; (2)单体,缺体,三体; (3)同源多倍体,异源多倍体 答:(1)凡是细胞核中含有一个完整染色体组的叫做单倍体(haploid);含有两个染色体组的叫做二倍体(diploid);超过两个染色体组的统称多倍体(polyploid)。 (2)细胞核内的染色体数不是完整的倍数,通常以一个二倍体(2n)染色体数作为标准,在这个基础上增减个别几个染色体,称非整倍性改变。例如:2n-1是单体(monsomic),2n-2是缺体(nullisomic),2n+1是三体(trisomic)。 (3)同源多倍体(autopolyploid)——增加的染色体组来自同一个物种的多倍体。 异源多倍体(allopolyloid)——加倍的染色体组来自不同物种的多倍体,是两个不相同的种杂交,它们的杂种再经过染色体加倍而形成的。 5.用图解说明无籽西瓜制种原理。 答: 亲本西瓜(2n=22) ↓秋水仙素 4n ♀× 2n ♂ 嫩绿色,无条斑,如马铃瓜↓具有深绿色平行条斑,如解放瓜 4n母本上结了西瓜,瓢中长着3n种子,把3n种子种下,所结的无籽 西瓜是无籽的,其果皮有深绿色平行条斑

遗传学课后习题及答案刘祖洞

第二章孟德尔定律 1、为什么分离现象比显、隐性现象有更重要的意义? 答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr (3)Rr×Rr(4)Rr×RR(5)rr×rr 3、下面是紫茉莉的几组杂交,基因型和表型已写明。问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr× RR (2)rr × Rr(3)Rr×Rr粉红红色白色粉红 粉红粉红 4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd (2)XwDd×wwdd(3)Wwdd×wwDd (4)Wwdd×WwDd

2/8WwDd,2/8Wwdd, 1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状 5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr(2)TtGgrr×ttGgrr 解:杂交组合TTGgRr×ttGgrr: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr×ttGgrr: 即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。 6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶.紫茎和绿茎是另一对相对性状,显性基因A控制紫茎,基因型aa的植株是绿茎。把紫茎、马铃薯叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比.如果把F1:(1)与紫茎、马铃薯叶亲本回交;(2)与绿茎、缺刻叶亲本回交;以及(3)用双隐性植株测交时,下代表型比例各如何?

遗传学第三版刘祖洞第二章练习题

名词解释5个,选择题10个,解答题5个,问答题2个 一.名词解释 1.细胞:细胞是生物体形态结构和生命活动的基本单位,也是生长发育和遗传的基本单 位。 2.细胞生物:以细胞为基本单位的生物;根据细胞核和遗传物质的存在方式不同又可以 分为真核细胞和原核细胞。 3. 染色质:染色质是在间期细胞核内有由DNA、组蛋白、非组蛋白和少量RNA组成的, 易被碱性染料着色的一种无定形物质 4. 着丝粒:着丝粒是细胞分裂时纺锤丝附着(attachment)的区域,又称为着丝点。 5. 姊妹染色单体:一条染色体的两个染色单体互称为姊妹染色单体。 6. 次缢痕:某些染色体的一个或两个臂上往往还具有另一个染色较淡的缢缩部位,称为 次缢痕,通常在染色体短臂上。 7. 同源染色体:体细胞中形态结构相同、遗传功能相似的一对染色体称为同源染色体 二.选择题 1.在洋葱根尖分生区有丝分裂过程中,染色体数目加倍和DNA数加倍分别发生在( C ) A.间期、间期 B.间期、后期 C.后期、间期 D.前期、间期 2.一个动物细胞周期中,DNA数加倍、染色体数加倍、中心粒复制的时期依次为( C )① 间期②前期③中期④后期⑤末期 A.①②④ B.①③⑤ C.①④① D.②④⑤ 3. 保证两个子细胞中染色体形态和数目与母细胞完全相同的机制是( B ) A.染色体的复制 B.着丝点的分裂 C.纺锤丝的牵引 D.以上三项均起作用 4. 在一个细胞周期中,DNA复制过程中的解旋发生在( A ) A.两条DNA母链之间 B.DNA子链与其互补的母链之间 C.两条DNA子链之间 D.DNA子链与其非互补母链之间 5. 下列有关细胞生命活动的叙述,正确的是( B ) A.分裂期的细胞不进行DNA复制和蛋白质合成 B.免疫系统中的记忆细胞既有分化潜能又有自我更新能力 C.凋亡细胞内的基因表达都下降,酶活性减弱 D.原癌基因突变促使细胞癌变,抑癌基因突变抑制细胞癌变 6. 1.人类l号染色体长臂分为4个区,靠近着丝粒的为( B )。 A.O区B.1区 C.2区D.3区 7. 真核细胞中的RNA来源于( D )。 A.DNA复制B.DNA裂解 C.DNA转化D.DNA转录 E .DNA翻译 8. 染色体不分离( D ) A只是指姊妹染色单体不分离 B.只是指同源染色体不分离

刘祖洞遗传学第三版答案-第9章-数量性状遗传

刘祖洞遗传学第三版答案-第9章-数量性状遗传

第九章数量性状遗传 1.数量性状在遗传上有些什么特点?在实践上有什么特点?数量性状遗传和质量性状遗传有什么主要区别? 解析:结合数量性状的概念和特征以及多基因假说来回答。 参考答案: 数量性状在遗传上的特点: (1)数量性状受多基因支配 (2)这些基因对表型影响小,相互独立,但以积累的方式影响相同的表型。 (3)每对基因常表现为不完全显性,按孟德尔法则分离。 数量性状在实践上的特点: (1)数量性状的变异是连续的,比较容易受环境条件的影响而发生变异。 (2)两个纯合亲本杂交,F1表现型一般呈现双亲的中间型,但有时可能倾向于其中的一个亲本。F2的表现型平均值大体上与F1相近,但变异幅度远远超过F1。F2分离群体内,各种不同的表现型之间,没有显着的差别,因而不能得

出简单的比例,因此只能用统计方法分析。 (3)有可能出现超亲遗传。 数量性状遗传和质量性状遗传的主要区别: (1)数量性状是表现连续变异的性状,而质量性状是表现不连续变异的性状; (2)数量性状的遗传方式要比质量性状的遗传方式复杂的多,它是由许多基因控制的,而且它们的表现容易受环境条件变化的影响。 2.什么叫遗传率?广义遗传率?狭义遗传率?平均显性程度? 解析:根据定义回答就可以了。 参考答案:遗传率指亲代传递其遗传特性的能力,是用来测量一个群体内某一性状由遗传因素引起的变异在表现型变异中所占的百分率,即:遗传方差/总方差的比值。广义遗传率是指表型方差(Vp)中遗传方差(Ve)所占的比率。狭义遗传率是指表型方差(Vp)中加性方差(V A) V V〔在数量 / D A 性状的遗传分析中,对于单位点模型,可以用显性效应和加性效应的比值d/a来表示显性程度。但是推广到多基因系统时,∑d/∑a并不能说明任

刘祖洞-遗传学-第二版-课后答案

第二章 孟德尔定律 1、 为什么分离现象比显、隐性现象有更重要的意义? 答:这是因为: (1) 性状的分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的; (2) 只有基因发生分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 2、在番茄中,红果色(R )对黄果色(r )是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何? (1)RR×rr (2)Rr×rr (3)Rr×Rr (4) Rr×RR (5)rr×rr 解: 3、下面是紫茉莉的几组杂交,基因型和表型已写明。问它们产生哪些配子?杂种后代的基因型和表型怎样? (1)Rr × RR (2)rr × Rr (3)Rr × Rr 粉红 红色 白色 粉红 粉红 粉红 解: 4、在南瓜中,果实的白色(W )对黄色(w )是显性,果实盘状(D )对球状(d )是显性,这两对基因是自由组合的。问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何? (1)WWDD×wwdd (2)XwDd×wwdd (3)Wwdd×wwDd (4)Wwdd×WwDd 解: 5.在豌豆中,蔓茎(T )对矮茎(t )是显性,绿豆荚(G )对黄豆荚(g )是显性,圆种子(R )对皱种子(r )是显性。现在有下列两种杂交组合,问它们后代的表型如何? (1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr 解:杂交组合TTGgRr × ttGgrr :

即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr × ttGgrr: 即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。 6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。紫茎和绿茎是另一对相对性状,显性基因A控制紫茎,基因型aa的植株是绿茎。把紫茎、马铃薯叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比。如果把F1:(1)与紫茎、马铃薯叶亲本回交;(2)与绿茎、缺刻叶亲本回交;以及(3)用双隐性植株测交时,下代表型比例各如何? 解:题中F2分离比提示:番茄叶形和茎色为孟德尔式遗传。所以对三种交配可作如下分析: (1) 紫茎马铃暮叶对F1的回交: (2) 绿茎缺刻叶对F1的回交: (3)双隐性植株对F l测交: AaCc × aacc

刘祖洞遗传学第三版答案_第10章_染色体畸变

第十章遗传物质的改变(1)- 染色体畸变 1 什么叫染色体畸变?解答:染色体畸变是指染色体发生数目或结构上的改变。(1 )染色体结构畸变指染色体发生断裂,并以异常的组合方式重新连接。其畸变类型有缺失、重复、倒位、易位。( 2 )染色体数目畸变指以二倍体为标准所出现的成倍性增减或某一对染色体数目的改变统称为染色体畸变。前一类变化产生多倍体,后一类称为非整倍体畸变。 2 解释下列名词: (1)缺失;(2)重复;(3)倒位;(4)易位。 解答:缺失:缺失指的是染色体丢失了某一个区段。重复:重复是指染色体多了自己的某一区段倒位:倒位是指染色体某区段的正常直线顺序颠倒了。易位:易位是指某染色体的一个区段移接在非同源的另一个染色体上。 3 什么叫平衡致死品系?在遗传学研究中,它有什么用处?解答:紧密连锁或中间具有倒位片段的相邻基因由于生殖细胞的同源染色体不能交换,所以可以产生非等位基因的双杂合子,这种利用倒位对交换抑制的效应,保存非等位基因的纯合隐性致死基因,该品系被称为平衡致死系。平衡致死的个体真实遗传,并且它们的遗传行为和表型表现模拟了具有纯合基因型的个体,因此平衡致死系又称永久杂种。 平衡致死品系在遗传学研究中的用处: 1)利用所谓的交换抑制子保存致死突变品系- 平衡致死系可以检测隐形突变 (2)用于实验室中致死、半致死或不育突变体培养的保存( 3 )检测性别 4解释下列名词: (1)单倍体,二倍体,多倍体。 (2)单体,缺体,三体。

(3)同源多倍体,异源多倍体。 解答: (1)单倍体(haploid):是指具有配子体染色体数目的个体。 二倍体(diploid):细胞核内具有两个染色体组的生物为二倍体。 多倍体(polyploid):细胞中有3个或3个以上染色体组的个体称为多倍体。 (2)单体(monosomic):是指体细胞中某对染色体缺少一条的个体(2n -1 )缺体(nu llosomic):是指生物体细胞中缺少一对同源染色体的个体(2n —2),它仅存在于多倍体生物中,二倍体生物中的缺体不能存活。 三体(trisomic):是指体细胞中的染色体较正常2n个体增加一条的变异类型,即某一对染色体有三条染色体(2n + 1 )。 (3)同源多倍体:由同一染色体组加倍而成的含有三个以上的染色体组的个体 称为同源多倍体。 异源多倍体:是指体细胞中具有2个或2个以上不同类型的染色体组。 5用图解说明无籽西瓜制种原理。 解答:优良二倍体西瓜品种 1,人工加倍 早四倍体X二倍体$ 早三倍体X二倍体$ 样联会紊乱 三倍体无籽西瓜 6异源八倍体小黑麦是如何育成的? 解答:普通小麦X黑麦

刘祖洞遗传学第三版答案 第13章 细胞质和遗传

第十三章细胞质和遗传 1.母性影响和细胞质遗传有什么不同? 答: 1)母性影响是亲代核基因的某些产物或者某种因子积累在卵细胞的细胞质中,对子代某些性状的表现产生影响的现象。这种效应只能影响子代的性状,不能遗传。 因此F1代表型受母亲的基因型控制,属于细胞核遗传体系; 细胞质遗传是细胞质中的DNA或基因对遗传性状的决定作用。由于精卵结合时,精子的细胞质往往不进入受精卵中,因此,细胞质遗传性状只能通过母体或 卵细胞传递给子代,子代总是表现为母本性状,属于细胞质遗传体系,2)母性影响符合孟德尔遗传规律;细胞质遗传是非孟德尔式遗传。 3)母性遗传杂交后代有一定的分离比, 只不过是要推迟一个世代而已;细胞质遗传杂交后代一般不出现一定的分离比。 2.细胞质基因和核基因有什么相同的地方,有什么不同的地方? 答: 1)相同:细胞核遗传和细胞质遗传各自都有相对的独立性。这是因为,尽管在细胞质中找不到染色体一样的结构,但质基因与核基因一样,可以自我复制,可以控制蛋白质的合成,也就是说,都具有稳定性、连续性、变异性和独立性。 2)不同: A. 细胞质和细胞核的遗传物质都是DNA分子,但是其分布的位置不同。细胞核遗 传的遗传物质在细胞核中的染色体上;细胞质中的遗传物质在细胞质中的线粒体 和叶绿体中。 B. 细胞质和细胞核的遗传都是通过配子,但是细胞核遗传雌雄配子的核遗传物质相 等,而细胞质遗传物质主要存在于卵细胞中; C. 细胞核和细胞质的性状表达都是通过体细胞进行的。核遗传物质的载体(染色体) 有均分机制,遵循三大遗传定律;细胞质遗传物质(具有DNA的细胞器如线粒 体、叶绿体等)没有均分机制,是随机分配的。 D. 细胞核遗传时,正反交相同,即子一代均表现显性亲本的性状;细胞质遗传时, 正反交不同,子一代性状均与母本相同,即母系遗传。 3.在玉米中,利用细胞质雄性不育和育性恢复基因,制造双交种,有一个方式是这样的:先把雄性不育自交系A【(S)rfrf】与雄性可育自交系B【(N)rfrf】杂交,得单交种AB,把雄性不育自交系C【(S)rfrf】与雄性可育自交系D【(N)RfRf】杂交,得单交种CD。然后再把两个单交种杂交,得双交种ABCD,问双交种的基因型和表型有哪几种,它们的比例怎样? 解: A【(S)rfrf】? B【(N)rfrf】C【(S)rfrf】? D【(N)RfRf】 ↓↓ AB【(S)rfrf】?CD【(S)Rfrf】 ↓ 基因型:1/2【(S)rfrf】1/2【(S)Rfrf】 表型:雄性不育雄性可育 4.“遗传上分离的”小菌落酵母菌在表型上跟我们讲过的“细胞质”小菌落酵母菌相似。 当一个遗传上分离的小菌落酵母菌与一个正常酵母菌杂交,二倍体细胞是正常的,以后形成子囊孢子时,每个子囊中两个孢子是正常的,两个孢子产生小菌落酵母菌。用

刘祖洞的遗传学(第二版)笔记

遗传学总复习 第一章绪论 遗传学及分支学科 遗传学的发展、任务 第二章孟德尔定律 key words: 反应规范(reaction norm)、等位基因(allele)、复等位基因(multiple alleles)、表型模写(phenocopy)、外现率(penetrance)、互补基因(complementary gene)、抑制基因(suppress gene)、表现度(expressivity)、抑制基因(inhibitor)、上位效应(epistatic effect )、叠加效应(duplicate effect) 一、积加概率卡平方测验三大定律系谱符号概率的应用 二、遗传的染色体学说 三、细胞分裂中染色体的变化核型染色体形态分析 四、基因的作用及与环境的关系 五、基因与环境 六、一因多效、多因一效 七、显、隐性的相对性 八、致死基因 九、ABO血型、Rh血型、HLA血型、血型不亲和、孟买型与类孟买型 十、非等位基因间的作用:互补、抑制、显性上位、隐性上位 第三章连锁遗传分析与染色体作图 key word: 伴性遗传(sex-linked inheritance)、从性遗传(sex-condition inheritance)、 限雄遗传(holandric inheritance)、基因组印迹(genomic imprinting)、 Lyon 假说、动态突变(dynamic mutation)、拟常染色体基因(pseudoautosomal gene)、性分化(sex differentiation)、脆性X综合症(fragile X syndrome )、睾丸决定因子(testis-determining factor ) 一、性别决定与伴性遗传

刘祖洞遗传学第三版答案 第10章 染色体畸变

第十章遗传物质的改变(1)-染色体畸变 1 什么叫染色体畸变? 解答:染色体畸变是指染色体发生数目或结构上的改变。(1)染色体结构畸变指染色体发生断裂,并以异常的组合方式重新连接。其畸变类型有缺失、重复、倒位、易位。(2)染色体数目畸变指以二倍体为标准所出现的成倍性增减或某一对染色体数目的改变统称为染色体畸变。前一类变化产生多倍体,后一类称为非整倍体畸变。 2 解释下列名词: (1)缺失;(2)重复;(3)倒位;(4)易位。 解答: 缺失:缺失指的是染色体丢失了某一个区段。 重复:重复是指染色体多了自己的某一区段 倒位:倒位是指染色体某区段的正常直线顺序颠倒了。 易位:易位是指某染色体的一个区段移接在非同源的另一个染色体上。 3 什么叫平衡致死品系?在遗传学研究中,它有什么用处? 解答:紧密连锁或中间具有倒位片段的相邻基因由于生殖细胞的同源染色体不能交换,所以可以产生非等位基因的双杂合子,这种利用倒位对交换抑制的效应,保存非等位基因的纯合隐性致死基因,该品系被称为平衡致死系。平衡致死的个体真实遗传,并且它们的遗传行为和表型表现模拟了具有纯合基因型的个体,因此平衡致死系又称永久杂种。 平衡致死品系在遗传学研究中的用处: (1)利用所谓的交换抑制子保存致死突变品系-平衡致死系可以检测隐形突变(2)用于实验室中致死、半致死或不育突变体培养的保存(3)检测性别 4 解释下列名词: (1)单倍体,二倍体,多倍体。 (2)单体,缺体,三体。 (3)同源多倍体,异源多倍体。 解答: (1)单倍体(haploid):是指具有配子体染色体数目的个体。

二倍体(diploid):细胞核内具有两个染色体组的生物为二倍体。 多倍体(polyploid):细胞中有3个或3个以上染色体组的个体称为多倍体。(2)单体(monosomic):是指体细胞中某对染色体缺少一条的个体(2n-1)。 缺体(nullosomic):是指生物体细胞中缺少一对同源染色体的个体(2n -2),它仅存在于多倍体生物中,二倍体生物中的缺体不能存活。 三体(trisomic):是指体细胞中的染色体较正常2n个体增加一条的变异类型,即某一对染色体有三条染色体(2n+1)。 (3)同源多倍体:由同一染色体组加倍而成的含有三个以上的染色体组的个体 称为同源多倍体。 异源多倍体:是指体细胞中具有2个或2个以上不同类型的染色体组。 5 用图解说明无籽西瓜制种原理。 解答:优良二倍体西瓜品种 人工加倍 ♀三倍体×二倍体♂ 联会紊乱 三倍体无籽西瓜 6 异源八倍体小黑麦是如何育成的? 解答:普通小麦×黑麦 (42) AABBDD RR(14) ABDR 染色体加倍 AABBDDRR(56) 异源八倍体小黑麦 7 何以单倍体的个体多不育?有否例外?举例。 解答:单倍体个体多是不育的,因为单倍体在减数分裂时,由于染色体成单价体存在,没有相互联会的同源染色体,所以最后将无规律地分离到配子中去,结果极大多数不能发育成有效配子,因而表现高度不育。有时也存在特殊的情况,例如四

遗传学(下)刘祖洞第二版

第九章遗传物质的改变(一)染色体畸变 应用前几章中讲过的一些遗传学基本定律,如分离和组合、连锁与交换,可在子代中得到亲代所不表现的新性状,或性状的新组合。但这些“新”性状,追溯起来并不是真正的新性状,都是它们祖先中原来有的。只有遗传物质的改变,才出现新的基因,形成新的基因型,产生新的表型。 遗传物质的改变,称作突变(mutation)。突变可以分为两大类:(1)染色体数目的改变和结构的改变,这些改变一般可在显微镜下看到;(2)基因突变或点突变(genic or pointmutations),这些突变通常在表型上有所表达。但在传统上,突变这一术语留给基因突变,而较明显的染色体改变,称为染色体变异或畸变(chromosomal variations or aberrations)。 第一节染色体结构的改变 因为一个染色体上排列着很多基因,所以不仅染色体数目的变异可以引起遗传信息的改变,而且染色体结构的变化,也可引起遗传信息的改变。 一般认为,染色体的结构变异起因于染色体或它的亚单位——染色单体的断裂(breakage)。每一断裂产生两个断裂端,这些断裂端可以沿着下面三条途径中的一条发展:(1)它们保持原状,不愈合,没有着丝粒的染色体片段(seg-ment)最后丢失。 (2)同一断裂的两个断裂端重新愈合或重建(restitution),回复到原来的染色体结构。 (3)某一断裂的一个或两个断裂端,可以跟另一断裂所产生的断裂端连接,引起非重建性愈合(nonrestitution union)。 依据断裂的数目和位置,断裂端是否连接,以及连接的方式,可以产生各种染色体变异,主要的有下列四种(图9-1): (1)缺失(deletion或deficiency)——染色体失去了片段;

刘祖洞(遗传学)课后习题标准答案!全面版

刘祖洞《遗传学》参考答案全面版 ?第二章孟德尔定律 1、为什么分离现象比显、隐性现象有更重要的意义? (1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;? (2)答:因为? 只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。?2、解:序号杂交基因型表现型 (1)RR×rr Rr 红果色?(2) Rr×rr 1/2Rr,1/2rr 1/2红果色,1/2黄果色 (3)Rr×Rr 1/4RR,2/4Rr,1/4rr3/4红果色,1/4黄果色 (4)Rr×RR 1/2RR,1/2Rr 红果色 (5)rr×rr rr黄果色?3、下面是紫茉莉的几组杂交,基因型和表型已写明。问它们产生哪些配子?杂种后代的基因型和表型怎样? (1)Rr× RR(2)rr ×Rr(3)Rr ×Rr 粉红红色白色粉红粉红粉红?解:序号杂交配子类型基因型表现型 (1)Rr× RR R,r;R 1/2RR,1/2Rr 1/2红色,1/2粉红 (2)rr × Rrr;R,r1/2Rr,1/2rr 1/2粉红,1/2白色 4、在南瓜中,果实的白色(W)(3) Rr× Rr R,r1/4RR,2/4Rr,1/4rr1/4红色,2/4粉色,1/4白色? 对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何? (1)WWDD×wwdd(2)XwDd×wwdd (3)Wwdd×wwDd(4)Wwdd×WwDd 解:?序号杂交基因型表现型 1WWDD×wwdd WwDd 白色、盘状果实 2WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/ 2wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、4黄色、盘状,1/4黄色、球状? 球状 3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球 4Wwdd×WwDd1/8WWDd,1/8WWdd,2/8WwDd,2/状,1/4黄色、盘状,1/4黄色、球状? 8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状 ?5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。现在有下列两种杂交组合,问它们后代的表型如何? (1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr 解:杂交组合TTGgRr × ttGgrr: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr ×ttGgrr: 即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。紫茎和绿茎是另一对相对性状,显性基因A控制紫茎,基因型aa的植株是绿茎。把紫茎、马铃薯叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比。如果把F1:(1)与紫茎、马铃薯叶亲本回交;(2)与绿茎、缺刻叶亲本回交;以及(3)用双隐性植株测交时,下代表型比例各如何? 解:题中F2分离比提示:番茄叶形和茎色为孟德尔式遗传。所以对三种交配可作如下分析:?(1) 紫茎马铃暮叶对F1的回交: (2)绿茎缺刻叶对F1的回交: (3)双隐性植株对Fl测交:

相关主题
文本预览
相关文档 最新文档