当前位置:文档之家› 核辐射测量原复习知识要点

核辐射测量原复习知识要点

核辐射测量原复习知识要点
核辐射测量原复习知识要点

第一章 辐射源

1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种?

带电粒子源

快电子源: β衰变 内转换 俄歇电子 重带电粒子源: α衰变 自发裂变

非带电粒子源

电子辐射源:伴随衰变的辐射、湮没辐射、伴随核反应的射线、轫致辐射、特征X 射线 中子源:自发裂变、放射性同位素(α,n )源、光致中子源、加速的带电粒子引起的反应 2、选择辐射源时,常需要考虑的几个因素是什么? 答:能量,活度,半衰期。 3、252Cf 可做哪些辐射源?

答:重带点粒子源(α衰变和自发裂变均可)、中子源。

第二章 射线与物质的相互作用

电离损失:入射带电粒子与核外电子发生库仑相互作用,以使靶物质原子电离或激发的方式而损失其能量

作用机制:入射带电粒子与靶原子的核外电子间的非弹性碰撞。

辐射损失:入射带电粒子与原子核发生库仑相互作用,以辐射光子的方式损失其能量。 作用机制:入射带电粒子与靶原子核间的非弹性碰撞。

能量歧离:单能粒子穿过一定厚度的物质后,将不再是单能的,而发生了能量的离散;这种能量损失的统计分布,称为能量歧离。

引起能量歧离的本质是:能量损失的随机性。 射程:带电粒子沿入射方向所行径的最大距离。 路程:入射粒子在物质中行径的实际轨迹长度。

入射粒子的射程:入射粒子在物质中运动时,不断损失能量,待能量耗尽就停留在物质中,它沿原来入射方向所穿过的最大距离,称为入射粒子在该物质中的射程。 重带电粒子与物质相互作用的特点: 1、主要为电离能量损失

2、单位路径上有多次作用——单位路径上会产生许多离子对

3、每次碰撞损失能量少

4、运动径迹近似为直线

5、在所有材料中的射程均很短 电离损失: 辐射损失:

快电子与物质相互作用的特点: 1、电离能量损失和辐射能量损失

2、单位路径上较少相互作用——单位路径上产生较少的离子对

3、每次碰撞损失能量大

4、路径不是直线,散射大

?? ???242ion 0dE 4πz e -=NZB dx m v ()()??rad ion dE/dx E Z

dE/dx 800

2

22NZ m E z dx dE rad

∝??? ??-21m S rad ∝E S rad ∝2

NZ S rad ∝

带电粒子在靶物质中的慢化:

(a) 电离损失-带电粒子与靶物质原子中核外电子的非弹性碰撞过程。 (b) 辐射损失-带电粒子与靶原子核的非弹性碰撞过程。 (c) 带电粒子与靶原子核的弹性碰撞 (d) 带电粒子与核外电子弹性碰撞

即轫致辐射:带电粒子穿过物质时受物质原子核的库仑作用,其速度和运动方向发生变化,会伴随发射电磁波。 电子的散射与反散射:

电子与靶物质原子核库仑场作用时,只改变运动方向,而不辐射能量的过程称为弹性散射。由于电子质量小,因而散射的角度可以很大,而且会发生多次散射,最后偏离原来的运动方向,电子沿其入射方向发生大角度偏转,称为反散射。 反散射系数:

入射电子能量越低,反散射越严重;对同样能量的入射电子,原子序数越高的材料,反散射越严重

阻止时间:

正电子与物质的相互作用特点:

正电子与物质发生相互作用的能量损失机制和电子相同。湮没,放出γ光子,或者,它与一个电子结合成正电子素,然后再湮没,放出γ光子。 湮没辐射:正电子湮没放出光子的过程。 湮没光子:正电子湮没时放出的光子。

两个湮没光子的能量相同,各等于0.511MeV γ射线与物质的相互作用特点:

γ光子是通过次级粒子与物质的原子核或原子核外电子作用,一旦光子与物质发生作用,光子或者消失或者受到散射而损失能量,同时产生次电子;产生次级粒子主要的方式有三种,即光电效应、康普顿效应和电子对效应。

光电效应:

γ射线(光子)与物质原子中束缚电子作用,把全部能量转移给某个束缚电子,使之发射出去 光电效应主要发生在原子中结合的最紧的K 层电子上。 光电子能量为:

光电截面: σk 为k 层光电截面

e i E =hv -B k ph σσ4

5=20c m h <<ν()275520

42113227??? ??∝???

? ??=νσνασh Z Z h c m th

k 20c m h >>ννσνασh Z Z h c m th k 15.1552

04∝=0

I I

I η-=E Mc kc R kv R v R T 22

===E M R

T a

7102.1-?=5Z ph ∝σ

光电效应: 电子对效应: 康普顿散射:

低能、高Z ,光电效应占优势;

中能、低Z ,康普顿散射占优势; 高能、高Z ,电子对效应占优势。

康普顿效应 :γ射线(光子)与核外电子的非弹性碰撞过程。在作用过程中,入射光子的一

部分能量转移给电子,使它脱离原子成为反冲电子,而光子受到散射,其运动方向和能量都发生变化,称为散射光子。

反冲电子与散射光子的能量与散射角及入射光子能量之间的关系: 光子的能量: 光子的动量: 电子的动能:

电子的动量:

相对论关系: 散射光子能量:

反冲电子能量:

反冲角: (1) 任何一种单能γ射线产生的反冲电子的动能都是连续分布的。且存在最大反冲电子动能。

(2) 在最大反冲电子动能处,反冲电子数目最多,在能量较小处,存在一个坪。

电子对效应:是当入射γ射线(光子)能量较高(>1.022MeV)时,当它从原子核旁经过时,在

核力的作用下,入射光子转化为一个正电子和一个电子的过程。 电子对效应除涉及入射光子与电子对以外,必须有第三者——原子核的参与,否则不能同时满足能量和动量守恒。电子对效应要求入射光子的能量必须大于1.022MeV 。 正负电子的总动能为: 电子对效应的截面

稍大于 时:

时:

γ 射线没有射程的概念。窄束 γ 射线强度衰减服从指数衰减规律,只有吸收系数及相应的半吸收厚度的概念。

5ph Z ∝σph σ↓↑hv hv E =γγP =hv /c

2

02202

01c m c m c m E E e --=-=

βe v

P =mv =c v /=βe 22224

0E =P c +m c 'γ

γ

γ

2

0E E =

E 1+

(1-cos θ)

m c )

cos 1()

cos 1(202θθγγ-+-=

E c m E E e 2012E ctg tg m c γθ??

?=+ ??

?2

02c m hv E E e

e -=+-+γσE Z p 2∝hv 20

2c m 202c m hv >>γ

σE Z p ln 2∝Z ∝c σ2p Z ∝σ

质量厚度:

第三章 概率统计问题

二项式分布

数学期望 方差

泊松分布 数学期望 方差 高斯分布

概率密度函数为: 数学期望 方差 串级随机变量

串级随机变量的主要特点:

(A) 期望值:

(B) 方差:

(C) 相对方差:

一个核在0~t 时间内发生衰变的概率为:

长寿命核素在核衰变过程中核衰变数的方差与其平均值相等 误差传递公式: 分析一些常见情况:

ρ

?=t t m m

m t e I t I μ-=0)(μ

693

.02/1=

t ()()

000

N N n m E n P n N p

ξ===?=∑

()

()()

?????

∑0

2

N 2

N n=0

σ=D ξ=n -E ξP n ()()

p E pq N -?==10ξ}{m

n e

n m n P -==!ξ()()m

n P n E =?=∑∞

ξ()()[]()m

n P E n D =?-=∑∞20

ξξ()()??

????--=222exp 21

σσπm x x f ()()m dx x f x x E =?=?

+∞

-()()[]()22σ=-=?

+∞

-dx x f x E x x D ()()[]()()()21122ξξξξξD E D E D +=()()()21ξξξE E E ?=()()[]()212

2

2211ξξξνξνξξνE E D +==t e N N p λ--=?=10

2222

2221221n

x n x x y x y x y x y σσσσ???? ????++???? ????+???? ????= 2

1x x y ±=)

(2

22

1

x x y σσσ+=)/()(212

/1222

1x x v x x y ±+=σσ

第一次,没有样品,在时间t 内测得本底的计数为Nb ;

第二次,放上样品,在相同时间内测得样品和本底的总计数为Ns 。 样品的净计数为: 其标准偏差为:

对放射性计数的标准误差只需用一次计数N 或有限次计数的平均值 开方即可得到。

在相对标准偏差给定的情况下,所需最小测量时间为:

在规定的总测量时间T =ts+tb 内使测量结果的误差最小

电离过程的涨落:产生电子—正离子对或电子—空穴对的碰撞都是随机的,因而一定能量的带电粒子形成的离子对数是涨落的,同样是一个随机变量,服从一定的概率分布。

共产生的离子对数的平均值:

离子对数涨落的标准误差及相对标准误差

而要对泊松分布进行修正,引入法诺因子F F 一般取 1/2—1/3 (气体)或 0.1~0.15(半导体) 把这种分布称为法诺分布。

第四章 气体探测器

入射粒子直接产生的离子对称为原电离。

初电离产生的高速电子足以使气体产生的电离称为次电离。 总电离 =原电离+ 次电离

电离能ω :带电粒子在气体中产生一电子离子对所需的平均能量。对不同的气体,ω大约为30eV

若入射粒子的能量为E 0,产生的平均离子对数为: 离子对服从法诺分布

离子对数的方差 电子与离子在气体中的运动: 1、漂移(电场作用); 2、扩散(密度大--->小);

3、电子的吸附和负离子的生成;

b s N N N -=0s b N N N N

N s b +=+=)(2

20σσσN σ===22

min )(10b s n n n v T -=T n n n n t b

s b

s s /1/+=T n n t b s b /11+=0n =E ωσ==σν===n n

n F 2

σ==泊松统计预测的方差的方差观测的n F ?=σn F =ν0N =E ω??2

E σ=

F N =F ω

4、 复合;

电子吸附效应、电荷转移效应、复合效应等,都不利于电荷收集。

电离室的工作机制

脉冲型工作状态

记录单个入射粒子的电离效应,处于这种工作状态的电离室称为:脉冲电离室。 用于重带电粒子的能量和强度测量。 累计型工作状态

记录大量入射粒子平均电离效应,处于这种工作状态的电离室称为:累计电离室。 多用于X ,γ、β和中子的强度、通量、剂量、剂量率测量。

输出回路的定义:输出信号电流所有流过的回路都包括在输出回路中。 输出回路的简化过程:

① 感应电荷在外回路上形成的电流,在负载电阻RL 上形成电压,有信号输出; ② 测量仪器有内阻、电容; ③ 探测器电容C 1。

④ 线路的杂散电容C ′。

输出电流: 电离室的输出电压信号

探测效率

能量分辨率:

灵敏度:单位强度的射线照射下输出的电离电流

输出电压脉冲幅度:

离子脉冲电离室存在问题——输出电压脉冲宽度非常大(T +是ms 量级),这样入射粒子的强度不能太大,并且要求放大器电路频带非常宽,噪声大而非实用。 电子脉冲电离室存在问题:输出电压脉冲幅度h-与初始电离的位置有关,也就是Q —与初始电离位置有关。

正比计数器的工作原理 正比计数器中,利用碰撞电离将入射粒子直接产生的电离效应放大了,使得正比计数器的输出信号幅度比脉冲电离室显著增大。

雪崩--电子在气体中的电离碰撞过程。 发生雪崩的阈值电场:ET ~106V/m 。

VT 称为正比计数器的起始电压(阈压). 对于一个确定的正比计数器,只有当工作电压V > VT 时,才工作于正比计数器工作区,否

()()???????

?

00

00t -t R C -t R C 0

00e V t =e I t dt C 粒子数射入电离室灵敏体积的记录下来的脉冲数

=

εFWHM

h

E

E η=

?=

入射粒子流的强度

输出的电流(电压)值=η21/()A cm s --?????()()()()()(

)()()

110()N N j j k k j k e I t E r t u r t E r t u r t V +-→→→→+++---==??=??-?????

∑∑?0000

E Ne e h =

=C ωC cm

V a

b a V E T

T /10~ln 4=

则工作于电离室区。

正比计数器输出信号主要由正离子漂移贡献。 气体放大倍数 与正比计数器比较,最基本的区别在于GM 计数管的输出脉冲幅度 与 入射粒子的类型和能量无关,放电终止仅取决于阳极电位的下降。只要有电子进入计数管的灵敏体积,就会导致计数,入射粒子仅仅起到一个触发的作用。 所以, GM 计数管仅能用于计数。

死时间tD :随正离子鞘向阴极漂移导致电场屏蔽的减弱,电子又可以在阳极附近发生雪崩的时间。

恢复时间tR :从死时间到正离子被阴极收集,输出脉冲恢复到正常的时间。 分辨时间τ:从“0”到第二个脉冲超过甄别阈的时间,与甄别阈的大小有关。 设单位时间内进入探测器的平均粒子数即平均计数率为m ,探测器的实测计数率为n , τ不变时,单位时间需要的总分辨时间为n τ,在n τ时间内进入计数器而没被记录的粒子数为mn τ。

第五章 闪烁体探测器

闪烁体种类

一、无机闪烁体:

无机晶体(掺杂) : 玻璃体: (锂玻璃) 纯晶体: 二、有机闪烁体:有机晶体——蒽晶体等;有机液体闪烁体及塑料闪烁体。 三、气体闪烁体:Ar 、Xe 等。 闪烁计数器工作机制:

1、 射线射入闪烁体使闪烁体原子电离或激发,受激原子退激而发出可见的荧光。

2、 荧光光子被收集到光电倍增管(PMT )的光阴极,通过光电效应打出光电子。

3、 光电子运动并倍增,并在阳极输出回路输出信号。

4、 此信号由电子仪器记录和分析。

发光效率:指闪烁体将所吸收的射线能量转化为光的比例 绝对闪烁效率: Eph 闪烁体发射光子的总能量;

E 入射粒子损耗在闪烁体中的能量。 光能产额: nph 为产生的闪烁光子总数。

退激过程服从指数衰减规律

对于大多数无机晶体,t 时刻尚未退激的原子(分子)数:

退激发出的光子数: 发光强度:单位时间内发出的总光子数(决定输出光脉冲的曲线形状)

0M =n(a)/n(r )

τ

nm n m =-τ

n n m -=

1()()()Ag ZnS Tl CsI Tl NaI ,,()Ce SiO LiO 222?12

34O Ge Bi %

100?=E E C ph np E n Y ph ph =

MeV 光子数v h C E v h E E n Y np

ph ph ph =

?==1()t -τ

ph n t =n e ())t -τ

ph ph ph

n t =n -n(t)=n (1-e ττ

/)(t e t t ph e

e

M T n I --???=

)(

发光衰减时间 M: 光电倍增管总的倍增系数

闪烁探测器输出信号的涨落

闪烁谱仪能量分辨率的极限:

τph n n v ph 12=T

n n ph e n e ?==112ν)1(112-=δδδνM ?????

???? ??-+?=11111δδδT n ph ()

2

211M e n n A

νν+?=????????? ??-+?=11111δδδT n ph h h E E ?=?=ηA

n h νν36.236.2==????????? ??-?+?=111136.21δδδT n ph

dE dN 22hv <2

02c m hv >>Compton )

Compton 连续谱

02c

m hv -

闪烁谱仪的能量分辨率

dE

dN 特征X 射线峰

2

02c m hv >>2

2c m hv

<

)

dE

dN dE

dN 0散射

0值

全能峰顶所在处的幅度全能峰的半宽度

=

η

第六章 半导体探测器

我们把气体探测器中的电子-离子对、闪烁探测器中被PMT 第一打拿极收集的电子及半导体探测器中的电子-空穴对统称为探测器的信息载流子。产生每个信息载流子的平均能量分别为30eV(气体探测器),300eV(闪烁探测器)和3eV(半导体探测器)。 半导体探测器的特点: (1) 能量分辨率最佳;

(2) γ射线探测效率较高,可与闪烁探测器相比。 常用半导体探测器有:

(1) P-N 结型半导体探测器; (2) 锂漂移型半导体探测器; (3) 高纯锗半导体探测器;

金硅面垒(Surface Barrier)探测器

(1) 影响能量分辨率的因素

输出脉冲幅度的统计涨落

F 为法诺因子,对Si ,F =0.143;对Ge ,F =0.129。w 为产生一个电子—空穴对所需要的

平均能量

能量分辨率可用FWHM 表示: FWHM 或 ?E 称为半高宽或线宽,单位为:KeV 。 (2) 探测器和电子学噪声

探测器的噪声由P-N 结反向电流及表面漏电流的涨落造成; 电子学噪声主要由第一级FET 构成,包括:零电容噪声和噪声斜率。

噪声的表示方法:等效噪声电荷ENC ,即放大器输出端的噪声的均方根值等效于放大器输入端的噪声电荷,以电子电荷为单位;由于噪声叠加在射线产生的信号上,使谱线进一步加宽,参照产生信号的射线的能量,用FWHM 表示,其单位就是KeV 。例如,ENC =200电子对,由噪声引起的线宽为: 6.3 锂漂移半导体探测器

6.4 高纯锗(HPGe)半导体探测器

1) 能量分辨率:

为载流子数的涨落。

为漏电流和噪声;

为载流子由于陷阱效应带来的涨落,通过适当提高偏置电压减小。 3) 峰康比

P = 全能峰峰值/康普顿平台的峰值

第八章 辐射测量方法

符合方法:

用不同的探测器来判断两个或两个以上事件的时间上的同时性或相关性的方法。

E w

F v E E N ?==?=36.236.2ηE w F E E FWHM ??==?=36.2ηKeV w ENC FW HM E 64.1)(36.2)(22=??==?23

2221E E E E ?+?+?=?E F E ??=?ω36.21)(36.22ENC E ω=?3E ?

探测器的本征探测效率或灵敏度 (1) 对脉冲工作状态:本征探测效率ε (2) 对电流工作状态:灵敏度η 8.2.2.符合测量装置 1)、多道符合能谱仪 2)、HPGe 反康普顿γ谱仪 3)4βπ-γ符合装置

4) 双PMT 液体闪烁计数器

中子与物质的相互作用

中子的分类与性质 1) 慢中子:0~1KeV

2) 中能中子:1KeV ~0.5MeV 。 3) 快中子:0.5MeV ~10MeV 。 4) 特快中子:>10MeV 。 中子与物质的相互作用 1. 中子的散射 1) 弹性散射 (n ,n ) 2) 非弹性散射 (n,n ’γ) 2. 中子的俘获

1) 中子的辐射俘获 (n,γ)

2) 发射带电粒子的中子核反应 2.5.4 中子探测的基本方法 1. 核反应法 2. 核反冲法 3. 核裂变法 4. 活化法

2.5.5 常用中子探测器 1. 硼电离室和裂变室

2. 10BF3和3He 正比计数器

3. 含锂闪烁体

4. 利用质子反冲效应的探测器

5. 自给能探测器

6 堆用探测器—反应堆中子注量率监测

(1) 堆芯外——用于监测反应堆功率水平,探测器置于压力壳外。 (2)堆芯探测器——堆芯内中子注量率的空间分布。

%积的粒子数单位时间内进入灵敏体测到的脉冲计数率100?=ε入射粒子流强度值

或电压信号电流)(=

η[]

单位照射量率/)(V A

工程测量知识点总结.关键考试知识点

名词解测量复习提要 考试形式:半开卷;开卷范围:手写A4纸一张。 第一章:掌握以下内容(不是名词解释)测量学、水准面、水平面、大地水准面、平面直角坐标、高程、绝对高程、相对高程、高差、测量工作的程序、及遵循的原则、测量的任务、测量的基本工作。 第二章:高程测量的种类、水准原点、水准测量原理、水准仪的使用、、水准点的表示方法、水准路线的种类、水准测量方法{记录(2种)、计算、检核}、水准测量测站的检核方法、闭合、附合水准测量成果计算及精度要求、转点的作用。 第三章:水平角、竖直角测角原理、经纬仪的操作、测回法测水平角的观测、记录、计算方法及精度要求、竖直角仰、俯角代表的意义、竖直角的观测、记录、计算方法。 第四章:测量工作所指距离的内容、直线定线定义及操作、钢尺量距方法、精度要求及计算方法。 第五章:直线定向内容、直线的基本方向、方位角的内容及取值范围、正反方位角的关系、方位角与象限角关系。方位角的计算。 第六章:误差产生原因、分类,评定精度的方法、算术平均数与真值之间的关系。 第七章:控制、控制测量、控制网的内容,平面控制测量的形式,导线布设形式、导线测量的外业内容,闭合、附合导线的内业计算及各自的精度要求,坐标正算、坐标反算。跨河流水准测量内容、三角高程测量的适应范围。 第八章:地形图涵盖内容、比例尺、纸上与地面距离的互换计算、地物的表示方法(4种)、地貌的表示方法(等高线、等高距、等高线平距)、会看典型的地貌、理解等高线的特征。测图前要做哪几项准备工作、视距测量公式、碎步测量测站上要做的工作、地形测量的记录、计算以及测量的原理。地形图的运用(掌握第项) 第九章:拨角法放线其转向角的计算及正负角的意义,纵、横断面图涵盖的主要内容。 第十章:圆曲线及带缓和曲线的圆曲线要素计算、主点测设及里程计算,用偏角法测设2种曲线如何进行碎步测量(内、外业)。 第十一章:测设的基本工作(水平角、高程、点位、坡度)先内业如何计算,后外业如何观测。 桥墩、桥台中心点(直线)测设的内业 抓住教材、作业及回忆实习整个过程(内、外业)去复习。 析 1.水准面:将海洋处于静止平衡状态时的海水面或与其平行的水面,称为水准面。 2.大地体:由地球水准面所包围的地球形体,它代表了地球的自然形状和大小。 3.参考椭球面:与大地水准面非常接近的能用数学方程表示的旋转椭球体相应的规则曲面。4.绝对高程:地面点沿铅垂线至大地水准面的距离。 5.相对高程:地面点沿其铅垂线方向至任意假定的水准面的距离称为相对高程。 6.高差:地面两点间的绝对高程或相对高程之差。

成都理工大学核辐射测量方法复习题(研究生师兄制作良心版)

一、名词解释(每名词3分,共24分) 半衰期:放射性核素数目衰减到原来数目一半所需要的时间的期望值。 放射性活度:表征放射性核素特征的物理量,单位时间内处于特定能态的一定量的核素发生自发核转变数的期望值。A=dN/dt。 射气系数:在某一时间间隔内,岩石或矿石析出的射气量N1与同一时间间隔内该岩石或矿石中由衰变产生的全部射气量N2的比值,即η*= N1/N2×100%。 原子核基态:处于最低能量状态的原子核,这种核的能级状态叫基态。 核衰变:放射性核素的原子核自发的从一个核素的原子核变成另一种核素的原子核,并伴随放出射线的现象。 α衰变:放射性核素的原子核自发的放出α粒子而变成另一种核素的原子核的过程成为α衰变 衰变率:放射性核素单位时间内衰变的几率。 轨道电子俘获:原子核俘获了一个轨道电子,使原子核内的质子转变成中子并放出中微子的过程。 衰变常数:衰变常数是描述放射性核素衰变速度的物理量,指原子核在某一特定状态下,经历核自发跃迁的概率。线衰减系数:射线在物质中穿行单位距离时被吸收的几率。 质量衰减系数:射线穿过单位质量介质时被吸收的几率或衰减的强度,也是线衰减系数除以密度。 铀镭平衡常数:表示矿(岩)石中铀镭质量比值与平衡状态时铀镭质量比值之比。 吸收剂量:电力辐射授予某一点处单位质量物质的能量的期望值。D=dE/dm,吸收剂量单位为戈瑞(Gy)。 平均电离能:在物质中产生一个离子对所需要的平均能量。 碰撞阻止本领:带电粒子通过物质时,在所经过的单位路程上,由于电离和激发而损失的平均能量。 核素:具有特定质量数,原子序数和核能态,而且其平均寿命长的足以已被观察的一类原子 粒子注量:进入单位立体球截面积的粒子数目。 粒子注量率:表示在单位时间内粒子注量的增量 能注量:在空间某一点处,射入以该点为中心的小球体内的所有的粒子能量总和除以该球的截面积 能注量率:单位时间内进入单位立体球截面积的粒子能量总和 比释动能:不带电电离粒子在质量为dm的某一物质内释放出的全部带电粒子的初始动能总和 剂量当量:某点处的吸收剂量与辐射权重因子加权求和 同位素:具有相同的原子序数,但质量数不同,亦即中子数不同的一组核素 照射量:X=dq/dm,以X射线或γ射线产出电离本领而做出的一种量度 照射量率:单位质量单位时间内γ射线在空间一体积元中产生的电荷。 剂量当量指数:全身均匀照射的年剂量的极限值 同质异能素:具有相同质量数和相同原子序数而半衰期有明显差别的核素 平均寿命:放射性原子核平均生存的时间.与衰变常熟互为倒数。 电离能量损耗率:带电粒子通过物质时,所经过的单位路程上,由于电离和激发而损失的平均能量 平衡含量铀:达到放射性平衡时的铀含量 分辨时间: 两个相邻脉冲之间最短时间间隔 康普顿边:发生康普顿散射时,当康普顿散射角为一百八十度时所形成的边 康普顿坪:当康普顿散射角为零到一百八十度时所形成的平台 累计效应:指y光子在介质中通过多次相互作用所引起的y光子能量吸收 边缘效应: 次级电子产生靠近晶体边缘,他可能益处晶体以致部分动能损失在晶体外,所引起的脉冲幅度减小 和峰效应: 两哥y光子同时被探测器晶体吸收产生幅度更大的脉冲,其对应能量为两个光子能量之和 双逃逸峰:指两个湮没光子不再进行相互作用就从探测器逃出去 响应函数: 探测器输出的脉冲幅度与入射γ射线能量之间的关系的数学表达式 能量分辨率: 表征γ射线谱仪对能量相近的γ射线分辨本领的参数 探测效率:表征γ射线照射量率与探测器输出脉冲1. 峰总比:全能峰的脉冲数与全谱下的脉冲数之比 峰康比:全能峰中心道最大计数与康普顿坪内平均计数之比

控制测量复习题以及答案

《控制测量学》试题参考答案 一、名词解释: 1、子午圈:过椭球面上一点的子午面同椭球面相截形成的闭合圈。 2、卯酉圈:过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈。 3、椭园偏心率:第一偏心率 a b a e 2 2- =第二偏心率 b b a e 2 2- =' 4、大地坐标系:以大地经度、大地纬度和大地高来表示点的位置的 坐标系。 P3 5、空间坐标系:以椭球体中 心为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正 交的方向为Y轴,椭球体的旋转轴为Z轴,构成右手坐标系O-XYZ。 P4 6、法截线:过椭球面上一点的法线所作的法截面与椭球面相截形成 圈。 P9 7、相对法截线:设在椭球面上任意取两点A和B,过A点的法线所 作通过B点的法截线和过B点的法线所作通过A点的法截线,称为 AB两点的相对法截线。 P15 8、大地线:椭球面上两点之间的最短线。 9、垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归 算到以法线为依据的方向值应加的改正。 P18 10、标高差改正:由于照准点高度而引起的方向偏差改正。 P19 11、截面差改正:将法截弧方向化为大地线方向所加的改正。 P20 12、起始方位角的归算:将天文方位角以测站垂线为依据归算到椭 球面以法线为依据的大地方位角。 P22 13、勒让德尔定理:如果平面三角形和球面三角形对应边相等,则 平面角等于对应球面角减去三分之一球面角超。 P27 14、大地元素:椭球面上点的大地经度、大地纬度,两点之间的大 地线长度及其正、反大地方位角。 P28 15、大地主题解算:如果知道某些大地元素推求另外一些大地元素, 这样的计算称为大地主题解算。 P28

测量学知识点总结

测量学知识点总结 预览: 测量学是研究地球的形状和大小以及确定地面点位的科学。测定、测设两部分内容 测定是使用测量仪器和工具,通过测量和计算,得到一系列测量数据或成果,将地球表面的地形缩绘成地形图,供经济建设,国防建设,规划设计及科学研究使用。测设(放样)是指用一定的测量方法,按要求的精度,把设计图纸上规划好的建(构)筑物的平面位置和高程标定在实地上,作为施工依据。 1954年北京坐标系,新1954年北京坐标系,1980年国家大地坐标系(现用) 独立平面直角坐标:一般将坐标原点选在测区的西南角,使测区内的点坐标均为正值。一个城市只应采取一个统一的高程系统。 俩点间高差与高程起算面无关现逐步归算至全国统一的1985国家高程基准 1、地球的自然表面 2、地球的物理表面——水准面 3、地球的数学表面——旋转椭球体面铅垂线:重力的方向线称为铅垂线—基准线 水准面: 任何一点都与重力方向相垂直的面。或水在静止时的表面。 水平面:与水准面相切的平面。 大地水准面: 与平均海水面相吻合并向大陆岛屿延伸而形成的封闭曲面称为大地水准面——测量基准面 地球椭球体: 椭圆绕其短轴旋转而成的旋转椭球体,又称地球椭球体。 地面点位的确定:地面点的空间位置须由三个参数来确定,即该点在大地水准面上的投影位置(x,y)和该点的高程H。 测量坐标系与数学坐标系的区别:坐标轴不同;象限旋转顺序不同 地面点的高程(1)绝对高程:地面点到大地水准面的铅垂距离,称为该点的绝对高程,简称高程,用H表示(2)相对高程:地面点到假定水准面的铅垂距离,称为该点的相对高程或假定高程。(3)高差:地面两点间的高程之差,称为高差,用h表示。高差有方向和正负。用水平面代替水准面的限度:平面坐标:半径10km范围内 ? 高程:影响大,一般超过200m即需改正测量工作的程序1、控制测量(平面控制测量和高程控制测量):2、碎部测量:以控制点为依据,测定控制点至碎步点之间的水平距离,高差及其相对于某一已知方向的角度来确定碎部点的位置。平面控制测量的形式:导线测量,三角测量,交会定点 测量工作的原则:1、在布局上遵循“由整体到局部”的原则,在精度“由高级到低级”,在程序上“先控制后碎部”.2、在测量过程中,遵循“随时检查,杜绝错误”的原则 测量的基本工作:测距离、角度、高差是测量的基本工作 距离、水平角、高差称测量三要素观测、计算、绘图是测量工作的基本技能水准测量原理:水准测量是利用水准仪提供的水平视线,借助于带有分划的水准尺,直接测定地面上两点间的高差,然后根据已知点高程和测得的高差,推算出未知点高程。 A、B两点间高差hAB为:hAB=a-b>0(B比A高)。高差等于后视读数减去前视读数。高差法:HB=HA+hAB 视线高法Hi=HA+a??转点作用:传递高程HB=Hi-b?水准测量所使用的仪器为水准仪,工具有水准尺和尺垫。组成:望远镜,水准器,基座水准仪的操作1、安置仪器2、粗略整平3、瞄准水准尺4、精确整平5、读数 视差:眼睛在目镜端上下移动有时可看见十字丝的中丝与水准尺影像之间相对移动的现象。产生的原因:水准尺的尺像与十字丝平面不重合。 消除的方法:依次调焦:目镜调焦使十字丝清晰;仔细地转动物镜对光螺旋,直至尺像与十字丝平面重合。

现代测量学知识点汇总

工程测量学 一、名词解释(10×2=20分) 1、工程测量学:是研究工程建设和自然资源开发在规划设计、工程施工和运营管理各阶段中进行测量工作的 理论、技术和方法的科学。【工程测量学:是研究地球空间(包括地面、地下、水下、空中) 具体几何实体的测量描绘和抽象几何实体的测设实现的理论、方法和技术的一门应用性学 科。】 2、赤道:赤道面与椭球面相截所得的曲线称之为赤道。【通过椭球中心且与椭球旋转轴正交的平面与 椭球表面的交线称为赤道。】 3、赤道面:通过椭球中心且与椭球旋转轴正交的平面称为赤道面。 4、水准面:处于静止状态的水面,其表面处处与铅垂线正交,这样由重力等位面形成的封闭曲面称为水准面。 5、大地水准面:用平均海水面代替海水静止时的水面,即平均水准面,称为大地水准面。 6、子午线:子午面与大地椭球面的交线称为子午线。 7、子午线收敛角:通过地面某点的真子午线北方向与其坐标北方向之间的夹角。 8、子午面:通过地球(或椭球)旋转轴的平面称为子午面。 9、大地纬度:通过地面某点法线与赤道面的交角,称为大地纬度。 10、大地经度:通过地面某点的子午面与起始子午面的夹角。 11、大地坐标:用大地经度L与大地纬度B表示地面点的坐标称为大地坐标。 12、地物:位于地面上的所有物体,统称为地物,地物分自然地物和人工地物。 13、地貌:它是地面高低起伏,凹凸不平的自然形态。 14、高程:地面点沿铅垂线方向到大地水准面的距离,称为该点的高程。 15、海拔:地面点到大地水准面的铅垂距离,称为绝对高程。 16、绝对高程:地面点沿铅垂线方向到大地水准面的距离称为绝对高程。 17、相对高程:地面点沿铅垂线方向到任意水准面的垂直距离叫相对高程。 18、高差:地面上两点高程的差值,或两点铅垂线方向到大地水准面的距离之差,称为高差。 19、等高距:相邻两条基本等高线之间的高差。 20、等高线:等高线是指由地面上高程相同的相邻点所连接而成的闭合曲线。 21、首曲线:按地形图的基本等高距测绘的等高线称首曲线,又称基本等高线。 22、间曲线:为了显示首曲线表示不出的地貌特征,按1/2基本等高距描绘的等高线称间曲线,又称为半 距等高线,图上用虚线描绘。 23、计曲线:为读图时量算高程方便起见,每隔四根首曲线加粗描绘一根等高线,称为计曲线,又称加粗 等高线。 24、等高线平距:相邻等高线之间的水平距离称为等高线平距。 25、天顶距:视线与测站点天顶方向之间的夹角称为天顶距。 26、竖直角:测站点至目标点的视线与同一竖直面内的水平线之间的夹角称为竖直角。 27、水平角:空间相交两直线之间的夹角在水平面上投影叫水平角。【地面上一点至任意两个目标的方向 线垂直投影到水平面上所成的角称为水平角。】 28、高度角:目标方向与水平方向之间的竖直夹角。 29、方位角:自基本方向线的北端起顺时针量至某直线的角度称为该直线的方位角。 30、坐标方位角:以坐标北方向作为基本方向线,顺时针方向到某一方向线的水平角度,称之为坐标方位角。 31、水准点:只用水准测量测其高程而不测量其平面坐标的测量控制点叫水准点。 32、导线:将相邻控制点用直线连接而构成的折线,称为导线。 33、闭合导线:从一个已知点出发,经过一系列导线点后又回到该已知点上,这种导线形式叫闭合导线。 34、附合导线:由一个已知点出发,经过一系列导线点最后附合到另外一个已知点上。 35、支水准路线:从一个已知高程的水准点开始,沿一条路线进行水准测量,最后既不回到原水准点上,也

成都理工大学《核辐射测量方法》考题

“核辐射测量方法”思考题 一、名词解释 1.核素 2.半衰期 3.碰撞阻止本领 4.平均电离能 5.粒子注量 6.粒子注量率 7.能注量 8.能注量率 9.比释动能 10.吸收剂量 11.剂量当量 12.辐射量 13.同位素 14.放射性活度 15.照射量 16.剂量当量指数 17.射气系数 18.α衰变 19.核衰变 20.同质异能素 21.轨道电子俘获 22.半衰期 23.平均寿命 24.电离能量损耗率 25.衰变常数 26.伽玛常数 27.平衡铀含量 28.分辨时间 29.轫致辐射 30.康普顿边 31.康普顿坪 32.累计效应 33.边缘效应 34.和峰效应 35.双逃逸峰

36.响应函数 37.衰变率 38.能量分辨率 39.探测效率 40.峰总比 41.峰康比 42.能量线性 43.入射本征效率 44.本征峰效率 45.源探测效率 46.源峰探测效率 47.俄歇电子 48.线衰减系数 49.光电吸收系数 50.质量衰减系数 51.光电截面 52.原子核基态 53.铀镭平衡常数 54.放射性活度 55.碰撞阻止本领 56.离子复合 57.光能产额 58.绝对闪烁效率 59. 二、填空 1.天然放射性钍系列的起始核素是其半衰期是。 2.天然放射性铀系列的起始核素是其半衰期是。 3.铀系、钍系和锕铀系中的气态核素分别是、和; 其半衰期分别是、和。 4.α射线与物质相互作用的主要形式是和。 5.β射线与物质相互作用的主要形式是、和。 6.天然γ射线与物质相互作用的主要形式是、和 7.β衰变的三种形式是、和。 8.形成电子对效应的入射光子能量应大于MeV。 9.用γ能谱测定铀、钍、钾含量,一般选择的γ辐射体是、和; 其γ光子的能量分别是、和。 10.β-衰变的实质是母核中的一个转变为。

测量的初步知识知识点及对应习题

图 1 图2 测量的初步知识 【考点聚焦】测量的初步知识涉及到的考点有: 1.长度的单位及其换算,长度的测量。 2.体积的单位及其换算,体积的测量。 3.误差和错误。 4.长度的测量方法。 【知识结构】 一、长度的测量 1.长度的单位:主单位:米(m ),其它单位km 、dm 、cm 、mm 、μm 、nm 2.长度的测量工具:①基本工具:刻度尺;②精密工具:游标卡尺、螺旋测微器、激光测距仪。 3.刻度尺正确使用: ①会选:观察刻度尺的零刻度线、量程、最小分度值; ②会放:尺要放正,零刻度线与被测物体一端对齐,刻度线紧贴被测物; ③会读:视线正对刻度线,读出准确值和估计值; ④会记:准确值+估计值+单位。 二、体积的测量 1.体积的单位:主单位:立方米(m 3)其它单位:dm 3、cm 3、mm 3、L 、mL 。 2.体积的测量工具:量筒或量杯 3.量筒的正确使用:①量筒放在水平桌面上;②视线要与液面齐平 三、测量误差 1.定义:测量值与真实值之间差异 2.误差不可避免,但可以减小。错误可以避免。 3.减小误差的方法:①采用精密测量工具;②改进测量方法(常用多次测量求平均值的方法) 【对应训练】 1.单位换算:8.5m = cm ; 36000nm = km 15cm 3= m 3。 2.如图1所示,用刻度尺测量A 、B 两个小木条的长度,其中对木 条 的测量是正确的,这个木条的长度是 cm 。 3.用刻度尺测量木块的长度,图2的四种方法正确的是 〔 〕

4.如图3所示,某同学用量筒、足够多的水,一定重的铁块和细线,测量某一木块的体积,所作的步骤如下: A.往量筒内倒入适量的水,并记录下水的体积V1; B.用细线栓住铁块,轻轻放入量筒内水中,并使之全部浸没,记下铁块和水的总体积V2;C.取出铁块,用细线把铁块和木块捆在一起浸没在量筒内的水中,记下此时的总体积V3;D.计算出木块的体积; ①以上步骤中多余的是(填步骤前的序号) ②写出求木块体积的公式,即V= = cm3 图3 5.关于误差下列说法中正确的是〔〕 A.误差是实验中产生的错误 B.测量中误差和错误是不可避免的 C.误差是不可避免的,但可以尽量减小 D.使用精密仪器和改进实验方法可以避免误差 6.把一根刻度尺均匀但不准确的直尺跟标准直尺进行比较,当两尺零刻度线对齐时,不准确尺的30.00cm刻度线正好与标准尺的29.50cm刻度线平齐,由上面读数可知标准尺的分度值是。若用不准确的直尺测得笔盒的长度为15cm,则用标准尺测得笔盒的长度为 cm。 7.有一个量程为1m的卷尺,请你设计一套简单的方法测出你家到学校的路程,写出必要的方法、步骤,并将路程表达出来。 测量的初步知识(参考答案) 1.850 3.6×10-8 1.5×10-5 2.B 3.35 3.A 4.A V3-V2 15 5.C 6.1mm 14.75 7.a.用卷尺测出自行车前轮的周长L;b.推车从家到学校,数出自行车前轮转动的圈数n;c.路程s=nL

测量学复习要点

第一章绪论 1、测量学:测量学是一门研究地球的形状和大小,以及测定地面点的位置和高程,将地球 表面的地形及其他信息测绘成图的学科。 2、测量学的任务有:测绘、测设、地形图应用 3、水准面:静止海水面所形成的封闭曲面(水准面上处处与重力方向垂直,通过任何高度 的一个点都有一个水准面,因而水准面有(无数)个。 4、大地水准面:平均海平面向陆地延伸所形成的闭合水准面称为大地水准面 5、高程:地面点至大地水准面的垂直距离称为绝对高程或海拔,简称高程。 6、(大地水准面)和(铅垂线)是测量依据的基准面和基准线。 7、一般而言,普通测量工作的目的就是(测定地球表面的地形并绘制成图) 8、测量的基本问题就是(测定地面点的平面位置和高程) 9、测量的基本工作是(距离测量、角度测量、高程测量) 10、测量工作应遵循的基本原则: 在测量的布局上,是“由整体到局部”; 在测量次序上,是“先控制后碎部”; 在测量精度上,是“从高级到低级”。 11、简答:为什么要进行多余观测? 偶然误差产生的原因十分复杂,又找不到完全消除其影响的办法,观测结果中就不可避免存在着偶然误差的影响。因此,在实际测量工作中,为了检核观测值中有无错误,提高成果的质量,必须进行多余观测,即观测值的个数多于确定未知量所必须的个数。 第二章水准测量 1、水准测量的基本原理是(水准测量):水准测量是利用水准仪提供的水平视线测出地面 上两点间的高差,根据已知点的高程推算出未知点的高程。 2、简答:水准测量核心、目的、关键分别是什么?

核心:测定高差目的:推算高程关键:视线水平 3、DS3型水准仪由(望远镜、水准器、基座)三部分构成。 4、简答:水准仪使用的步骤:安置→粗平→瞄准→消除视差→精平→读数(4位数) 5、水准路线:(1)闭合水准路线(2)附合水准路线(3)支水准路线 6、简答:为什么要把水准仪安置在与两尺距离大致相等处进行观测? 大地水准面是一个曲面,只有当水准仪的视线与之水平时,才能测出两点间的真正高差。在实际测量中,一般采取前后视线距离大致相等来抵消地球曲率和大气折光误差。 7、水准仪应满足: (1)圆水准器轴平行于仪器的竖轴; (2)十字丝横丝垂直于竖轴; (3)水准轴平行于视准轴。 8、课后第9题。将水准仪安置在A、B两点等距离处,测得高差h = ―0.350m,设仪器搬到前视点B附近时,后视读数a = 0.952m,前视读数b = 1.340m,试问水准管是否平行于视准轴?如果不平行,当水准管气泡居中时,视准轴是向上倾斜还是向下倾斜?如何校正? 答:①因为a-h=0.952-(-0.350)=1.302m≠b 所以水准管轴不平行视准轴。 ②b-1.302=1.340-1.302=0.038m 当水准管气泡居中时,视准轴是向上倾斜。 ③转动微倾螺旋,使中丝对准正确的前视读数,此时视准轴已处于水平位置,但水准气泡却偏离了中心,为了使水准轴也处于水平位置,即使水准轴与视准轴平行,可用校正针拨动水准管一端的上、下两个校正螺丝,使气泡居中即可。并反复进行,直至符合要求为止。 第三章角度测量 1、水平角:由一点到两个目标的方向线垂直投影在水平面上锁构成的角度,称为水平角。 2、竖直角:在同一竖面内,瞄准目标的倾斜视线与水平视线间的夹角称为竖直角 3、DJ6 经纬仪:照准部、水平度盘、基座。

《测量的初步知识》复习提纲

《测量的初步知识》复习提纲 一、本章知识结构 ㈠、长度测量: 1、长度的测量是物理学最基本的测量,也是进行科学探究的基本技能。长度测量的常用的工具是刻度尺。 2、国际单位制中,长度的主单位是m,常用单位有千米 (km),分米(dm),厘米(cm),毫米(mm),微米(μm),纳米(nm)。 3、主单位与常用单位的换算关系: 1 km=103m 1m=10-3km 1m=10dm 1dm=10-1m 1dm=10cm 1cm=10-1dm 1cm=10mm 1mm=10-1cm 1mm=103μm 1μm=10-3mm 1m=106μm 1m=109nm 1μm=103nm 1nm=10-3μm 1nm=10-9m 单位换算的过程:口诀:“系数不变,等量代换”。 4、长度估测: 黑板的长度2.5m、课桌高0.7m、篮球直径24cm、指甲宽度1cm、铅笔芯的直径1mm 、一只新铅笔长度1.75dm 手掌宽度1dm 、墨水瓶高度6cm 5、特殊的测量方法: A> 、测量细铜丝的直径、一张纸的厚度等微小量常用累积法(当被测长度较小,测量工具精度不够时可将较小的物体累积起来,用刻度尺测量之后再求得单一长度) ☆如何测物理课本中一张纸的厚度? 答:数出物理课本若干张纸,记下总张数n,用毫米刻度尺测出n张纸的厚度L,则一张纸的厚度为L/n 。 ☆如何测细铜丝的直径? 答:把细铜丝在铅笔杆上紧密排绕n圈成螺线管,用刻 度尺测出螺线管的长度L,则细铜丝直径为L/n。 ☆两卷细铜丝,其中一卷上有直径为0.3mm,而另一卷上标 签已脱落,如果只给你两只相同的新铅笔,你能较为准确地 弄清它的直径吗?写出操作过程及细铜丝直径的数学表达 式。 答:将已知直径和未知直径两卷细铜丝分别紧密排绕在两 只相同的新铅笔上,且使线圈长度相等,记下排绕圈数N1和 N2,则可计算出未知铜丝的直径D2=0.3N1/N2 mm B>、测地图上两点间的距离,园柱的周长等常用化曲为直法 (把不易拉长的软线重合待测曲线上标出起点终点,然后拉 直测量) ☆给你一段软铜线和一把刻度尺,你能利用地图册估测出北 京到广州的铁路长吗? 答:用细铜线去重合地图册上北京到广州的铁路线,再将 细铜线拉直,用刻度尺测出长度L查出比例尺,计算出铁路 线的长度。 C>、测操场跑道的长度等常用轮滚法(用已知周长的滚轮沿 着待测曲线滚动,记下轮子圈数,可算出曲线长度) D>、测硬币、球、园柱的直径圆锥的高等常用辅助法(对 于用刻度尺不能直接测出的物体长度可将刻度尺三角板等 组合起来进行测量) ☆你能说出几种方法可测园柱体的周长? 答:①、用直尺和三角板测出圆柱体的直径d ,周长为πd 。 ②、用纸条紧绕圆柱体一周在重叠处用打头针扎一孔, 把纸条展开,用刻度尺量出两孔之间的距离。 ③、把园柱直立放在纸上,贴边用笔画一圈,再剪下对 折后,用刻度尺量出折痕线长,即为直径,再算出周长。 ④、在园柱面上做标记,然后将其在平面上滚动一周, 用刻度尺量出启始点到终点的距离。 ☆你能想出几种方法测硬币的直径?(简述) ①、直尺三角板辅助法。②、贴折硬币边缘用笔画一圈剪下 后对折量出折痕长。③、硬币在纸上滚动一周测周长求直径。 ④、将硬币平放直尺上,读取和硬币左右相切的两刻度线之 间的长度。 6、刻度尺的使用规则: A、“选”:根据实际需要选择刻度尺。 B、“观”:使用刻度尺前要观察它的零刻度线、量程分度值。 C、“放”用刻度尺测长度时,尺要沿着所测直线(紧贴物 体且不歪斜)。不利用磨损的零刻线。(用零刻线磨损的的刻 度尺测物体时,要从整刻度开始) D、“看”:读数时视线要与尺面垂直。 E、“读”:在精确测量时,要估读到分度值的下一位。 F、“记”:测量结果由数字和单位组成。(也可表达为:测量 结果由准确值、估读值和单位组成)。 练习:有两位同学测同一只钢笔的长度,甲测得结果 12.82cm,乙测得结果为12.8cm。如果这两位同学测量时都 没有错误,那么结果不同的原因是:两次刻度尺的分度值不 同。如果这两位同学所用的刻度尺分度值都是mm,则乙同

工程测量学知识点

工程测量学知识点 1.工程测量学:(定义)是研究工程建设在勘测设计、施工过程和运营管理阶段所进行的一 切测量工程的学科。(任务)是一门应用科学,它是研究地球空间内具体几何实体测量和抽象几何实体测量的理论、方法与技术。 2.工程测量的实施三个阶段及基本任务 (a)规划设计阶段:向设计者提供所需的地形图。一般使用1:5000地形图用于初级规划设计(b)施工建设阶段:利用已知点来确定未知点的位置,也就是根据施 工要求在现场标定工程建筑物特征点的位置,作为实地修建的根据。(c)经营管 理阶段:工程建筑物的变形观测。为了解安全及稳定情况,需要定期对工程建筑 物的位移、沉移、倾斜和摆动进行变形监测。 3.点的平面位置放样的方法及分别用于何场合 (a)直角坐标法:是根据直角坐标原理,利用纵横坐标之差。测设点的平面位置。适用于施工控制网为建筑方格网或建筑基线的形式,且量距方便的建筑施工场地。 (b)极坐标法:根据一个水平角和一段水平距离,测设点的平面位置。适用于量距方便,且待测设点距控制点较近的建筑施工场地。 (c)角度交会法:是在两个或多个控制点上安置经纬仪,通过测设两个或多个已知水平角角度,交会出点的平面位置。适用于待测设点距控制点较远,且量距较困难的建筑施工场地。(d)距离交会法:是由两个控制点测设两段已知水平距离,交会定出点的平面位置。适用于待测设点至控制点的距离不超过一尺段长,且地势平坦、量距方便的建筑施工场地。 4.选择放样方法应从哪些方面考虑? 工程所需精度要求;自身所有的仪器设备条件;现场条件;放样程序的情况;现有的技术水平情况。 4.建筑施工测量(定义):就是根据图纸上设计的建、构筑物平面位置x、y和高程H按一 定精度放样到实地上,作为施工的依据,并在施工过程中进行一系列测量工作。 5.施工放样:通常人们把这种将图上内容按设计要求在实地上确定下来的测量工作。 6.施工控制网:为工程建设和施工放样而专门布设的测量控制网。分为平面控制网和高程 控制网。 7.工程建筑物的建筑限差:是指竣工后建筑物的实际位置相对设计位置的极限偏差。 8.建筑基线:是建筑场地施工控制的基准线,一般适用于建筑设计总平面图布置比较简单 的小型建筑场地。常用一字形、十字形、直角形和丁字形的形式。 9.建筑红线:建筑用地的界址是由规划部门确定的,并由拨地单位在现场直接标定用地边 界点,这些边界点的连线。其可作为建筑基线放样的依据。 10.建筑方格网:由正方形或矩形的格网组成的建筑场地施工控制网。 11.高程传递方法:利用皮数杆传递高程;利用钢尺直接丈量;吊钢尺法; 12.厂房施工测量:矩形控制网放样方案;单一厂房矩形控制网;大型工业厂房矩形控制网 放样;厂房柱列轴线测量;桩基测量。 13.铁路线路测量是什么及包括哪些内容? 14.线路测量是为各种等级的公路、铁路等的设计和施工服务的。 15.圆曲线要素:半径R、偏角、切线长T、曲线长L、外矢距E、切曲差q。

本科核辐射测量方法考题及参考答案

成都理工大学学年 第一学期《核辐射测量方法》考试试题 参考答案与评分标准 一、名词解释(每名词3分,共18分) 1. 探测效率:探测效益率是表征γ射线照射量率与探测器输出脉冲计数之间关系的重要物理参数。 2. 衰变常数:衰变常数是描述放射性核素衰变速度的物理量,指原子核在某一特定状态下,经历核自发跃迁的概率。 3. 吸收剂量:电力辐射授予某一点处单位质量物质的能量的期望值。D=dE/dm,吸收剂量单位为戈瑞(Gy)。 4. 平均电离能:在物质中产生一个离子对所需要的平均能量。 5. 放射性活度:表征放射性核素特征的物理量,单位时间内处于特定能态的一定量的核素发生自发核转变数的期望值。A=dN/dt。 6.碰撞阻止本领:带电粒子通过物质时,在所经过的单位路程上,由于电离和激发而损失的平均能量。 二、填空题(每空0.5分,共9分) 1.α射线与物质相互作用的主要形式是电离和激发。 2.铀系气态核素是222Rn;其半衰期是 3.825d。 3.用γ能谱测定铀、钍、钾含量,一般选择的γ辐射体是214Bi 、208Tl 和40K;其γ光子的能量分别是 1.76MeV 、 2.62MeV和 1.46MeV。 4.β+衰变的实质是母核中的一个质子转变为中子。 5.放射性活度的单位为:Bq;照射量率的单位为:C/kg*s;能注量率的单位为 W/m2。 6.β射线与物质相互作用方式主要有电离与激发、轫致辐射和弹性散射。

三、简要回答下列问题(每题6分,共36分) 1.简述NaI(Tl)探测器的特征X射线逃逸以及对谱线的影响。 解答:当γ光子在晶体内发生光电效应时,原子的相应壳层上将留一空位,当外层电子补入时,会有特征X射线或俄歇电子发出(3分)。若光电效应发生在靠近晶体表面处时,则改特征X射线有可能逃逸出探测晶体,使入射光子在晶体内沉淀的能量小于光子能量,光子能量与在晶体内沉淀能量即差为特征X射线能量(2分)。因此,使用Na(Tl)晶体做探测器时,碘原子K层特征射线能量为38keV,在测量的γ谱线上将会出一个能量比入射γ射线能量小28keV的碘特征射线逃逸峰(2分)。随着入射射线能量增加和探测晶体体积的增大,NaI(Tl)探测器的特征X射线逃逸峰会逐渐消失。(2分) 2.画出γ能谱仪的基本框图,并说明各个部分的作用。 图(3分) 闪烁体和倍增管是探测器部分,用于将γ射线的能量转化为可以探测的电信号。前置放大器是将信号进行一定倍数的放大。主放大器是将信号转化微可以供多道脉冲幅度分析器使用的信号。多道脉冲幅度分析器将信号转化成数字信号。微机对采集的信号进行软件的处理。(3分) 3.随着入射γ射线能量的变化,γ射线与物质相互作用的主要效应所占比例如何变化? 解答:伽马射线与物质相互作用的主要形式是光电效应、康普顿效应和电子对效应。随着入射伽玛射线能量的变化,三种效应所占比例是不同的。低能光子与物质作用的主要形式是光电效应(2分);随着射线能量增大,光电效应所占比例逐渐降低,康普顿效应所占比例增加,成为射线与物质作用的主要形式(2分)。当入射光子能量大于1.02MeV,将存在形成电子对效应的几率,并随着能量的继续增大,电子对效应所占的比例会逐渐增大;而康普顿效应和光电效应所占比例逐渐降低。电子对效应是高能量光子与物质作用的主要的作用形式。(2分) 4.简述半导体探测器的工作原理。 解答:半导体探测器工作时,在搬半导体P区和N区加反向电压,使空间电荷电场增强。电子和空穴分别向正负两级扩散,使得探测器灵敏区的厚度增大。(3分)当探测的射线进入

测量的初步知识

“测量的初步知识”学法指导 梁佃斌 一、知识结构梳理 二、重点知识剖析 1. 长度的单位 所谓测量,就是把要测量的物体跟作为标准的物体进行比较,这个作为标准的物体就叫做测量的单位。例如,测量长度,就是把被测的物体跟一个标准长度 ��长度的单位作比较。在国际单位制中,长度的单位是米(m)。为了测量大的物体和小的物体的长度,还规定了比米大的单位和比米小的单位:千米 (km)、分米(dm)、厘米(cm)、毫米(mm)、微米()、纳米(nm)等。 对于这些常用的单位的大小要有具体的认识。例如,1m大约是自己迈出两个单步的长度;1dm大约是手掌的宽度;1cm大约是大拇指指甲盖的宽度,等等。对各种长度的单位有了具体的认识,在实际生活中才能正确地估计物体的长度。 2. 正确使用刻度尺 进行任何测量,都要使用测量工具或测量仪器。使用任何测量工具和仪器都要按规则操作,才能得出正确的测量结果。刻度尺虽然简单,但也有正确使用的方法。使用刻度尺的注意事项,有的也适用于以后学习其他测量仪器,不可轻视。 使用刻度尺的注意事项如下:

(1)观察它的测量范围��量程,从零刻度线到这把刻度尺的最后一条刻度线之间的距离,表示这把刻度尺一次能测量的最大长度。 (2)观察它的分度值,两条相邻刻度线之间的距离,如果这个距离是1mm,我们就说这把刻度尺的分度值是1mm。 (3)观察它的零刻线是否清楚,如果不清楚,有磨损,要选另外的刻线作为零刻线。 (4)测量时,刻度尺的位置要摆放正确,不可歪斜。 (5)读数时,视线要与尺面垂直,不要歪斜,且使被测物体的边缘、刻度线和视线重合在一条直线上,以减小误差。 (6)记录测量结果,不但要写出数字,而且要写出单位。精确测量时,要估读出最小刻度的下一位数字。 3. 测长度的几种特殊方法 使用刻度尺有时不便测量某些特殊物体的长度,可以采取下列一些间接测量的方法。 (1)化曲为直(跟踪法):用软线与待测曲线重合,用刻度尺测量软线。 (2)化直为曲(滚轮法):用已知周长的滚轮在较长的直线(或曲线)上滚动,运用比较法测出直线的长度。 (3)化整为零:把被测物分成若干等份,使一份的长度在刻度尺的测量范围内,测出一份的长度就可算出全长。 (4)化零为整:先测出100张纸的厚度,就可算(测)出一张纸的厚度。先测出30圈铜丝的径长,就可算(测)出一根铜丝的直径。 (5)替代法:利用几何学的知识或其他辅助用具,通过测量某个与被测量相等的量,来代替对被测量的直接测量,即间接测量。如:用三角板与刻度尺测定锥体的高。 4. 误差 任何测量都是近似的。一方面是因为测量工具不可能绝对精确;另一方面人眼的观察也不可能绝对精确。例如,用分度值是厘米的尺测量长度,厘米的下一位数字就是估计的,是不精确的;用分度值是毫米的尺测量,精确度可以提高一些,但是毫米的下一位数字是估计的,仍是不精确的。另外,不同的人用同样的尺测量时,估读的数字出会有所不同。物体的真实长度与测量结果间的差异,就是误差。从上面的分析可以知道,误差是不可避免的。选用精密的测量工具,采用正确的测量方法,只能减小误差,不能消灭误差。

热工测量与自动控制重点总结

热工测量与自动控制重点总结 第一章测量与测量仪表的基本知识 1测量:是人们对客观事物取得数量观念的一种认识过程。人们通过试验和对试验数据的分析计算,求得被测量的值。 2测量方法:是实现被测量与标准量比较的方法,分为直接测量、间接测量和组合测量。 3按被测量在测量过程中的状态不同,有分为静态和动态测量。 4测量系统的测量设备:由传感器、交换器或变送器、传送通道 和显示装置组成。 5测量误差的分类:1)系统误差 2)随机误差 3)粗大误差 6按测量误差产生来源:1)仪表误差或设备误差 )人为误差 2 3)环境误差 4)方法误差或理论误差 5)装置误差 6)校验误差. 7测量精度:准确度、精密度、精确度。 8仪表的基本性能:一般有测量范围、精度、灵敏度及变差。

9精度:是所得测量值接近真实值的准确程度,以便估计到测量误差的大小。 10仪表的灵敏限是指能够引起测量仪表动作的被测量的最小变化量,故友称为分辨率或仪表死区。 第二章 1产生误差的原因:1)测量方法不正确 2)测量仪表引起误差 3)环境条件引起误差 4)测量的人员水平和观察能力引起的误差。 2函数误差的分配:1)按等作用原则分配误差 2)按可能性调整误差 3)验算调整后的总误差。 第三章温度测量 1温标:是温度数值化的标尺。他规定了温度的读数起点和测量 温度的基本单位。

2热电偶产生的热电势由接触电势和温差电势组成。 3热电偶产生热电势的条件是:1)两热电极材料相异 2 )两接点温度相异. 4热电偶的基本定律:1 )均质导体定律 2)中间导体定律 3)中间温度定律。 5补偿电桥法:是采用不平衡电桥产生的电势来补偿电偶因冷端温度变化而引起的热电势的变化值。 6电阻温度计的传感器是热电阻,热电阻分为金属热电阻和半导体热敏电阻两类。 7热电阻温度计测温度的特点:1)热电阻测温度精度高,测温 2 范围宽,在工业温度测量中, 得到了广泛的应用。 )电阻温度系数大,电阻率大,化学、物理性能稳定,复现 性好,电阻与温度的关系接 3 近线性以及廉价。 )当热电阻材料的电阻率大时,热电阻体积可做的小一些, 热容量和热惯性就小,响应快。 8热电偶的校验:通常采用比较法和定点法 热电偶的检定:是对热电偶的热电势与温度的已知关系进行检

(整理)控制测量知识点总结

控制测量知识总结 1 野外测量的基准面为大地水准面,基准线为与大地水准面相垂直的铅垂线; 测量计算的基准面为参考椭球面,基准线为参考椭球面的法线。 由于地表起伏以及地层内部密度变化造成质量分布不均,所以大地水准面不能作为控制测量计算的基准面 2 大地水准面——完全处于静止和平衡状态的海水面扩展并延伸到大陆下面,从而形成一个处处与铅垂线方向正交的包围整个地球的封闭曲面。 参考椭球——把形状和大小与大地体相近且两者之间相对位置确定的旋转椭球。 总地球椭球——和整个大地体最为接近,密合最好的参考椭球。 垂线偏差——由于大地水准面与椭球面不可能处处重合,两者之间的夹角。 大地水准面差距——大地水准面与椭球面在某一点上的高差。 3 大地坐标系——在椭球面上建立起来的一种表示地面点位的球面坐标系(B,L,H) 空间大地直角坐标系——原点O与地球质心重合,Z轴与地球自转轴重合,X轴与地球赤道面和格林尼治平均子午面的郊县重合,Y与XZ轴正交(x.,y,z) 4 高斯平面坐标系:L=6N-3 N为带号,L为中央子午线经度 L=3n n为带号,L为中央子午线经度 Y坐标的规定值与自然值关系Y=N10000000m+500000m+y 5 常规的大地测量方法有:三角测量,精密导线测量,三边测量,边角同测等 6 国家平面控制网的布设原则:分级布网,逐级控制;足够的精度;足够的密度;统一的规格 7 水准面的不平行性:原因是地面上的重力加速度随纬度和物质的分布情况而变化 影响:多值性;产生理论闭合差理论闭合差:在闭合环形水准路线中,由于水准面不平行所产生的闭合差8 正常椭球——与地球质量相等且质量分布均匀的椭球 正常重力加速度——正常椭球对其表面与外部点所产生的重力加速度(只与点位纬度有关) 正常位水准面——相应的正常重力加速度等位面 重力异常——地面点实测重力加速度与相应的正常重力加速度的差值 重力位水准面——与实测重力加速度相应的重力等位面 9 正高系统——以大地水准面为高程基准面得高程系统 正高——点沿铅垂线至大地水准面的距离。它是一种唯一确定

核辐射测量方法

核辐射测量方法 葛良全 周四春 成都理工大学核技术与自化工程学院 2007.8

前言 本讲义旨在缓解我院“核工程与核技术”专业人才培养计划调整后尚无专业教材的状况。主要内容有核辐射测量基础知识、射线与物质相互作用、核辐射测量的单位、核辐射防护知识、γ射线测量方法、β射线测量方法、α射线测量方法、X射线荧光测量方法、核辐射测量统计学与误差预测等。该讲义可作为“核工程与核技术”和“辐射防护与环境保护”专业的核辐射测量方法课程的教材,也可作为“测控技术与仪器”、“勘查技术工程”和“地球化学”(铀矿地质勘探方向)等本科专业的教学参考书,以及“核科学与技术”学科专业研究生教学的参考书。 本讲义相关内容主要从以下几本参考书的有关内容编辑: [1]章晔,华荣洲、石柏慎编著,放射性方法勘查,原子能出版社,1990 [2]葛良全,周四春,赖万昌编著,原位X辐射取样技术,四川科学技 术出版社,1997 [3]格伦敦F 诺尔著(李旭等译),辐射探测与测量,原子能出版社, 1984。 [4]复旦大学、清华大学、北京大学,原子核物理实验方法,北京,原 子能出版社,1985 [5]李星洪等编,辐射防护基础,北京,原子能出版社,1982 [6]吴慧山,核技术勘查,北京,原子能出版社,1998 [7]王韶舜,核与粒子物理实验方法,北京,原子能出版社,1989

1 第1章 放射性方法勘查的基本知识 1.1 原子和原子核 1.1.1 原 子 原子是构成自然界各种元素的最基本单位,由原子核及核外轨道电子(又称束缚 电子或绕行电子)组成。原子的体积很小,直径只有10- 8cm 左右,原子的质量也很小, 例如氢原子质量为1.67356×10- 24g ,铀原子的质量为3.951×10-22g 。原子的中心为原子核,它的直径比原子的直径小得多,为n·10-13~n ·10-12(cm),但它集中了原子的绝大部分质量。例如氢原子由原子核和一个束缚电子组成,其结构示于图1-1,氢核的质量为1.67×10-24g ,而束缚电子的质量仅 为9.1×10-28g ,两者的比值近似为1/1840。对 于原子序数较大的原子,这个比值更小些。例如,铀原子92个绕行电子的总质量和原子核质量之比为1/4717。 原子核带正电荷,束缚电子带负电荷,两者所带的电荷量相等,符号相反,因此原子本身呈中性。当原子吸收外来的能量,使轨道上的电子脱离原子核的吸引而自由运动时,原子便失去电子而呈现电性,成为正离子。 原子中束缚电子按一定的轨道绕原子核运动,相应的原子处于一定的能量状态。对一种原子来说,它的绕行电子的数目和运动轨道都是一定的,因此每一个原子只能处于一定的,不连续的一系列稳定状态中。这一系列稳定状态,可用相应的一组能量W i 表征,W 称为原子的能级。处于稳定状态的原子,不放出能量。当原子由较高能级W 1跃迁到较低的能级W 2时,相应的能量变化△W 即W 1一W 2,以发射光子的形式释放出来,此时光子的能量为: 21W W hv ?= 式中,h ——普朗克常数,等于6.6262×10-34J·s ; v ——光子的频率。 将某种原子发射的各种频率的光子按波长排列起来,便构成了该种原子的发射 图1-1 氢原子核结构示意图 10-13cm 10-8cm

相关主题
文本预览
相关文档 最新文档