当前位置:文档之家› 精馏塔的动态模拟

精馏塔的动态模拟

精馏塔的动态模拟
精馏塔的动态模拟

精馏塔的动态模拟

目录

一、数学建模

二、分析与讨论

三、优化

四、程序清单

(1)分析和讨论

(2)分析和讨论

(3)最优化部分

前言

化学工业中,精馏过程是能量消耗最大的单元操作之一,自从发生了世界性的能源问题以来,精馏过程的节能问题已广泛引起了人们的重视。近年来,已经开发了多种精馏节能的工艺流程,如多效精馏.热泵精馏、热偶精馏等。多效精馏作为一种精馏节能新工艺近几年来其理论研究不断深入,在工业生产中的应用日益广泛。

工业上普遍存在非稳定状态或动态的精馏过程.实际的生产过程不可避免地受到各种人为或非人为因素的扰动,使一些操作参数和过程变量随时间发生变化,因此对于连续精馏过程的动态特性的研究和模拟具有重要的实际意义.研究精馏塔的动态特性时通常使用数学模拟方法,这首先需要建立1个模型精馏塔,然后对模型塔中的各个塔板作非稳态物料衡算、热量衡算等,得到动态精馏过程的数学模型,在一定的初始条件下经过求解,可得到操作条件发生扰动时各个精馏过程参数随时间变化的历程,即动态响应.若精馏系统内无约束某些参数变化速度和变化范围的控制器,其动态响应称为开环响应,否则为闭环响应.

反应精馏技术将反应与分离过程在一个塔内实现, 相对传统的先反应后分离过程具有转化率高、选择性好、操作易、投资省等一系列优点, 但反应精馏过程需同时遵循质量作用定律和精馏分离原理, 其过程影响因素复杂. 自20 世纪70 年代以来, 有关反应精馏的研究重点从工艺转向数学模拟. 现已开发有灵活可靠的过程模拟计算软件. 另一方面, 自20 世纪70 年代末催化精馏技术成功地应用于甲基叔丁基醚(M TBE) 生产以后, 该技术的应用受到了学者们的关注.

一、精馏塔数学模型的建立:

根据对过程系统中状态变量分布特征的不同描述方法,一般可以把数学模型分为集中参数模型,分布参数模型和多级集中参数模型。本次大作业利用多级集中参数模型对精馏塔动态特性进行分析和模拟。对于控制的动态数学模型,我们希望用最简单的形式,最大限度地概括出过程的特性。所以为了简化数学模型,我们必须做出以下必要的假定:

每块塔板上气相和液相分别为理想混合;

1、组分A 和组分B 的摩尔汽化热近似相等;汽相和液相在沿塔轴向运动过程中,显热变化对热量衡算和热损失的影响均可忽略不计;

2、整个塔分离过程A 对B 的相对挥发度α保持恒定;

3、每块踏板上都达到了汽液相平衡;

4、冷凝器和再沸器均处于稳态操作;

5、采用泡点进料和常压进料;

6、每块踏板上持液量远大于持汽量,后者及其变化可以忽略;

7、塔顶冷凝器为全冷凝器。

在这些假设的基础上,以物料衡算及能量衡算为基础列出精馏塔动态数学模型:

◆全凝器及馏出塔总物料衡算:

D L V t

M R D

--= d d ①

◆全凝器及馏出液易挥发组分衡算:

)( d d 1D D

D

X Y V t

X M -= ②

◆第n 块塔板总物料衡算:

n n L L t

M --1n

d d = ③

◆ 第n 块板易挥发组分衡算:

)()( d d 111n

n n n n n n Y Y V X X L t

X M -+-=+-- ④

◆ 离开第n 块板汽液相浓度关系:

n n

n 11X X Y )-+(=

α ⑤

◆ 加料板物料衡算及易挥发组分汽液相浓度平衡关系:

F L L M F F t

F

+--1 d d = ⑥

)

()()( d d 1f 11F F F F F F F F Y Y V X X F X X L t

X M -+-+-+--=

F F

F X X Y )1(1-+=

αα ⑧

◆ 再沸器及塔底总物料衡算:

B V L t

M N B

--= d d ⑨

◆ 再沸器及塔底易挥发组分衡算:

)()( d d B B B N N B

Y X V X X L t

X M -+-= ⑩

◆ 离开再沸器及塔底的汽液相浓度关系:

B B

B X X Y )1(1++=

αα ⑾

◆ 塔板水力学关系:

5

1n n n 0028.0(.A A h M M M L

L W W

N )-混

混混混ρρρ

= (12) i

i

X ρρ∑=混

(13)

∑i i W r r

X =混

(14)

查得苯和甲苯的物性数据如下表:

塔的示意图和设备尺寸如下:

设进料温度为90.8℃,α=2.4 方程⑤,⑧,⑾简化为:

n n

n X X Y 4.114.2+=

(15)

F F

F X X Y 4.114.2+=

(16)

B B

B X X Y 4.114.2+=

(17)

x =50%,y =50%:85925.0785.0=+=混??M g/mol

5.3872.3805.08.3945.0=+=混??W r KJ/Kg

25.80325.8033.8025.02.8045.0==+=混

??ρ

Kg/m3

Q E V 6106.2-?= (18)

5.1][25

.80395.80028.0325.8095.8047.0085.0085.066

.025.803n ????-?n M L =

5.1][79.1641022.46237

n

--?M

E =

(19)

二.模型微分方程的仿真计算: 计算流程如下:

㈧分析和讨论总结:

从模型数据结果分析来看,与实际情况即理论计算都不吻合。这主要是与所建立的模型的精确性以及程序算法有关。

由于平衡级动态模型采用简化假设与实际有出入,没有考虑精馏塔复杂的流体力学特性和非平衡的传质过程,造成模型的不准确。可选用适用于多股进料及中间出料的多元物系的分段正交配置方法建立精馏塔简化数学模型,或选用考虑非平衡效应和惯性效应的三维非平衡混合动态精馏塔模型,效果应该会好些。

在此模型中有很多的求导微分算式。目前应用广泛的求导算法有手工推导法、差商法(finite difference,FD)、符号微分法(symbolic differentiation,SD)、逆波兰表示计算法(reverse polish notation evalution,RPN)以及自动微分法(automatic differentiation,AD),其中手工推导法效率低对大规模计算不适用;差商法使用条件宽乏,占用内存少,但精度低,速度也一般;符号微分法精度高,速度快,但是在实际运用中会遇到无法处理的复杂程序代码,符号膨胀,导函数不连续等问题;逆波兰表示计算法是符号微分法的一种特殊情况,其实质是运用堆栈而不是树的数据结构来表示被求导对象;而自动微分法是进来发展迅速的一种求导方法,可以灵活地对复杂程序代码进行求导。应该比本次计算所采用的算法更适合。

在采用软件模拟时,也可用选用ASPEN PLUS软件中的Mulitifral模型。ASPEN PLUS软件的灵敏度分析也可应用在本次分析中。选用方程中要使其更加严格,汽液相平衡可先用PRSV方程,

模型求解可采用Wegestein法。

从模型分析所采取的物系来看,由于是高度理想的二元物系,使得在原来平衡级假设基础上又省去对每个塔板的能量衡算方程,设相对挥发度不随温度改变,省去了温度迭代,而一般情况要对温度进行迭代。因此此模型分析结果很特殊没有代表性。但是,此次是建立动态精馏塔模型,因此基本符合要求。

四、优化

㈠概述:精馏塔是广泛应用于化工、石油、轻工等行业的汽液传质设备,也是化学工业生产中能源消耗最大的单元操作之一。随着能源价格的不断上涨,精馏系统的节能在化学工业的节能研究和开发中占有越来越重要的地位,有关精馏过程的节能措施一直是人们普遍关注的问题,研究比较多的主要又一下几个方面:①对于塔顶塔釜温差较大的精馏塔,在精馏塔中间设冷凝器或再沸器,能节省能量20%左右。②采用热泵系统,使塔顶低温处的热量传递给塔釜高温处,也能达到较好的节能效果。③采用减压操作,可增大组分之间的相对挥发度,从而减小了塔底再沸器的热负荷。降低精馏塔消耗的途径是多种多样的,无论采取那一种措施,均能获得一定程度的节能效果,但有些措施操作复杂,实施起来有一定难度。实际上,在精馏塔设计使如果能够注意回流比的选择,也能达到较好的分离效果。

在精馏塔的设计和操作中,回流比是一个很重要的控制参数,它的选择合理与否,直接影响着精馏塔的操作费用和设备折旧费用。按照本文前面的讨论,精馏塔的塔板数、塔板直径已经给定,也就是该

精馏塔已经投产,设备已安装好,塔板数和上升蒸汽量已经给定的情况下,本应从最优控制方面来进行优化,但最优控制过程复杂,计算量大,本文只作定性分析,然后针对精馏塔的设计方面,从系统工程的观点出发,建立经济模型,通过优化方法找出适宜的回流比。

㈡经济模型的建立及求解:

?问题的分析:实用的回流比应在Rmin和R=∞之间选取。可以从经济核算的角度来选定最优回流比Ropt。精馏费用可从设备投资费和操作费两方面来看。当R=Rmin,达成分离要求所需的理论板数N=∞,相应的设备费亦为无穷大;当R稍稍增大,N即从无限大急剧减少,随R 继续增大,R对N的影响逐渐减弱。另方面,随R 的增大,为得到同样的产品D,精馏段上升蒸汽量V=(R+1)D随R线性增加,使得再沸器,冷凝器的负荷随之增加,而且塔径也要相应增大。当这些增加的费用超过塔板数减少的费用时,设备费将随R的增大而增大。因此,随着R从Rmin起逐渐增大,设备费先是由急剧减小,经过一最小值后又重新增大,如图一中的线1示意。操作费主要有:?加热蒸汽和冷却水的费用,可称为能源费,它随着热负荷,因而随着R线性增大,如图一中的线2所示;?设备折旧费及维修费,通常是取设备费的某个百分数作为每年的消耗,故可用图一中的线1代表。总运行费为两者之和,在图中用线3表示,其最低点相当于最优回流比Ropt。

3

Rmin Ropt 图一 回流比R

?经济模型的建立: 以每年总运行费为目标函数:

21F F J +=

J ┄┄┄┄年总费用[元/年]

1F

┄┄┄┄能源费[元/年] 2F ┄┄┄┄设备折旧费及维修费[元/年] Ⅰ、能源费:

能源费1F 包括冷凝器中冷却剂费用1f 及再沸器中加热蒸汽费

1f ,即:1F =1f +1f 。

其中:

1f =θC C W A

C A ┄┄冷却剂单价[元/kg] C W ---------冷却剂流量[kg/h]

θ ┄┄┄每年运行时间[h]

C W 通过下式求得:

)(12t t C P W C V

Q C

D

-==ν

C W )

(12t t C P W C V C

D

-ν=

D

ν

┄┄┄塔顶产品汽化潜热[KJ/kmol]

C

P

C ┄┄┄冷却剂比热[KJ/kg 。℃]

1t ,2t ┄┄┄┄冷凝器中冷却剂进、出口温度[℃]

∴ 1f =θC C W A =

θνC P A C D R t t C

D

)

()1(12-+

泡点进料:q =1

再沸器中,V F q V V =--=)1('

假设:加热介质为饱和蒸汽且冷凝液在饱和温度下排出。

h h B W D R νν=+)1(

h

B

h D R W νν)1(+=

h

h h h DA R W A f νθ

θ)1(2+=

h A

┄┄┄┄再沸器中加热蒸汽单价[元/kg]

h W ┄┄┄┄再沸器中加热蒸汽流量[kg/h]

h ν ┄┄┄┄加热蒸汽汽化潜热[kJ/kg]

B ν ┄┄┄┄塔釜上升蒸汽汽化潜热[KJ/kmol]

∴ 1F ]+h

B

h P D C A C A D R t t f f C

νννθ+-+==)()1(1221[

Ⅱ.设备费:

精馏塔设备费采用直线折旧法: 2F ?C N P =

其中: T D C a =

u

S

T V D π36004=

T

E

P E N N =

D R T T

V T T P P T T V V V S )1(4.224.22)(0

0000+===

T D ┄┄┄┄塔径[m] S V ┄┄┄┄上升蒸汽体积流量[m3/h]

P N ┄┄┄┄实际塔板数

a ┄┄┄┄单位塔径塔板单价[元/块.m]

? ┄┄┄折旧率

u

┄┄┄空塔气速[m/s]

E N ┄┄┄┄理论塔板数

T E ┄┄┄┄全塔效率

根据经验值,空塔气速取泛点气速的70%,即: u =0.7m ax u

于是:

2F =

max

)1(185

.23u a D

R T E N T

E +?

Ⅲ.年总费用:

21F F J +=

D

R T

E N A C A D R u

a t t T

E h B

h P D C C )1(386321.0)()1(max

12][

+++-+?νννθ= ┄┄┄┄┄┄┄┄┄ ?

E N 当max N 、Rmin 、R 的关系采用Gilliland 关系式:

][)1

)(2.117114.541(exp 1x

x x x Y -++-= ┄┄┄┄┄ ?

1min

+-=

E E N N N Y ┄┄┄┄┄┄┄┄┄┄┄ ?

1

min

+-=

R R R X ┄┄┄┄┄┄┄┄┄┄┄┄┄ ?

min N 由Fenske 方程求出:

α

lg )()(lg ]

[min

B A

B D

B

A x x x x N +=

┄┄┄┄┄┄┄┄┄ ?

捷算法求min R :

][min)

(1)1(11

1

q F

D F

D x

x x x R ---=

-=αα ┄┄┄┄ ? 方程?????最后可关联成: )(R N f E

=

代入 ? 式便得出经济模型。 ?模型求解及实例:

回流比R 应在Rmin 和一个较大的正数之间,通过方程?可以看出,当R →Rmin ,Np →∞,则J →∞。本文对目标函数的优化黄金搜索法,

在R ∈(Rmin ,M )之间进行搜索,M 原则上可以无限大,但在搜索过程中一般M =nRmin (n 为足够大的正数)。

实例应用:某常压精馏塔设计工艺条件为:每小时处理含苯45%的原料50kmol ,泡点进料,要求塔顶产品纯度94%,塔底含甲苯不少于96%。全塔平均相对挥发度取2.55,塔内操作温度T=97℃,物性参数如下:

馏出液汽化潜热:Kmol KJ D

r

/30342=

釜内汽化潜热:

Kmol KJ B

r

/33120=

加热蒸汽汽化潜热:

Kg KJ h

r

/2.2205=

冷却水汽化潜热:℃.

/18.4Kg KJ C C P = 其它的常数如下:

泛点气速:

m/s u

417.1max

=

冷却水进出口温度:20℃,33℃ 每年平均工作时间:h 5000=θ 全塔效率:4.0=T E

设备折旧率:

2.0=?

冷却水单价:Kg E A C /3105.0元-?=

加热蒸汽单价:Kg A h /014

.0元= 单位塔径塔板单价:块元./20000

m a = 由已知条件可确定:

1682.1min =R

h K D /mol 78.22=

334.6min =N

将实例数据代入原模型得:

][)(1430.1988)1(72.55748min min R R R J f +++=

)

1

)(2.117114.541exp(4.0)

1

)(2.117114.541exp(334.7)(x

x x x x x x x f R -++-++-=

11682

.1+-=R R x

..t S 1.1682

应用上文提到的黄金分割法编写程序求得:

529205.1=opt R

万元元2.25251883≈=J

结论:min 31.1R R opt =

,符合经验值:min )2~2.1(R R =

符号说明:

F 、D 和B ——分别为加料量,馏出液采出量和残液采出量,kmol/h;

L ——回流量,kmol/h; V ——蒸气量,kmol/h; M ——持液量,kmol/h;

y,x ——分别为汽相与液相易挥发组分的摩尔分数; Q ——塔釜加热量,kJ/h; A n ——塔板有效截面积,m 2; h w ——堰高,m;

l w——堰长,m;

d——塔径,m;

ρ——纯组分液相密度,kg/m3;

ρ混——混合物液相密度,kg/m3; r——纯组分汽化潜热,kg/kmol;

r w混——混合物汽化潜热,kg/kmol; 涉及到的下标:

B——塔底;

D——馏出液;

F——加料板序号,自上而下计;F——原料;

n——塔板序号;

R——塔顶回流。

Aspen plus模拟精馏塔说明书要点

Aspen plus模拟精馏塔说明书 一、设计题目 根据以下条件设计一座分离甲醇、水、正丙醇混合物的连续操作常压精馏塔: 生产能力:100000吨精甲醇/年;原料组成:甲醇70%w,水28.5%w,丙醇1.5%w;产品组成:甲醇≥99.9%w;废水组成:水≥99.5%w;进料温度:323.15K;全塔压降:0.011MPa;所有塔板Murphree 效率0.35。 二、设计要求 对精馏塔进行详细设计,给出下列设计结果并利用AutoCAD绘制塔设备图,并写出设计说明。 (1).进料、塔顶产物、塔底产物、侧线出料流量; (2).全塔总塔板数N;最佳加料板位置N F;最佳侧线出料位置N P; (3).回流比R; (4).冷凝器和再沸器温度、热负荷; (5).塔内构件塔板或填料的设计。 三、分析及模拟流程 1.物料衡算(手算) 目的:求解 Aspen 简捷设计模拟的输入条件。 内容: (1)生产能力:一年按8000 hr计算,进料流量为 100000/(8000*0.7)=17.86 t/hr。 (2)原料、塔顶与塔底的组成(题中已给出): 原料组成:甲醇70%w,水28.5%w,丙醇1.5%w; 产品:甲醇≥99.9%w;废水组成:水≥99.5%w。 (3).温度及压降: 进料温度:323.15K;全塔压降:0.011MPa; 所有塔板Murphree 效率0.35。 2.用简捷模块(DSTWU)进行设计计算 目的:对精馏塔进行简捷计算,根据给定的加料条件和分离要求计算最小回流比、最小理论板数、理论板数和加料板位置。 3.灵敏度分析 目的:研究回流比与塔径的关系(N T-R),确定合适的回流比与塔板数;

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

乙烯装置丙烯精馏塔优化设计_曹媛维

第40卷第9期2012年9月化学工程 CHEMICAL ENGINEERING (CHINA )Vol.40No.9Sep.2012 收稿日期:2011-11-01作者简介:曹媛维(1979—),女,硕士,工程师,主要从事乙烯装置的工艺设计工作,电话:(010)58676692, E-mail :caoyuanwei@hqcec.com 。乙烯装置丙烯精馏塔优化设计 曹媛维 (中国寰球工程公司,北京100029) 摘要:针对近年来大型乙烯装置中的丙烯精馏塔操作不稳定、能耗大的问题,利用PRO /Ⅱ软件模拟分析该塔流程,总结出随着装置规模大型化该塔采用多溢流塔板形式,计算中应考虑塔板形式对板效率取值的影响。当进料组成与设计工况不符或装置负荷增大时导致产品不达标的情况,可增设进料口在非设计工况下不同位置进料以满足分离的要求, 并且塔顶冷凝器和塔底再沸器需要考虑充分的设计余量。并创造性提出了,在传统工艺流程基础上在塔顶冷凝器后增设排放冷凝器进一步回收丙烯的节能优化方案,为实际生产提供建议性指导。关键词:丙烯精馏塔;操作波动;PRO /Ⅱ模拟中图分类号:TQ 051.81 文献标识码:B 文章编号:1005-9954(2012)09-0074-05DOI :10.3969/j.issn.1005-9954.2012.09.0017 Optimization design of propylene rectifying column in ethylene plant CAO Yuan-wei (China HuanQiu Contracting &Engineering Corporation ,Beijing 100029,China ) Abstract :According to high energy consumption and instable operation problems of propylene rectifying column in large-scale ethylene plants ,the propylene rectifying column system was simulated with PRO/Ⅱsoftware.The conclusion is that the influence of the tray type on the tray efficiency should be considered in calculation ,and it is better to use multi-overflow tray type for large-scale ethylene plant.If the propylene product is substandard in the inconsistent feed composition case or the increased duty case , the added feed nozzles are prefered to switch the diffierent feed location for different case.Enough design margin should be considered for the top condenser and the bottom reboiler.The energy saving optimization scheme that adding a new vent condenser after the top condenser to recover more propylene product is creatively put forward ,which provides the constructive guidance for the actual production.Key words :propylene rectifying column ;operation fluctuation ;PRO /Ⅱsimulation 丙烯主要用于生产聚丙烯、丙烯腈、环氧丙烷以 及异丙醇等, 是仅次于乙烯的重要石油化工原料[1] 。丙烯衍生物的快速发展带动了丙烯需求的快速增长, 据估计从2006年到2015年全球范围内丙烯需求仍以4.9%的速度持续增长,中国的丙烯需求预计年均 增长达到6.3%[2] 。目前从市场份额看,来自乙烯装置的丙烯占到59%,从炼厂轻烃分离装置回收的丙烯占到35%。本文针对乙烯装置实际运行中丙烯精馏塔进料组成和负荷波动大导致产品不合格、能耗高的问题,利用流程模拟软件PRO /Ⅱ优化该塔操作参数,并探索性地提出在冷凝器出口增设排放冷凝器进一步回收丙烯产品的工艺,为丙烯精馏塔在实际操作 中低能耗、平稳运行提供理论指导和建议。1原始工况的模拟计算 1.1 模拟计算条件 本模拟计算以80万t /a 乙烯装置丙烯精馏塔为例,该塔进料组成条件如表1所示。采出丙烯产品的规格按照GB/T 7716—2002中聚合级丙烯优等品(摩 尔分数99.6%),塔釜丙烯控制指标为摩尔分数≤2%。1.2模拟过程1.2.1 模拟图与模拟参数选择 工业生产中由于受到运输和加工制造的限制,将丙烯精馏塔分成双塔串联或并联操作,但在模拟

丙烯精馏塔安装说明

中国石化扬子石油化工股份有限公司乙烯装置节能改造 丙烯精馏塔(E-DA-406N)安装说明及技术要求 一.概述: 扬子石化乙烯装置丙烯精馏塔(E-DA-406N,φ4000) 为新建塔;塔内件采用浙江工业大学专利塔盘——DJ塔盘,由浙江工业大学化学工程设计研究所设计,苏州市科迪石化工程有限公司制造,共82层。预焊件已先期焊接,故本次只安装塔内件(包括塔板和分布器)。 二.塔盘及分布器的安装: 安装工作自下而上进行。 1.根据图1112-406N-01中管口方位图,确定单、双层降液板的方位;单、双层降液板 的方位互成90°。 2.根据图1112-406N-02和1112-406N-03所示的结构情况,以一层塔盘为单元,在塔 外进行组合以备吊装入塔。在组合这层塔盘时,零部件上的标记必须和该层所要求的标记相符。安装后,塔盘面水平度在整个面上的公差为9mm,降液管溢流堰顶端水平度公差为6mm,堰高允差为±3.0mm。首先组装梁和降液管,待降液管定位后再依次安装塔板,特别注意塔板序号及导流板方向。 3.1#~19#塔盘和降液管相同(序列号为1开头);20#~82#塔盘和降液管相同(序列号 为2开头)。 4.进料分布器(管口11A,B)的安装见图1112-406N-11,分布管开孔向下。安装后,整 体水平度公差为6mm,调平后用螺栓固定。 5.回流分布器(管口10)的安装见图1112-406N-10,分布管开孔向下。安装后,整体水 平度公差为6mm,调平后用螺栓固定。 6.管口49、50的内接部分现场制作,详见图1112-406N-09。 7.人孔分别在塔顶、16#、32#、48#、64#塔盘之下。 三.说明: 1.若本公司所出图纸与现场情况不一致时,应由扬子石化的有关部门、设计方代表及 施工方代表现场协商解决并备案。

精馏操作及精馏DCS操作精讲

精馏原理 平衡蒸馏仅通过一次部分汽化,只能部分地分离混合液中的组分,若进行多次的部分汽化和部分冷凝,便可使混合液中各组分几乎完全分离。 1.多次部分汽化和多次部分冷凝 如上图,组成为x F的原料液加热至泡点以上,如温度为t1,使其部分汽化,并将汽相和液相分开,汽相组成为y1,液相组成为x1,且必有y1>x F>x1。若将组成为y1的汽相混合物进行部分冷凝,则可得到汽相组成为y2与液相组成为x2’的平衡两相,且y2>y1;若将组成为y2的汽相混合物进行部分冷凝,则可得到汽相组成为y3与液相组成为x3’的平衡两相,且y3>y2>y1; 同理,若将组成为x1的液体加热,使之部分汽化,可得到汽相组成为y2’与液相组成为x2的平衡液两相,且x2

发组分的浓度为y n+1,温度为t n+1。当气液两相在第n块板上相遇时,t n+1>t n-1,因而上升蒸气与下降液体必然发生热量交换,蒸气放出热量,自身发生部分冷凝,而液体吸收热量,自身发生部分气化。由于上升蒸气与下降液体的浓度互相不平衡,如2所示,液相部分气化时易挥发组分向气相扩散,气相部分冷凝时难挥发组分向液相扩散。结果下降液体中易挥发组分浓度降低,难挥发组分浓度升高;上升蒸气中易挥发组分浓度升高,难挥发组分浓度下降。 若上升蒸气与下降液体在第n块板上接触时间足够长,两者温度将相等,都等于t n,气液两相组成y n与x n相互平衡,称此塔板为理论塔板。实际上,塔板上的气液两相接触时间有限,气液两相组成只能趋于平衡。 图1塔板上的传质分析图2 精馏过程的t-x-y示意图 由以上分析可知,气液相通过一层塔板,同时发生一次部分汽化和一次部分冷凝。通过多层塔板,即同时进行了多次进行部分汽化和多次部分冷凝,最后,在塔顶得到的气相为较纯的易挥发组分,在塔底得到的液相为较纯的难挥发组分,从而达到所要求的分离程度。 3.精馏必要条件 为实现分离操作,除了需要有足够层数塔板的精馏塔之外,还必须从塔底引入上升蒸汽流(气相回流)和从塔顶引入下降的液流(液相回流),以建立气液两相体系。塔底上升蒸汽和塔顶液相回流是保证精馏操作过程连续稳定进行的必要条件。没有回流,塔板上就没有气液两相的接触,就没有质量交换和热量交换,也就没有轻、重组分的分离。 、精馏操作流程 精馏过程可连续操作,也可间歇操作。精馏装置系统一般都应由精馏塔、塔顶冷凝器、塔底再沸器等相关设备组成,有时还要配原料预热器、产品冷却器、回流用泵等辅助设备。 连续精馏装置流程如下图,所示。以板式塔为例,原料液预热至指定的温度后从塔的中段适当位置加入精馏塔,与塔上部下降的液体汇合,然后逐板下流,最后流入塔底,部分液体作为塔底产品,其主要成分为难挥发组分,另一部分液体在再沸器中被加热,产生蒸气,

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况自选; 回流比自选; 单板压降≤0.7kPa; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1.原料液及塔顶、塔底产品的摩尔分率 M=46.07kg/kmol 乙醇的摩尔质量 A M=18.02kg/kmol 水的摩尔质量 B

F x =18.002 .1864.007.4636.007.4636.0=+= D x =64.002 .1818.007.4682.007.4682.0=+= W x =024.002.1894.007.4606.007.4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =0.18×46.07+(1-0.18)×18.02=23.07kg/kmol D M =0.64×46.07+(1-0.64)×18.02=35.97kg/kmol W M =0.024×46.07+(1-0.024)×18.02=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.2310002000=???kmol/h 总物料衡算 28.90=W D + 水物料衡算 28.90×0.18=0.64D+0.024W 联立解得 D =7.32kmol/h W =21.58kmol/h (三)塔板数的确定 1. 理论板层数T N 的求取水—乙醇属理想物系,可采用图解法求理论板层数。 ①由手册查得水—乙醇物系的气液平衡数据,绘出x —y 图,如图。 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e(0.18 , 0.18)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 q y =0.52 q x =0.18 故最小回流比为 min R =q q q D x y y x --=35.018 .0-52.052.0-64.0=3 取操作回流比为 R =min R =1.5×0.353=0.53 ③求精馏塔的气、液相负荷 L =RD =17.532.753.0=?=kmol/h V =D R )1(+=(0.53+1)20.1132.7=?kmol/h

丙烯精馏塔吊装

独山子石化千万吨炼油及百万吨乙烯项目丙烯精馏塔吊装方案 中国石油天然气第六建设公司 2006年11月27日

目录 一.设备的主要参数 (1) 二.编制依据 (1) 三.吊装方案的选择 (1) 四.单门型液压吊装系统的配置 (4) 五.吊耳的设置 (5) 六.溜尾吊车的最大受力 (5) 七.有关受力计算 (5) 八.吊索具的选用 (8) 九.吊装平面布置 (10) 十.吊装施工组织机构 (10) 十一.进度计划 (11) 十二.德马格CC—2800—1型600t履带吊的主要起重性能表 (12) 十三. 吊装安全技术措施 (12) 十四. 设备吊装所需的机具及材料 (13) 附图施工进度计划 (16)

一.设备的主要参数 根据施工蓝图,独山子石化乙烯裂解装置中的两台丙烯精馏塔(C-5501A/B)的空塔重量为900t,增加劳动保护、焊接内件等后吊装重量约为1200t,塔体的内径为φ5700mm,塔体的高度为107900mm,设备的基础标高为▽+0.3m。 二.编制依据 1.SH/T3536—2002《石油化工工程起重施工规范》 2.HG 20201—2000《工程建设安装工程起重施工规范》 3.SH/T3515—2003《大型设备吊装工程施工工艺标准》 4.KRAMO液压吊装系统设计计算书 5.丙烯精馏塔(C-5501A/B)的设计图纸 6.乙烯装置的设备平面图 三.吊装方案的选择 对这2台超大型设备的吊装,其实吊装方案的选择只有两种:一种是分段吊装,在空中组对、焊接和热处理,并在直立的状态下进行水压试验;另一种是在地面上将塔设备组焊成整体,并且在地面上做完热处理和水压试验,在将梯子、平台及附塔管线等装上之后,然后再整体吊装。从技术上来看,这两种吊装方案都是可行的,都能达到将塔设备吊装就位的目的。但经过分析、比较和充分地论证,我们认为将超大型设备在地面的滚胎上卧式组对焊接成整体,并将附塔管线、梯子、平台、防腐保温、电气仪表等工作尽可能在地面上完成后,再进行整体吊装的方案更为合理些,其理由如下: 1.可以最大限度地保证设备组对和焊接的质量 设备在地面上组焊可以使用滚胎、自动焊等机具,其组焊条件与制造厂内的条件差不多,与在空中组对和焊接相比,设备在地面上组对的尺寸容易控制,焊接的质量也有保证。 2.可以最大限度地缩短安装工期 设备如果分段吊装,在空中组对和焊接,则只有一个工作面,并且只能在白天作业,因为在夜间不允许进行高空作业。 而设备如果在地面上组对、焊接,就可以有很多个工作面,可以根据工程进度的需要增加组焊机具或人力,可以三班倒,每天24小时连续作业,这样可以大大地缩短设备组对和焊接的时间,缩短设备安装的工期。 3.有利于施工的安全

aspen吸收、精馏塔模拟设计(转载)

aspen模拟塔设计(转载) 一、板式塔工艺设计 首先要知道工艺计算要算什么?要得到那些结果?如何算?然后再进行下面的计算步骤。(参考) 其次要知道你用的软件(或软件模块)能做什么,不能做什么?你如何借助它完成给定的设计任务。 记住:你是工艺设计者,没有 aspen 你必须知道计算过程及方法,能将塔设计出来,这是你经过课程学习应该具有的能力,理论上讲也是进入毕业设计的前提。只是设计过程中将复杂的计算过程交给 aspen 完成, aspen 只替你计算,不能替你完成你的设计。做不到这一点说明工艺设计部份还不合格,毕业答辩就可能要出问题,实际的这是开题时要做的事的一部份,开题答辩就是要考察这个方面的问题。 设计方案,包括设计方法、路线、分析优化方案等,应该是设计开题报告中的一部份。没有很好的设计方案,具体作时就会思路不清晰,足见开题的重要性。下面给出工艺设计计算方案参考,希望借此对今后的结构和强度设计作一个详细的设计方案,明确的一下接下来所有工作详细步骤和方法,以便以后设计工作顺利进行。 板式塔工艺计算步骤 1.物料衡算(手算) 目的:求解 aspen 简捷设计模拟的输入条件。 内容:(1) 组份分割,确定是否为清晰分割; (2)估计塔顶与塔底的组成。 得出结果:塔顶馏出液的中关键轻组份与关键重组份的回收率 参考:《化工原理》有关精馏多组份物料平衡的内容。 2.用简捷模块(DSTWU)进行设计计算 目的:结合后面的灵敏度分析,确定合适的回流比和塔板数。 方法:选择设计计算,确定一个最小回流比倍数。 得出结果:理论塔板数、实际板数、加料板位置、回流比,蒸发率等等RadFarce 所需要的所有数据。

精馏塔工艺工艺设计计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; –––––塔内所需要的理论板层数; –––––总板效率; –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; –––––气体体积流量,m 3 u –––––空塔气速, u =(0.6~0.8) (3-3) V V L C u ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,3

V ρ–––––气相密度,3 C –––––负荷因子, 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子, L σ–––––操作物系的液体表面张力, 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,。 (2) 踏板设计 开孔区面积a A : ??? ? ? ?+-=-r x r x r x A a 1 222s i n 1802π (3-11)

年产5.4万吨丙烯精馏塔的工艺设计

年产5.4万吨丙烯精馏塔 的工艺设计

目录 摘要............................................................. I 第1章绪论.. (2) 1.1丙烯的性质 (2) 1.1.1 丙烯的物理性质 (2) 1.1.2 丙烯的化学性质 (2) 1.2丙烯的发展前景 (2) 1.3丙烯的生产技术进展 (3) 1.3.1 概况 (3) 1.3.2 丙烯的来源 (3) 1.3.3 丙烯的生产方法 (3) 1.3.4 丙烯生产新技术现状及发展趋势 (4) 第2章丙烯精馏塔的物料衡算及热量衡算 (4) 2.2.1 确定关键组分 (5) 2.2.2计算每小时塔顶产量 (5) 2.2.4物料衡算计算结果见表2.5 (7) 2.3塔温的确定 (8) 2.3.1 确定进料温度 (8) 2.3.2 确定塔顶温度 (8) 2.3.3 确定塔釜温度 (8) 第3章精馏塔板数及塔径的计算 (10) 3.1塔板数的计算 (10) 3.1.1 最小回流比的计算 (10) 3.1.2 计算最少理论板数 (11) 3.1.3 塔板数和实际回流比的确定 (11) 3.2确定进料位置 (11) 3.3全塔热量衡算 (12)

3.3.1 冷凝器的热量衡算 (12) 3.3.2 再沸器的热量衡算 (13) 3.3.3 全塔热量衡算 (13) 3.4板间距离的选定和塔径的确定 (14) 3.4.1 计算混合液塔顶、塔釜、进料的密度及气体的密度 (14) 3.4.2 求液体及气体的体积流量 (16) 3.4.3 初选板间距及塔径的估算 (17) 3.5浮阀塔塔板结构尺寸确定 (18) 3.5.1塔板布置 (18) 3.5.2 溢流堰及降液管设计计算 (19) 3.6塔高的计算 (21) 第四章流体力学计算及塔板负荷性能图 (22) 4.1水利学计算 (22) 4.1.1 塔板总压力降的计算 (22) 4.1.2 雾沫夹带 (23) 4.1.3 淹塔情况校核 (26) 4.2浮阀塔的负荷性能图 (27) 4.2.1 雾沫夹带线 (27) 4.2.2 液泛线 (28) 4.2.3 降液管超负荷线 (29) 4.2.4泄露线 (29) 4.2.5 液相下限线 (30) 4.2.6 操作点 (30) 总论 (32) 致谢 (33) 参考文献 (35) 附录 (38)

精馏塔仿真指导书

精馏塔单元仿真实训指导书 目录 一、工艺流程说明 (1) 1、工艺说明 (1) 2、本单元复杂控制方案说明 (2) 3、设备一览 (2) 二、精馏单元操作规程 (2) 1、冷态开车操作规程 (2) 2、正常操作规程 (3)

3、停车操作规程 (4) 4、仪表一览表 (6) 三、事故设置一览 (7) 四、仿真界面 (9) 附:思考题 (11) 一、工艺流程说明 1、工艺说明 本流程是利用精馏方法,在脱丁烷塔中将丁烷从脱丙烷塔釜混合物中分离出来。精馏是将液体混合物部分气化,利用其中各组分相对挥发度的不同,通过液相和气相间的质量传递来实现对混合物分离。本装置中将脱丙烷塔釜混合物部分气化,由于丁烷的沸点较低,即其挥发度较高,故丁烷易于从液相中气化出来,再将气化的蒸汽冷凝,可得到丁烷组成高于原料的混合物,经过多次气化冷凝,即可达到分离混合物中丁烷的目的。 原料为67.8℃脱丙烷塔的釜液(主要有C4、C5、C6、C7等),由脱丁烷塔(DA-405)的第16块板进料(全塔共32块板),进料量由流量控制器FIC101控制。灵敏板温度由调节器TC101通过调节再沸器加热蒸汽的流量,来控制提馏段灵敏板温度,从而控制丁烷的分离质量。 脱丁烷塔塔釜液(主要为C5以上馏分)一部分作为产品采出,一部分经再沸器(EA-418A、B)部分汽化为蒸汽从塔底上升。塔釜的液位和塔釜产品采出量由LC101和FC102组成的串级控制器控制。再沸器采用低压蒸汽加热。塔釜蒸汽缓冲罐(FA-414)液位由液位控制器LC102调节底部采出量控制。 塔顶的上升蒸汽(C4馏分和少量C5馏分)经塔顶冷凝器(EA-419)全部冷凝成液体,该冷凝液靠位差流入回流罐(FA-408)。塔顶压力PC102采用分程控制:在正常的压力波动下,通过调节塔顶冷凝器的冷却水量来调节压力,当压力超高时,压力报警系统发出报警信号,PC102调节塔顶至回流罐的排气量来控制塔顶压力调节气相出料。操作压力 4.25atm (表压),高压控制器PC101将调节回流罐的气相排放量,来控制塔内压力稳定。冷凝器以冷却水为载热体。回流罐液位由液位

精馏塔的设计(毕业设计)

精馏塔尺寸设计计算 初馏塔的主要任务是分离乙酸和水、醋酸乙烯,釜液回收的乙酸作为气体分离塔吸收液及物料,塔顶醋酸乙烯和水经冷却后进行相分离。塔顶温度为102℃,塔釜温度为117℃,操作压力4kPa。 由于浮阀塔塔板需按一定的中心距开阀孔,阀孔上覆以可以升降的阀片,其结构比泡罩塔简单,而且生产能力大,效率高,弹性大。所以该初馏塔设计为浮阀塔,浮阀选用F1型重阀。在工艺过程中,对初馏塔的处理量要求较大,塔内液体流量大,所以塔板的液流形式选择双流型,以便减少液面落差,改善气液分布状况。 4.2.1 操作理论板数和操作回流比 初馏塔精馏过程计算采用简捷计算法。 (1)最少理论板数N m 系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,一般按Fenske方程[20]求取。 式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或气相)中的摩尔分数; x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数; αav——轻、重关键组分在塔内的平均相对挥发度; N m——系统最少平衡级(理论板)数。 塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度: 由式(4-9)得最少理论板数: 初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较小,则最少理论板数:。 (2)最小回流比 最小回流比,即在给定条件下以无穷多的塔板满足分离要求时,所需回流比R m,可用Underwood法计算。此法需先求出一个Underwood参数θ。 求出θ代入式(4-11)即得最小回流比。

式中——进料(包括气、液两相)中i组分的摩尔分数; c——组分个数; αi——i组分的相对挥发度; θ——Underwood参数; ——塔顶馏出物中i组分的摩尔分数。 进料状态为泡点液体进料,即q=1。取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则 在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以 利用试差法解得θ=0.9658,并代入式(4-11)得 (3)操作回流比R和操作理论板数N0 操作回流比与操作理论板数的选用取决于操作费用与基建投资的权衡。一般按R/R m=1.2~1.5的关系求出R,再根据Gilliland关联[20]求出N0。 取R/R m=1.2,得R=26.34,则有: 查Gilliland图得 解得操作理论板数N0=51。 4.2.2 实际塔板数 (1)进料板位置的确定 对于泡点进料,可用Kirkbride提出的经验式进行计算。

丙烯精馏塔工艺设计

过程工艺与设备课程设计(精馏塔及辅助设备设计) 设计日期: 2010年7月6日 班级:化机0701班 姓名:梁昊穹 指导老师:韩志忠

化工原理是化工及其相关专业学生的一门重要的技术基础课,其课程设计涉及多学科知识,包括化工,制图,控制,机械等各种学科,是一项综合性很强的工作;是锻炼工程观念和培养设计思维的好方法,是为以后的各种设计准备条件;是化工原理教学的关键环节,也是巩固和深化理论知识的重要环节。 本设计说明书包括概述、方案流程简介、精馏塔、再沸器、辅助设备、管路设计和控制方案共七章。 说明中对精馏塔的设计计算做了较为详细的阐述,对于再沸器、辅助设备和管路和控制方案的设计也做了简要的说明。 在设计过程中,得到了韩志忠老师的指导,得到了同学们的帮助,同学们一起讨论更让我感受到设计工作是一种集体性的劳动,少走了许多弯路,避免了不少错误,也提高了效率。 鉴于学生的经验和知识水平有限,设计中难免存在错误和不足之处,请老师给予指正 感谢老师的指导和参阅!

前言- - - - - - - - - - - - - - - - - - - - - - - - - 2 第一章概述- - - - - - - - - - - - - - - - - - - - - - 5 1.1精馏塔- - - - - - - - - - - - - - - - - - - - - - 5 1.2再沸器- - - - - - - - - - - - - - - - - - - - - - 5 1.3冷凝器- - - - - - - - - - - - - - - - - - - - - - 6 第二章方案流程简介- - - - - - - - - - - - - - - - - - 7 2.1 精馏装置流程- - - - - - - - - - - - - - - - - - - 7 2.2 工艺流程- - - - - - - - - - - - - - - - - - - - - 7 2.3 调节装置- - - - - - - - - - - - - - - - - - - - - 8 2.4 设备选用- - - - - - - - - - - - - - - - - - - - - 8 2.5 处理能力及产品质量- - - - - - - - - - - - - - - - 8 第三章精馏过程系统设计- - - - - - - - - - - - - - - - 9 3.1设计条件- - - - - - - - - - - - - - - - - - - - - - 9 3.2物料衡算及热量衡算- - - - - - - - - - - - - - - - - 10 3.3塔板数的计算- - - - - - - - - - - - - - - - - - - - 11 3.4精馏塔工艺设计- - - - - - - - - - - - - - - - - - - 16 3.5溢流装置的设计- - - - - - - - - - - - - - - - - - - 17 3.6塔板布置和其余结构尺寸的选取- - - - - - - - - - - - 18 3.7塔板流动性能校核- - - - - - - - - - - - - - - - - - 19 3.8负荷性能图- - - - - - - - - - - - - - - - - - - - 21 3.9 塔计算结果表- - - - - - - - - - - - - - - - - - -24

(完整word版)脱丙烯精馏塔工艺

目录 第一章概述 (4) 第二章脱丙烯精馏塔工艺计算 (5) 2.1 设计方案简介 (5) 2.2 主要物性数据 (5) 2.3物料衡算 (5) 2.3.1确定关键组分塔顶、塔底的分布量. (6) 2.4确定塔操作条件 (6) 2.4.1.确定塔顶温度: (6) 2.4.2.确定进料温度。 (6) 2.4.3.确定塔底温度. (7) 2.4.4. 各组分相对挥发度 (7) 2.5确定最小回流比。 (8) 2.6理论塔板数与实际板数。 (8) 2.6.1.求定最少理论板数 (8) 2.6.2. 计算实际回流比R及理论塔板数 (9) 2.6.3.计算全塔平均板效率 (9) 2.6.4. 计算实际塔板数和进料板位置 (9) 2.7确定冷凝器和再沸器的热负荷 Q Q (10) ,C r 第三章物料的性质计算 (12) 3.1 求气液负荷 (12) 3.2 平均摩尔质量的计算 (12)

3.2.1 塔顶平均摩尔质量计算 (12) 3.2.2 进料平均摩尔质量计算. (12) 3.2.3 塔底平均摩尔质量计算. (13) 3.3 平均密度计算 (13) 3.3.1 气体平均密度计算 (13) 3.3.2 液体平均密度计算 (13) 3.3.3 液体平均表面张力计算。 (15) 3.3.4 液体平均粘度的计算。 (15) 第四章精馏塔的工艺尺寸计算。 (17) 4.1 塔高的计算。 (17) 4.1.1 塔径D的计算。 (17) 4.2 塔板设计 (18) 4.2.1 确定塔板溢流形式 (18) 4.2.2降液管以及溢流堰的尺寸 (18) 4.2.3核算阀孔动能因数及孔速 (20) 4.2.4计算塔板开孔率 (20) 4.2.5 浮阀塔板设计的校核 (20) 4.2.6 塔板负荷性能图。 (22) 第五章塔附属设备的设计 (25) 5.1主要接管尺寸的计算 (25) 5.1.1进料管 (25) 5.1.2回流管 (25)

精馏操作实训

精馏操作实训 一、实训目标 1.熟悉板式精馏塔的工作原理、基本结构及流程。 2.了解精馏塔控制时需要检测及控制的参数、检测位置、检测传感器及控制方法。 3.观察塔板上气-液传质过程全貌,掌握精馏塔的操作及影响因素,进行现场故障分析。 4.能识读精馏岗位的工艺流程图、设备示意图、设备的平面图和设备布置图; 5.了解掌握工业现场生产安全知识。 二、实训内容 1.简要叙述精馏操作气-液相流程,指出精馏塔塔板、塔釜再沸器、塔顶全凝器等主要装置的作用。 2.独立地进行精馏岗位开、停车工艺操作,包括开车前的准备、电源的接通、冷却水量的控制、电源加热温度的控制等。 3.进行全回流操作,通过观测仪表对全回流操作的稳定性作出正确的判断; 4.进行部分回流操作,通过观测仪表对部分回流操作的稳定性作出正确的判断,按照生产要求达到规定的产量指标和质量指标。 5.及时掌握设备的运行情况,随时发现、正确判断、及时处理各种异常现象,特殊情况能进行紧急停车操作。 6.能掌握现代信息技术管理能力,采用DCS集散控制系统,应用计算机对现场数据进行采集、监控和处理异常现象。 7.正确填写生产记录,及时分析各种数据。 三、基本原理 精馏利用液体混合物中各组分挥发度的差异,使液体混合物部分汽化并随之使蒸气部分冷凝,从而实现其所含组分的分离。精馏广泛应用于炼油、化工、轻工等领域。通过加热料液使它部分汽化,易挥发组分在蒸气中得到增浓,难挥发组分在剩余液中也得到增浓,这在一定程度上实现了两组分的分离。两组分的挥发能力相差越大,则上述的增浓程度也越大。在工业精馏设备中,使部分汽化的液相与部分冷凝的汽相直接接触,以进行汽液相际传质,结果是汽相中的难挥发组分部分转入液相,液相中的易挥发组分部分转入汽相,也即同时实现了液相的部分汽化和汽相的部分冷凝。 四、实训装置及流程 (一)流程介绍 (1)常压精馏流程

采用CHEMCAD进行精馏塔模拟和设计

任务1 精馏设计与严格模拟 知识目标:理解轻、重关键组分的概念,理解回流比的概念,理解严格精馏的操作条件的合理组合,理解灵敏度分析的概念,理解精馏从简捷设计到严格模拟,再到尺寸设计的过程。 技能目标:掌握简捷精馏设计中对轻、重关键组分的设定,掌握严格精馏的操作条件的设定,使用灵敏度分析来优化严格精馏的设计,能使用CHEMCAD进行精馏的简捷设计、严格模拟和尺寸设计。 一、采用ChemCAD进行精馏塔简捷设计计算 精馏设计采用芬斯克-恩特伍德-吉利兰-Kirkbride公式(Fenske-Underwood-Gilli la-nd-Kirkbride),芬斯克公式求解精馏塔的最少理论塔板数;恩特伍德公式求解最小回流比;吉利兰计算实际回流比及其对应的塔板数;Kirkbride公式计算适宜的进料板位置,芬斯克公式也可以求解适宜的进料板位置。 例5-1-1使用简捷法设计一个脱乙烷塔,从含有6个轻烃的混合物中回收乙烷,进料组成mol%:甲烷 5,乙烷 35,丙烯 15,丙烷 20,异丁烷 10,正丁烷 15;进料状态为饱和液相,压力为2.736MPa。对产物分离要求见设计条件表。①求该塔的最小回流比,所需最少理论板数;②当实际回流比为最小回流比的1.25倍即R/R m=1.25时,该塔的实际塔板数和进料位置。 表5-1-1 脱乙烷塔的设计条件 设计的分离要求 馏出液中C2H6的回收率馏出液中C3H6的回收率0.915 0.063 解题步骤: 步骤1:新建文件名“简捷设计”; 步骤2:建立流程图,精馏塔用简捷精馏塔(shortcut column )的图标;流程如图5-1-1。 步骤3:选择流程的单位:点击“格式及单位制”菜单按钮,在其下拉菜单中选择“工程单位…”命令,以国际单位制为主,选择符合题意的单位(mol,K,MPa)。 步骤4:点击菜单按纽“热力学及物化性质”,在其下拉菜单中点击“选择组分…”命令,然后依次将组分甲烷(Methane或CH4)选中加入,将组分乙烷(Ethane或C2H6)选中加入,将组分丙烯(propene 或C3H6)丙烷(Propane和C3H8)选中加入,将组分异丁烷(i-butane 或i-C4H10)选中加入,将组分正丁烷(n-butane或n-C4H10)选中加入。“OK”,软件弹出建议的K值与H值的方法(K=SRK,H=SRK),就采用系统提示的K值方法; 步骤5:双击“物料 1”,在弹出的编辑物料信息窗口(如图5-1-2所示)的“压力 MPa”文本框中填入压力值2.736,在“气相分率”文本框填入数值0;各组分摩尔流量按题意填入即可,点击该窗口左上方的按钮“闪蒸”,软件算出温度和焓,点击“确定”;

丙烯—丙烷板式精馏塔设计

大型作业报告(2010/2011学年第二学期) 课程名称化工原理课程设计 学生学号 院(系) 专业 班级 时间 学生 指导教师:_ 2011年1月13日 前言

化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质. 芳香族化合物是化工生产中的重要的原材料,而苯和甲苯是各有其重要作用。苯是化工工业和医药工业的重要基本原料,可用来制备染料,树脂,农药,合成药物,合成橡胶,合成纤维和洗涤剂等等;甲苯不仅是有机化工合成的优良溶剂,而且可以合成异氰酸酯,甲酚等化工产品,同时也可以用来制造三硝基甲苯,苯甲酸,对苯二甲酸,防腐剂,染料,泡沫塑料,合成纤维等。 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的精馏塔,实现苯——甲苯的分离。苯——甲苯体系比较容易分离,待处理料液清洁。因此用筛板塔。 筛板塔也是很早出现的一种板式塔,20世纪50年代起对筛板塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,筛板塔具有下列优点:生产能力(20%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。 本课程设计的主要内容是过程的物料衡算,热量衡算,工艺计算,结构设计和校核。 目录

相关主题
文本预览
相关文档 最新文档