当前位置:文档之家› 理论烟气量的计算方法及常规数据

理论烟气量的计算方法及常规数据

理论烟气量的计算方法及常规数据
理论烟气量的计算方法及常规数据

理论烟气量的计算方法及常规数据

2007-09-12 13:44

发个环评中实用的一个帖子,也许对专业人员有用!

固体燃料燃烧产生的烟气量计算

一、理论空气量计算

L=0.2413Q/1000+ 0.5

L:燃料完全燃烧所需的理论空气量,单位是m3/kg;

Q:燃料低发热值,单位是kJ/kg;

二、理论烟气量计算

V=0.01(1.867C+0.7S+0.8N)+0.79L

V:理论干烟气量,单位是m3/kg;

C、S、N:燃料中碳、硫、氮的含量;

L:理论空气量

理论湿烟气量计算再加上燃料中的氢及水分含量,系数分别为11.2、1.24

固体燃料燃烧产生的烟气量计算

三、实际产生的烟气量计算

V0=V+ (a –1)L

V0:干烟气实际排放量,单位是m3/kg

a: 空气过剩系数,可查阅有关文献资料选择。

按上述公式计算,1千克标准煤完全燃烧产生7.5 m3,一吨煤碳燃烧产生10500标立方米干烟气量。

液体燃料燃烧产生的烟气量计算

一、理论空气量计算

L=0.203Q/1000+2.0

L:燃料完全燃烧所需的理论空气量,单位是m3/kg;

Q:燃料低发热值,单位是kJ/kg;

二、理论烟气量计算

V=0.01(1.867C+0.7S+0.8N)+0.79L

V:理论干烟气量,单位是m3/kg;

C、S、N:燃料中碳、硫、氮的含量;

L:理论空气量

理论湿烟气量计算再加上燃料中的氢及水分含量,系数分别为11.2、1.24

三、燃烧一吨重油产生的烟气量

按上述公式计算,一吨重油完全燃烧产生15000标立方米干烟气量。

天然气燃烧产生的烟气量计算

一、理论空气量计算

L=0.0476[0.5CO+0.5H2+1.5H2S+∑(m+n/4)CmHn-O2]

L:燃料完全燃烧所需的理论空气量,单位是m3/ m3;

二、三原子气体容积计算

V1=0.01(CO2+CO+H2S+∑CmHn

三、烟气氮容积计算

V2=0.79L+N/100

四、水蒸气容积计算

V3=0.01(H2+H2S+∑n/2CmHn-O2+0.124d)+0.0161L

五、烟气量计算

V=V1+V2+V3+(a-1)L

按上述公式计算,一立方米天然气完全燃烧产生11标立方米干烟气量。

烟气流量计算公式

锅炉烟尘测试方法 1991—09—14发布1992—08—01实施 国家技术监督局 国家环境保护局发布 1、主题内容与适用范围 本标准规定了锅炉出口原始烟尘浓度、锅炉烟尘排放浓度、烟气黑度及有关参数的测试方法。 本标准适用于GBl3271有关参数的测试。 2、引用标准 GB l0180 工业锅炉热工测试规范 GB l327l 工业锅炉排放标准 3、测定的基本要求 3.1 新设计、研制的锅炉在按GBl0180标准进行热工试验的同时,测定锅炉出口原始烟尘浓度和锅炉烟尘排放浓度。 3.2 新锅炉安装后,锅炉出口原始烟尘浓度和烟尘排放浓度的验收测试,应在设计出力下进行。 3.3 在用锅炉烟尘排放浓度的测试,必须在锅炉设计出力70%以上的情况下进行,并按锅炉运行三年内和锅炉运行三年以上两种情况,将不同出力下实测的烟尘排放浓度乘以表l中所列出力影响系数K,作为该锅炉额定出力情况下的烟尘排放浓度,对于手烧炉应在不低于两个加煤周期的时间内测定。 表1 锅炉实测出力占锅炉设计出力的百分数,% 70-《75 75-《80 80-《85 85-《90 9 0-《95 》=95 运行三年内的出力影响系数K 1.6 1.4 1.2 1.1 1.05 1 运行三年以上的出力影响系数K 1.3 1.2 1.1 1 1 1 3.4 测定位置: 测定位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测定位置应距弯头、接头、阀门和其他变径管的下游方向大于6倍直径处,和距上述部位的上游方向大于3倍直径处。 3.5 测孔规格: 在选定的测定位置上开测孔,在孔口接上直径dn为75mm,长度为30mm左右的短管,并装上丝堵。 3.6 测点位置、数目: 3.6.1 圆形断面:将管道断面划分为适当数量的等面积同心圆环,各测点均在环的等面积中心线上,所分的等面积圆环数由管道直径大小而定,并按表2确定环数和测点数。 表2 圆形管道分环及测点数的确定 管道直径D,mm 环数测点数 《200 1 2 200-400 1-2 2-4 400-600 2-3 4-6 600-800 3-4 6-8 800以上4-5 8-10

Python科学计算与数据处理—绘制精美的图表.doc

Python科学计算与数据处理—绘制精美的图表 Matplotlib是python中最著名的绘图库。matlab提供了一套类似于MATLAB的命令API,非常适合交互式绘图。 而且可以作为绘图控件方便地嵌入到图形用户界面应用程序中。 它的文档非常完整,在图库页面中有数百个缩略图。打开后,有源程序。 因此,如果你需要画一个特定类型的地图,你基本上可以通过浏览、复制和粘贴来完成。 显示页面地址:快速绘图快速绘图matlab plot库的pyplot子库提供了一个类似MATLAB的绘图API,方便用户快速绘制三维图表。 (matplotlibsimpleplotpy)pylab模块matplotlib还提供了一个名为pylab的模块,该模块包含了numpy和pyplot中常用的许多功能,以方便用户快速计算和绘制,并可用于IPython中的快速交互使用。 快速绘图库中的快速绘图函数库可以通过以下语句加载:下一步调用图形创建一个绘图对象并使其成为当前绘图对象。 figsize参数允许您指定绘图对象的宽度和高度单位。英寸dpi参数指定绘图对象的分辨率,即每英寸多少像素。默认值为。 因此,本例中创建的图表窗口的宽度为* =像素。 IMPORTMATplotLIBPYPLOTASPTLTPLTFIGURE(Figure Size =(,))也可以在不创建绘图对象的情况下进行快速绘图。直接调

用下面的PLOT函数直接绘制一个绘图matplotlib将自动创建一个绘图对象。 如果需要同时绘制多个图表,可以通过传递一个整数参数来指定图形图标的序列号。如果具有指定序列号的图形对象已经存在,它不会创建新对象,而只会使其成为当前图形对象。 以下两行程序通过调用绘图函数在当前绘图对象中绘制:绘图绘图绘图(x,y,label = $ sin (x) $,color = red,linewidth =)绘图绘图绘图(x,z,b,label = $ cos (x) $)调用绘图函数的方法很灵活。在第一句传递x,y数组进行绘图后,使用关键参数指定各种属性:bulllabel:为绘制的曲线命名。这个名字显示在图例中。 只要在字符串前后添加# # $ # # #符号matplotlib,就将使用其嵌入式latex引擎绘制的数学公式。 Bullcolor:指定曲线的颜色bulllinewidth:指定曲线的宽度第三个参数lsquorsquob ``指定曲线的颜色和线型Pltlot (x,y,label = $ sin (x) $,color = red,lineWidth =) Pltlot (x,z,b,Label = $ cos (x) $)快速绘制下一步,绘图对象的各种属性是通过一系列函数来设置的:bull label:设置X轴和Y轴的文本bulltitle:设置图表的标题bullylim:设置Y轴的范围bulllegend:显示图表最后,调用pltshow()来显示所有创建的绘图对象。 PLT Label(time(s))PLT Label(volt)PLT title(pyplot first example)PLT lim(,)pltllegend()quick drawing importnumppyanpmportationplotlibpyplotaspltx = NPL space(,)y =

电厂烟气环境监测常用计算公式

1.1.1 烟气流量的计算 s s V F Q ??=3600 (式 4-1) 式中:s Q -湿烟气排放量,m 3/h ; F -测定断面面积,m 2; s V -测定断面的平均烟气流速,m/s 。 1.1.2 标态下干烟气排放量的计算 )1() 273(101325273 sw s s a s m X t )P (B Q Q -?+??+?= (式4-2) 式中:m Q -标准状态下干烟气的排放量,Nm 3/h ; sw X -烟气中水分含量体积百份数,%; a B -大气压力,Pa ; s p -测点处烟气静压,Pa ; s t -烟气温度,℃。 1.1.3 采样体积的计算 s t P B V V s a m snd ++? =2730027.0 (式4-3) 式中:snd V -标准状态下的干烟气采样体积,L ; m V -实际工况下的干烟气采样体积,L ; s P -烟气静压,Pa ; s t -烟气温度,℃。 1.1.4 烟气含尘浓度计算 3 10?= snd V g C (式4-4) 式中:C -标准状态下干燥烟气的含尘浓度,mg/Nm 3; g -所采得的粉尘量,mg ;

21g g g -=; 1g -采样前滤筒质量,mg ; 2g -采样后滤筒质量,mg 。 1.1.5 烟尘排放量的计算 6 10m m Q C q ?= (式 4-5) 式中:m q -烟尘排放量 kg/h 。 1.1.6 漏风率的计算 % 100222?--= ?out in out O K O O α (式4-6) 式中:α?-除尘器漏风率,%; out O 2-除尘器出口断面烟气平均氧量,%; in O 2-除尘器入口断面烟气平均氧量,%; K -大气中的含氧量,%。 1.1.7 除尘效率的计算 % 100) 1(??+-= in out in C C C αη (式4-7) 式中:η-除尘效率,%; in C -进口烟尘浓度(标态干烟气),mg/m 3; out C -出口烟尘浓度(标态干烟气),mg/m 3。 1.1.8 除尘器本体压力降计算 H out in p p p p +-=? (式 4-8) 式中:p ?-除尘器压力降,Pa ; in p -除尘器入口全压平均值,Pa ; out p -除尘器出口全压平均值,Pa ; H p -高温气体浮力的校正值,Pa 。

烟气带水实例计算

一、初始条件 初态:-100Pa(G) 140℃ 3450.79NM3/h,气体体积组成如下: CO2:13.66% H2O:14.54% SO2:0.02% N2:67.16% O2:4.62% 冷却水温度按32℃考虑 终态:-600Pa(G) 60℃ 二、计算说明 烟气喷水降温,至终态不含液态水,喷入的水全部汽化为水蒸汽,终态中含水量饱和。 三、物性查询 所有物性数据全部查自2002版化学工业出版社出版的《化学化工物性数据手册无机卷》。 1、60℃水的饱和蒸汽压为19919 Pa; 32℃饱和水的比热为4.178 J/g·K;

60℃的饱和水蒸汽比焓为2609.71 KJ/kg 2、各气体的比热见下表,单位为KJ/kg·K 四、进出口温度下比热计算 按上面表格中物性采用内插法计算进出口温度下的气体比热(单位:KJ/kg·K)。

五、能量衡算 假定需水量为n kmol CO2:3450.79×13.66%=471.378 NM3/h=21.044 kmol H2O:3450.79×14.54%=501.745 NM3/h=22.399 kmol N2:3450.79×67.16%=2317.551 NM3/h=103.462 kmol O2:3450.79×4.62%=159.426 NM3/h=7.117 kmol SO2:3450.79×0.02%=0.69 NM3/h=0.031 kmol 1、输入热量 气体带入热量: (21.044×44.01×0.8855+22.399×18.02×2.245+103.462×28.01×1.042+7.117×32×0.9277+0.031×64.06×0.6473)×140 =694190.13 KJ 水带入热量:n×18.02×4.178×32=2409.2n KJ 2、输出热量 气体带出热量: (21.044×44.01×0.8479+22.399×18.02×1.924+103.462×28.01×1.0396+7.117×32×0.9192+

工业炉窑烟气湿度计算方法

工业炉窑烟气湿度计算方法 〔摘要〕本文指出国标《工业炉窑烟尘测试方法》(cb以y79一88)烟气湿度及流理计算方法的局限性,认为该方法仅适用于饱和或非饱和烟气,对于烟气中的水是汽液两相共存的情况,利用该方法计算得的烟气湿度大于实际值,并提出了解决方法。 1前言 为得到管道中流动烟气的湿度和流量,国标《工业炉窑烟尘测试方法))(gd9(为7一88) 规定了测试和计算方法,提出了相应的计算方法。通过分析,本文认为该方法在解决实际问题时存在局限性。 2国标中相应的计算公式 在国标《工业炉窑烟尘测试方法》中给出了烟气湿度、体积百分数、流量等计算公式,即 烟气湿度计算公式 式中际一为烟气的含湿量,岁纯干空气;m一为单位时间冷凝水量,岁而n;卿一为测量状态下流量计读数,时/而n;tc一为流量计前烟气的绝对温度,k;尸r为流量计前压力计的读数,姗任19;b。一为大气压力,n切任19;肠一为冷凝器后烟气的含湿量,岁kg干空气。 g柑按式(2)计算: 式中p,一为冷凝器出口烟气温度t(℃)相应的饱和水蒸气分压为,潮妇g。 烟气中水蒸气含量的体积百分数瑞计算公式 在标准状态下,干烟气密度端计算公式

式中味的单位为甲n时干烟气;c仇,仇,姚,co分别为各种烟气成分的体积百分数,%。 在标准状态下,湿烟气密度认计算公式 式中而的单位为甲n时的湿烟气。 烟气流速计算公式 式中v。为测定断面上的平均流速,m/s; icp一为皮托管修正系统;卜为管道内湿烟气的密度,kg/m3湿烟气;h一j为测定断面的烟气平均动压,}20i g为重力加速度9.81 m/护。 在测定工况下的烟气流量计算公式 式中q一为测定工况下的烟气流量,衬湿烟气/h;f为测定断面面积。 3公式中存在的问题 3.1烟气含湿量计算公式 为说明存在的问题,下面简要推导一下公式(1)、(2)。 公式(l)左这第一项为冷凝下来的水经过转化后,烟气所具有的含湿量,左边第二项为在冷凝状态下,饱和状态烟气的含湿量。管道中烟气的总含湿量为两项之和。对于左边第一项,其推导过程为 在非标定工况下,当通过流量计的流量为缪时,通过的实际流量为 根据气体状态方程

(完整版)烟气量计算公式

燃料空气需要量及燃烧产物量的计算 所有理论计算均按燃料中可燃物质化学当量反应式,在标准状态下进行,1kmol 反 应物质或生成物质的体积按22.4m 3计,空气中氧和氮的容积比为21:79,空气密度为 1.293kg/m 3。 理论计算中空气量按干空气计算。燃料按单位燃料量计算,即固体、液体燃料以1kg 计算,气体燃料以标准状态下的1m 3计算。 单位燃料燃烧需要理论干空气量表示为L 0 g ,实际燃烧过程中供应干空气量表示为 Ln g ; 单位燃料燃烧理论烟气量表示为V 0,实际燃烧过程中产生烟气量表示为Vn; 单位燃料燃烧理论干烟气量表示为V 0g ,实际燃烧过程中产生干烟气量表示为Vn g ; 一、通过已知燃料成分计算 1. 单位质量固体燃料和液体燃料的理论空气需要量(m 3/kg ) L 0=(8.89C +26.67H +3.33S -3.33O )×10﹣2式中的C 、H 、O 、S ——燃料中收到基 碳、氢、氧、硫的质量分数%。 2. 标态下单位体积气体燃料的理论空气需要量(m 3/m 3) L 0=4.76?? ????-+??? ??+++∑2222342121 O S H?CmHn n m H CO ×10﹣2式中CO 、H 2、H 2O 、H 2S 、CmHn 、O 2——燃料中气体相应成分体积分数(%). 3. 空气过剩系数及单位燃料实际空气供应量 空气消耗系数а=0 L 量单位燃料理论空气需要量单位燃料实际空气需要?L 在理想情况下,а=1即能达到完全燃烧,实际情况下,а必须大于1才能完全燃烧。а<1显然属不完全燃烧。 а值确定后,则单位实际空气需要量L а可由下式求得: L 0g =аgL 0 以上计算未考虑空气中所含水分 4. 燃烧产物量 a.单位质量固体和液体燃料理论燃烧产物量(m 3/kg) 当а=1时, V 0=0.7L 0+0.01(1.867C+11.2H+0.7S+1.244M+0.8N)式中 M ——燃料中水分(%)。 b.单位燃料实际燃烧产物量(m 3/kg ) 当a >1时,按下式计算: 干空气时,V a =V 0+(a-1)L 0 气体燃料 (2)单位燃料生成湿气量 ?V =1+α0L -[0.5H 2+0.5C O -(4 n -1) C m H n ] (标米3/公斤) (2-14) (3)单位干燃料生成气量 g V ?=1+α0L -[1.5H 2+0.5C O -( 4n -1) C m H n +2 n C m H n ) (标米3/公斤) (2-15)

大数据技术原理与应用 林子雨版 课后习题答案

第一章 1、试述信息技术发展史上得3次信息化浪潮及具体内容。 2.试述数据产生方式经历得几个阶段 答: 运营式系统阶段,用户原创内容阶段,感知式系统阶段。 3.试述大数据得4个基本特征 答:数据量大、数据类型繁多、处理速度快与价值密度低。 4.试述大数据时代得“数据爆炸”得特性 答:大数据时代得“数据爆炸"得特性就是,人类社会产生得数据一致都以每年50%得速度增长,也就就是说,每两年增加一倍。 5.数据研究经历了哪4个阶段? 答:人类自古以来在科学研究上先后历经了实验、理论、计算、与数据四种范式。 6.试述大数据对思维方式得重要影响 答:大数据时代对思维方式得重要影响就是三种思维得转变:全样而非抽样,效率而非精确,相关而非因果。 7.大数据决策与传统得基于数据仓库得决策有什么区别 答:数据仓库具备批量与周期性得数据加载以及数据变化得实时探测、传播与加载能力,能结合历史数据与实时数据实现查询分析与自动规则触发,从而提供对战略决策与战术决策。

大数据决策可以面向类型繁多得、非结构化得海量数据进行决策分析。 8.举例说明大数据得基本应用 答: 9.举例说明大数据得关键技术 答:批处理计算,流计算,图计算,查询分析计算 10.大数据产业包含哪些关键技术。 答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。 11.定义并解释以下术语:云计算、物联网 答: 云计算:云计算就就是实现了通过网络提供可伸缩得、廉价得分布式计算机能力,用户只需要在具备网络接入条件得地方,就可以随时随地获得所需得各种IT资源。 物联网就是物物相连得互联网,就是互联网得延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类与物等通过新得方式连在一起,形成人与物、物与物相连,实现信息化与远程管理控制。 12.详细阐述大数据、云计算与物联网三者之间得区别与联系。

烟气密度ρ计算

烟气密度ρ=Gy/Vy kg/cm3 Gy=1-Aar/100+1.306aV○Aar是燃料的收到基灰分,% Vy=V[sup]0[/sup]y+1.0161(a-1)V[sup]0[/sup] V[sup]0[/sup]y是理论燃烧烟气量 1.0161(a-1)V[sup]0[/sup]是过量空气量及过量空气中带入的过量水蒸气量 1.0161(a-1)V0=(a-1)V0+0.0161(a-1)V0 (a-1)V0表示过量空气量,a是过量空气系数 0.0161(a-1)V0表示过量空气中带入的过量水蒸气量 0.0161是按干空气中含湿量为10g(水分)/kg(干空气)计算所得。 1.306aV0表示1kg燃料燃烧时消耗的湿空气的质量1.306是湿空气的密度 1.306=(1+d/1000)*1.293,d是1kg干空气中的含温量,一般取10g/kg(干空气)。1.293是标准状况下,干空气的密度。 密度是指单位体积空气所具有的质量, 国际单位为千克/米3(kg/m3 ),一般用符号ρ表示。其定义式为: 式中 M——空气的质量,kg; V——空气的体积,m3。

空气密度随空气压力、温度及湿度而变化。上式只是定义式,通风工程中通常由气态方程求得干、湿空气密度的计算式。由气态方程有: 式中:ρ——其它状态下干空气的密度,kg/m3; ρ0——标准状态下干空气的密度,kg/m3; P、P0——分别为其它状态及标准状态下空气的压力,千帕(kpa); T、T0——分别为其它状态及标准状态下空气的热力学温度,K。 标准状态下,T0=273K,P0=101.3kPa时,组成成分正常的干空气的密度ρ0=1.293 kg/m3。将这些数值代入式(2-1-2),即可得干空气密度计算式为: 使用上式计算干空气密度时,要注意压力、温度的取值。式中P为空气的绝对压力,单位为kPa;T为空气的热力学温度(K),T=273+t, t为空气的摄氏温度(℃)。 4.5 烟气密度的计算 测试工况下湿烟气密度ρs按式(9)计算: ρρ s N s a s 101325 =? +? + 273 273t B p (9) 式中ρN——标准状态下湿烟气密度,kg/Nm3湿烟气,一般情况下ρN可取用1.34kg/Nm3湿烟气; t s——测量断面内烟气平均温度,℃; p s——测量断面内烟气静压,Pa; B a——大气压力,Pa。

烟气露点计算及烟囱冷凝水量计算方法及结果

7 烟气露点计算及烟囱冷凝水量计算方法及结果 7.1 烟气中水蒸汽露点温度的计算 当已知烟气中的含湿量dg(g/kg 干烟气)时,可按下式计算烟气中的水蒸汽露点温度(水露点)t DP : 1) 当dg=3.8g/kg ~160g/kg 时: t DP.O = ]} )/804(lg[ 21433.0{491.7]} )/804(lg[ 21433.0{908.236dg P d dg P d g d g g g d g g +?+-+?+??ρρ , ℃; (7.1-1) 2) 当dg=61g/kg ~825g/kg 时 t ’DP ·O =]} )/804(lg[20974.0{4962.7]} )/804(lg[ 20974.0{1.238dg P d dg P d g d g g g d g g +?+-+?+??ρρ , ℃; (7.1-2) 式中: Pg ——烟气的绝对压力, kPa ; dg ——烟气含湿量 g/kg 干烟气; ρg ——干烟气密度 kg/Nm 3。 7.2 烟气酸露点温度的计算 a. 按燃煤成分为基准的计算方法 燃煤锅炉的烟气酸露点按下述公式计算: t Dp =t Dp.o +n sp S 05 .1.) (3 1β℃ (7.2-1) 式中: t Dp.o ——烟气中纯水露点温度,按7.1确定。 S SP 。——燃料折算硫分,%·g/kcal ,按可燃硫S c.ar 计算: S sP =S c.ar × ar net Q .4182 (7.2-1a) n ——指数,表征飞灰含量对酸露点影响的程度; n=αfly ·A sP 。 α fly ——飞灰份额,对煤粉炉αfly =0.8~0.9;

大数据处理及分析理论方法技术

大数据处理及分析理论方法技术 (一)大数据处理及分析建设的过程 随着数据的越来越多,如何在这些海量的数据中找出我们需要的信息变得尤其重要,而这也是大数据的产生和发展原因,那么究竟什么是大数据呢?当下我国大数据研发建设又有哪些方面着力呢? 一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。 二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。

三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。 四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。 (二)大数据处理分析的基本理论 对于大数据的概念有许多不同的理解。中国科学院计算技术研究所李国杰院士认为:大数据就是“海量数据”加“复杂数据类型”。而维基百科中的解释为:大数据是由于规模、复杂性、实时性而导致的使之无法在一定时间内用常规软件工具对其进行获取、存储、搜索、分享、分析、可视化的数据集合。 对于“大数据”(Bigdata)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决

图2.1:大数据特征概括为5个V (三)大数据处理及分析的方向 众所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定

Python科学计算与数据处理—符号运算库.doc

Python科学计算与数据处理—符号运算库 符号运算库目录从示例开始欧拉恒等式球体体积数学表达式符号数值运算符和函数符号运算表达式转换和简化方程目录微分方程积分其他函数符号运算库。 它的目标是成为一个功能齐全的计算机代数系统,同时保持代码简单、易于理解和可扩展。 SymPy完全用Python编写,不需要任何外部库。 符号可用于数学表达式的符号推导和计算。 您可以使用isympy来运行程序isympy来添加基于IPython 的数学表达式的可视化显示功能。 在启动时,以下程序将自动运行:该程序首先将Python的除法运算符从整数除法改为普通除法。 然后,从SymPy库中加载所有符号,并定义四个通用数学符号x、y、z、t,三个符号k、m、n表示整数,三个符号f、g、h 表示数学函数。 fromFutureimPortdivisionfromSymport * x,y,z,t =符号(# x,y,z,t #) k,m,n =符号(# k,m,n #,integer = true) f,g,h =符号(# f,g,h #,cls =函数)# initprinting()从这个例子开始,这个公式被称为欧拉恒等式,其中e是自然常数,I是虚单位,pi是pi。 这个公式被认为是数学中最奇妙的公式。它通过加法、乘法和幂运算连接两个基本的数学常数。 在从符号库中载入的符号中,E代表自然常数,I代表虚数,

单位pi代表周长比,所以上述公式可以直接计算如下:E * * (I * PI)从例子开始,符号不仅可以直接计算公式的值,而且有助于推导和证明数学公式。 欧拉等式可以被替换成下面的欧拉公式:在SymPy中,您可以使用expand()来扩展表达式并进行尝试:没有成功,您只是更改了书写风格。 当expand()的复数参数为真时,表达式将分为两部分:实数和虚数:expand (e * * (I * x)) expand (I * x)从示例开始,表达式这次被扩展,但结果相当复杂。 显然,expand()使用x作为复数。 为了将x指定为实数,需要重新定义x:最后,获得所需的公式。 泰勒多项式可用于展开表达式:展开(exp (I * x),复数=真)I * exp(im(x))* sin(re(x))exp(im(x))* cos(re(x))x =符号(x,实数=真)展开(exp (I * x),复数=真)isin (x) cos (x)从示例开始,级数()对表达式执行泰勒级数展开。 你可以看到虚项和实项在展开后交替出现。 根据欧拉公式,虚项之和应等于正弦(x)的泰勒展开式,实项之和应等于余弦(x)的泰勒展开式。 Tmp =级数(exp (I * x),x,,,prinTmpi * xx * * I * x * * x * * I * x * * x * * I * x * * x * * I * x * x * x * x * x * x * * o(x * *)tmp从下面的例子中得到tmp的实部:下面的cos(x)的泰勒展开式表明这些项

烟气监测系统计算公式

烟气监测系统计算公式: 1. 流量 1.1原烟气流量(湿态) 【未用】 1.2净烟气流量 1.2.1工况下的湿烟气流量s Q : s s V F Q ??=3600 s Q ――工况下的湿烟气流量,h m 3; F ――监测孔处烟道截面积,2m ; s V ――监测孔处湿烟气平均流速,s m /。 1.2.2监测孔处湿烟气平均流速s V : s V = 流速仪输出值 1.2.3标准状态下干烟气流量sn Q : )1(273273101325sw s s a s sn X t P B Q Q -+?+?= sn Q ――标准状态下干烟气流量,m 3; sw X ――烟气湿度。 1.2.4烟气排放量 ∑=?=n i sni h Q n Q 1)1( ∑==24 1i hi d Q Q ∑==31 1i di m Q Q ∑==121i mi y Q Q 式中, Q h ——标准状况下干烟气小时排放量,m 3;

Q d ——标准状况下干烟气天排放量,m 3; Q m ——标准状况下干烟气月排放量,m 3; Q y ——标准状况下干烟气年排放量,m 3; Q sni ——标准状况下,第i 次采样测得的干烟气流量,m 3/h ; Q hi ——标准状况下,第i 个小时的干烟气小时排放量,m 3/h ; Q di ——标准状况下,第i 天的干烟气天排放量,m 3/h ; Q mi ——标准状况下,第i 个月的干烟气月排放量,m 3/h ; n ——每小时内的采样次数。 2.烟气湿度sw X : 222O O O sw X X X X '-'= 2O X ――湿烟气氧量,%; 2O X '――干烟气氧量,%。 3.过量空气系数α': 2 2121O X -='α 4.烟尘 4.1.1标准状态下干烟气的烟尘排放浓度 程截距烟尘方程斜率+烟尘方.dust dust C C ''=' 式中, dust C ''——实测的烟尘排放浓度,mg/m 3; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3。 4.1.2折算的烟尘排放浓度 α α'?'=dust dust C C 式中, dust C ——折算成过量空气系数为α时的烟尘排放浓度; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3; α' ——实测的过量空气系数;

大数据

1.1大数据技术国内外研究进展 近年来,大数据迅速发展成为工业界、学术界甚至世界各国政府高度关注的热点。《自然(Nature)》和《科学(Science)》等杂志相继出版专刊来探讨大数据带来的挑战和机遇。著名管理咨询公司麦肯锡声称,“数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于大数据的挖掘和运用,预示着新一波生产力增长和消费者盈余浪潮的到来”。在这样的背景下,美国政府2012年宣布投资2亿美元启动“大数据研究和发展计划”,这是继1993年美国宣布“信息高速公路”计划后的又一次重大科技发展部署。美国政府认为大数据是“未来的新石油”,一个国家拥有数据的规模和运用数据的能力将成为综合国力的重要组成部分,对数据的占有和控制将成为国家间和企业间新的争夺焦点。大数据已成为社会各界关注的新焦点,“大数据时代”已然来临。 与传统规模的数据工程相比,大数据的感知、获取、存储、表示、处理和服务都面临着巨大的挑战。这归因于大数据具有几个突出的特征:1)数据集合的规模不断扩大,已经从GB、TB再到PB,甚至已经开始以EB和ZB来计数。IDC的研究报告称,未来十年全球大数据将增加50倍,管理数据仓库的服务器数量将增加10倍以便适应这一增长。2)大数据类型繁多,包括结构化数据、半结构化数据和非结构化数据。现代互联网应用呈现出非结构化数据大幅增长的特点,至2012年末,非结构化数据占有比例达到整个数据量的75%以上。3)产生速度快,处理能力要求高。根据IDC的“数字宇宙(Digital Universe)”报告,预计到2020年,全球数据使用量将达到35.2ZB,在如此海量的数据面前,处理数据的效率就是企业的生命。大数据往往以数据流的形式动态、快速地产生和演变,具有很强的时效性,只有把握好对数据流的掌控才能有效利用这些数据。4)数据真伪难辨,可靠性要求更严格。大数据的集合和高密度的测量将令“错误发现”的风险增长。斯坦福大学的统计学教授Trevor Hastie称,如果想要在庞大的数据“干草垛”中找到一根有意义的“针”,那么所将面临的问题就是“许多稻草看起来就像是针一样”。5)数据价值大,但密度低、挖掘难度大。价值密度的高低与数据总量的大小成反比。如何通过强大的机器算法更迅速地完成数据的价值“提取”成为目前大数据背景下亟待解决的难题。 大数据在带来挑战的同时,还蕴含着划时代的重大意义。特别是大数据时代对海量数据的积累、加工和利用能力将成为国力的新标志,大数据的深度分析和利用将对推动经济持续增长、提升国家的竞争力起到重要的作用。一个国家的数据主权将是继海、陆、空、天四个空间之后另一个大国博弈的空间。“十八大”报告中明确提出网络空间与深海、深空是我们国家核心利益的关键领域。在大数据领域的落后,意味着产业战略制高点失守,更意味着国

烟气流量及含尘浓度的测定

实验一烟气流量及含尘浓度的测定 一、实验意义和目的 大气污染的主要来源是工业污染源排出的废气,其中烟道气造成的危害极为严重。因此,烟道气(简称烟气)的测试是大气污染源监测的主要内容之一。测定烟气的流量和含尘浓度对于评价烟气排放的环境影响、检验除尘装置的功效有重要意义。通过本实验应达到以下目的: (1)掌握烟气测试的原则和各种测量仪器的使用方法; (2)了解烟气状态(温度、压力、含湿量等参数)的测量方法和烟气流速、流量等参数的计算方法; (3)掌根烟气含尘浓度的测定方法。 二、实验原理 (一)采样位置的选择 正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。采样位置应取气流平稳的管段.原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s化以上。而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。下面说明不同形状烟道采样点的布置。 1.圆形烟道 采样点分布见图1-1(a)。将烟道的断面划分为适当数目的等面积同心圆环,各采样点均在等面积的中心线上,所分的等面积圆环数由烟道的直径大小而定。 2.矩形烟道 将烟道断面分为等面积的矩形小块.各块中心即采样点,见图1-1(b)。不同面积矩形烟道等面积分块数见表1-1。 烟道断面面积/m2等面积分块数测点数 <1 2×2 4 1~4 3×3 9 4~9 4×3 12 3.拱形烟道 分别按圆形烟道和矩形烟道采样点布置原则,见图1-1(c)。 图1-1 烟道采样点分布图 (a)圆形烟道;(b)矩形烟道;(c)拱形烟道 (二)烟气状态参数的测定

大数据与云计算简答题

一、云计算与大数据的定义、特征 1、云计算的定义:是一种商业计算模型。它将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和信息服务。(维基百科)一种基于互联网的计算方式,通过这种方式,共享软硬件资源和信息,可以按需提供给计算机和其他设备。云计算能够给用户提供可靠的、自定义的、最大化资源利用的服务,是一种崭新的分布式计算模式。 云计算的类型可以分为基础设施即服务(Iaas)、平台即服务(Pass)、软件即服务(Saas)。 2、云计算的特征:超大规模、虚拟化、高可靠性、高可伸缩性、按需服务、极其廉价。 (1)服务资源池化:通过虚拟化技术,对存储、计算、内存、网络等资源化,按用户需求动态地分配。 (2)可扩展性:用户随时随地可以根据实际需要,快速弹性地请求和购买服务资源,扩展处理能力。 (3)宽带网络调用:用户使用各种客户端软件,通过网络调用云计算资源。 (4)可度量性:服务资源的使用可以被监控、报告给用户和服务商,并可以根据具体使用类型收取费用。 (5)可靠性:自动检测失效节点,通过数据的冗余能够继续正常工作,提供高质量的服务,达到服务等级协议要求。 3、大数据的定义:(维基百科)指利用常用软件工具捕获、管理和处理数据所耗时间超过科容忍时间的数据集,即大数据泛指大规模、超大规模的数据集,因可从中挖掘出有价值的信息而备受关注。 4、大数据的特征(5V特征): (1)数据体量(Volume)巨大,指收集和分析的数据量非常大,从TB级别跃升至PB 级别; (2)处理速度(Velocity)快,需要对数据进行近实时的分析; (3)数据类别(Variety)大,大数据来自多种数据源,数据种类和格式日渐丰富,包括结构化、半结构化和非结构化等多种数据形式; (4)数据真实性(Veracity),大数据中的内容是与真实世界中的发生息息相关的,研究大数据就是从庞大的网络数据中提取能够解释和预测现实事件的过程。 (5)价值密度低,商业价值(Value)高,通过分析数据可以得出如何抓住机遇及收获价值。 二、云计算安全,可信云以及用户对云计算信任的预期? 由于云服务的“外包”特性,用户对云提供商是否能够对其数据安全提供保障,对其应用程序是否按照约定的方式安全执行产生了怀疑,亦即云服务的可信性问题。云服务的可信问题不仅指服务计算环境受其开放、共享等特点而导致服务结果可能受云服务提供商的主观意志等因素导致的不可信。 用户对云服务的安全怀疑主要集中在客观与主观两个方面:客观来说,云计算的集中服务模式使其更容易成为安全攻击的目标,而云计算技术的大规模分布式处理也大大增加了安全管理的难度,因此服务商是否具有足够的安全管理能力来保证用户信息安全值得怀疑;主观方面,由于云计算模式下,用户信息的存储、管理以及应用处理都在云服务方完成,用户丧失控制权,此时如何保证服务方忠实履行自己的服务协议,保证服务质量,并且不会通过自己的特权来违规使用用户资源获利成为必须要解决的问题。 如果云服务的行为和结果总是与用户预期的行为和结果一致,那么就可以说云服务是可信的。要讨论云服务的可信性,需要明确3个方面的问题: 1)用户的界定。不同用户拥有的信息安全敏感度不同,对于云安全性认定也不同。

Python科学计算与数据处理 —Python函数.doc

Python科学计算与数据处理—Python函数 Python的基本函数目录函数的定义以及调用函数的形式函数参数、局部变量和全局变量的标注表明,公共函数和调用函数的定义是一个能够完成特定功能的代码块,可以在程序中重用,以减少程序的代码量,提高程序的执行效率。 Python中函数定义的语法如下:deffunctionname (arg,arg),:不需要Statementreturnvalue返回值。如果没有返回语句,python默认返回值无函数定义和调用定义函数通常使用def语句。 函数名可以是任何有效的Python标识符。 参数列表可以由多个、1或0个参数组成。 括号是必不可少的,即使没有参数,你也不能没有它们。不要忘记括号后面的冒号。 功能体必须注意缩进。 形式和实际参数。 return语句结束函数调用,可以出现在函数体的任何地方。 定义函数名(参数列表):函数体定义添加(X):X = XRETURNXdefd(X):X = XRETURNXADD()调用函数调用函数的一般形式如下:对于不使用RETURN语句的函数,它实际上向调用方返回一个值,即无。 标准调用方法传递的值按照形式参数定义的顺序分配给它们。 函数名(参数表)add()defmyad():sum = a = myad()aprintane调

用函数的形式关键字调用方法是在调用函数时给出形式参数和实际参数。 当一个函数有多个参数时,关键字调用方法非常有用,因为解释器可以通过给定的关键字匹配参数的值,从而在定义函数时允许参数丢失或不按照形式参数的顺序提供实际参数。 定义选择(X,Y):让Y班,X年级的学生清除选择(,,,,,,选择(X =,Y =)选择(Y =,X =)功能的参数。定义函数时,我们可以使用赋值符号为一些参数赋值,这样在调用函数时,如果调用者没有为参数提供值,就会使用默认值。 如果在调用函数时为参数提供了一个值,则使用调用方提供的值将像这样的参数称为默认参数。 默认参数必须在所有标准参数之后定义。 Deff (arg,arg =,arg =): print # arg = #,argprint # arg = #,argprint # arg = #,arg function parameter function with default parameter:function with default parameter by关键字:f(,arg =) arg = arg = f (arg =,arg =) arg = arg = f,Arg =) arg = arg = f,arg = f (arg =,Arg =)Arg = deff(Arg,Arg) arg =): print # arg = #,argprint # arg = #,argprint # arg = #,arg()arg = arg = f(,)arg = arg = f(,)arg = arg = arg = arg = arg =函数参数需要一个可以处理比最初声明的参数更多的参数的函数。 这些参数称为不定长参数。带星号(*)的变量名将存储所有未命名的变量参数。 也可以选择几个参数。

大数据计算

李建中:大数据计算基本概念研究问题及部分解 作者:机房360出处:论坛2012-11-30 22:14 2012.11.30Hadoop与大数据技术大会(下午) 2012.11.30Hadoop与大数据技术大会(下午) 主持人:各位领导各位来宾下午好!欢迎大家参加Hadoop与大数据技术大会。我是本次大会的程序委员会主席之一,CSDN程序员杂志的主编刘江。首先我介绍一下这次大会是由中国计算机学会主办的、CCF专业委员会承办的大会。除了今天的全体会议之外,明天还有四个分论坛,希望大家不要错过。我们还有官方微博,如果有相关大方的发布信息可以从这里获取。另外微博评论注意加HBTC四个字母。 今天下午有来自各机构、公司的专家来分享技术。首先有请中国计算机学会大数据专家委员会副主席哈尔滨工业大学教授李建中老师为我们演讲,《大数据计算基本概念研究问题和部分解》。 李建中:非常高兴有机会和大家交流一下对大数据的理解。HIT是哈尔滨工业大学的缩写,所以我的理解可能和工业界有一点点的不同,请看一下我们学院式的对大数据的研究有什么样的看法。我讲三个问题: 第一,大数据的基本概念。 第二,大数据计算机其挑战。 第三,研究问题与部分解。 第一,大数据的基本概念。什么是大数据,实际上我的报告讲了很多了,为什么叫做描述?因为大数据实际上是结合了不可定义的概念,大是相对的,是相对目前的及拴系统计算能力来说的,今天的大数据明天就不是大数据,大数据有的人说三个V,有的人说四个V,V我也不详细说了。所以说,大数据存在已久。有一个会议叫SSDB是1983年创建的一个会议,这里面的论文就是在研究大数据,这个会议到现在已经有29年的历史了,现在为什么谈起来大数据呢?因为个时候大数据还没有那么普遍,涉及的领域很少,参加这方面研究的人也很有限,所以跟现在不同。现在的大数据和当时研究的不同主要有两点。

烟气湿度测量原理细分

烟气湿度测量原理细分 各类燃烧器、工业及商用锅炉的烟气排放造成了严重的大气污染,对烟气中的有毒有害气体进行监测是环境保护工作的一个重要方面。烟气在线连续监测系统(CEMS)应运而生,它往往基于干烟气的条件对烟气中污染物进行量化计算。但工业排放的烟气并不是理想的干烟气,总是含有一定的水分,所以烟气湿度成为烟气污染源监测中的一个必测因子,其测量的准确度直接关系到污染物排放总量、浓度计算及烟气净化系统效率的评估。 根据我国《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)和《固定源废气监测技术规范》(HJ/T397-2007)中相关规定,排气中水分含量应根据不同的测量对象选用冷凝法、重量法或干湿球法中的一种方法测定。冷凝法和重量法需在烟道内抽取一定体积的排气,使之通过冷凝器或装有干燥剂的吸湿器,间接测量排气中的水分含量。而干湿球法则根据非饱和的气体中含湿量与干湿球温差之间存在函数关系,通过测量干球温度和湿球温度确定气体含湿量。但这三种方法在实际采样中都不很理想。重量法、冷凝法虽然测量精度高,但测试复杂,测试条件要求高,测试时间长,适用于测量精确度要求较高的执法监督测量。干湿球法测试简单,但在烟气温度过高(260℃)、烟气流速过高或过低、含高浓度的颗粒物、排放酸性气体的工况,不能用其进行测量,因此,干湿球法通常用于大气湿度测量。此外,冷凝法、重量法及干湿球法均为手工测量,无法满足烟气水分动态在线测量的要求。 烟气湿度在线测量主要有干湿氧法和阻容法。干湿氧法通过氧化锆检测器测定烟道的湿氧含量和在烟气分析仪中内置的氧传感器测定的经脱水后的干氧含量,根据标准换算方法可得到烟气湿度,具有操作简便、无需温度稳定的优势。但值得注意的是,现场无法提供同一测点的标准干氧,测量准确性存在一定偏差。同时依据氧化锆的物理特性,如遇到工艺样气温度猝然变冷,或含有大量水蒸气时锆管容易炸裂,且不宜测量含有还原性气体的高温烟气,大大限制其在现场应用。 基于阻容法开发的烟气湿度仪是目前CEMS湿度测量中应该最为广泛、成熟的技术,其测量原理是依据烟气排气中含湿量变化与阻容法的电阻和电容值的变化间的函数关系,直接测量烟气排气中含有的水分量。该方法具有测量灵敏,方法简单,对其他气体无交叉干扰的优点。阻容法测量烟气湿度具有广阔的发展前景。但其在高温、强腐蚀性烟气测量中需要注重对测量探头的保护。针对阻容法对测量环境的要求,南京埃森环境自主研发抗凝防腐伴热补偿技术,利用铂电阻温度传感器测量烟气温度变化,智能判断工况,启动伴热补偿,保证烟气测量过程无结露和冷凝,避免传感器的腐蚀和损坏。此外,烟气湿度随烟气温度变化

相关主题
文本预览
相关文档 最新文档