当前位置:文档之家› 船舶锅炉燃烧系统的优化控制

船舶锅炉燃烧系统的优化控制

船舶锅炉燃烧系统的优化控制
船舶锅炉燃烧系统的优化控制

第30卷 第1期大连海事大学学报Vol.30,N o.1 2004年2月Journal of Dalian Maritime University F eb.,2004

文章编号:1006 7736(2004)01 0045 04

船舶锅炉燃烧系统的优化控制

李维坚1,于洪亮2

(1.广州航海高等专科学校轮机系,广东广州 510725;

2.大连海事大学轮机工程学院,辽宁大连 116026)

摘要:分析了船舶锅炉燃烧控制系统的运行特点,对船舶锅炉燃烧控制系统优化模型的建立、优化模型参数的求解方法及船舶锅炉燃烧实时控制系统的控制规律进行了研究,以使船舶锅炉燃烧过程更多时间处于相对平稳状态,提高燃烧效率.同时具体提出了采用传统PI D控制与最优控制相结合的方法,建立了蒸汽压力与喷油量、送风量、引风量和蒸汽流量之间的关系模型以及氧含量和喷油量、送风量、引风量和蒸汽流量之间的关系模型和炉膛负压和喷油量、送风量、引风量和蒸汽流量之间的关系模型.

关键词:船舶锅炉;燃烧控制系统;优化模型;前向神经网络模型

中图分类号:U664.111 文献标识码:A

0 引 言

蒸汽动力装置船舶的锅炉及油船的锅炉,其蒸发量都比较大,蒸汽压力也比较高,对水位和蒸汽压力的变化要求比较严格,工作过程中,不允许水位和蒸汽压力出现较大的波动,因此在锅炉的燃烧自动控制系统中以往都把控制的焦点聚焦在维持水位和蒸汽压力在允许范围内波动这个问题上,并已较为彻底地解决了技术上的难题.而在燃烧过程优化控制问题上,相对而言,还没能给予较好地解决.这既有难以精确地建立被控对象的数学模型的原因,也有主观认识上的原因,但随着能源使用的日趋紧张,如何使在系统安全有效运行的基础上,对船舶锅炉燃烧过程进行优化控制,是船舶锅炉燃烧控制系统的发展方向.

1 优化模型及参数求解

为实现对船舶锅炉燃烧过程的优化控制,在船舶锅炉燃烧过程中,需要对以下主要运行参数进行控制:蒸汽压力、蒸汽流量、喷油量、送风量、引风量、炉膛负压及水位控制.

锅炉的燃烧效率决定于锅炉燃烧系统状态的好坏,为此,应保证锅炉燃烧系统的稳态运行过程处于优化状态.采用自动控制系统来对锅炉的燃烧过程进行控制,可以实现系统工作过程中能长时间维持在稳定运行状态,而要保证锅炉燃烧系统处于稳态运行时能处于优化状态,则需对锅炉燃烧系统的稳态运行参数进行优化才能得以实现.这就要求锅炉燃烧过程中,通过控制回油阀的开度来调节喷向炉膛的喷油量时,必须同时调节向炉膛提供的送风量(空气量可用风道与炉内之间的压力差来表示),通过保持喷油量与送风量的最佳匹配来提高锅炉燃烧的热效率[1].此外,当送风量改变时,还应同时改变炉膛的引风量,使炉膛具有一个最佳的炉膛负压,这样就可以避免因喷火或漏风等因素导致的燃烧热效率降低,减少热损失,从而取得最大的燃烧效率.因此控制的核心问题是如何合理地控制喷油量、送风量、引风量和炉膛负压.为解决这一核心问题,在锅炉的稳态运行过程中,构造了这样一个优化模型,即优化模型

收稿日期:2003 10 07

作者简介:李维坚(1969 ),男,广西柳州人,讲师.

以喷油量、送风量和引风量作为优化模型的主要输入量,以蒸汽压力、炉膛负压和氧含量作为优化模型的输出量,以回油阀的开度(喷油量)、风门挡板的开度(送风量)和引风挡板的开度(引风量)作为决策量.在满足船舶锅炉燃烧过程中,各个决策量只允许在规定范围内变化,锅炉蒸汽压力的波动不能超过规定值的约束条件下,对优化模型的参数进行寻优[2,3].所建立的优化模型为

Q=k1x1(t)+k2x2(t)+k3x3(t)

其中:k1、k2、k3分别为送风量、引风量、喷油量的单位成本;x1(t)、x2(t)、x3(t)是调节器的控制量,分别代表风门挡板的开度、引风挡板的开度、回油阀的开度.这三个量只能在规定的上下限内变化,其变化范围分别用变量:M IN-SWIN, M AX-SWIN;M IN-PWIN,MAX-PWIN; M IN-OIL,MAX-OIL来表示.其中:M IN-SWIN和M AX-SWIN分别为风门挡板开度的最小和最大规定值;M IN-PWIN和M AX-PWIN 分别为引风挡板开度的最小和最大规定值; M IN-OIL和MAX-OIL分别为回油阀开度的最小和最大规定值.

在此优化模型中,锅炉的蒸汽压力p是主要的监控参数,其变化规律与送风量、引风量、喷油量和蒸汽流量有关,蒸汽压力与送风量、引风量、喷油量和蒸汽流量之间的关系是一个非线性关系.在智能控制系统中,当前用得最多也最有效的是在学习(训练)过程中,采用Back Propag ation 算法的前向神经网络,因此这里用了一个4层的前向神经网络模型f(x1,x2,x3,q stm)来描述蒸汽压力与送风量、引风量、喷油量和蒸汽流量之间的这种非线性关系,即p=f(x1,x2,x3,q stm),其中,q stm代表蒸汽流量.在这个4层前向神经网络模型中,输入层有4个输入量(风门挡板的开度、引风挡板的开度、回油阀的开度和蒸汽流量),第二层和第三层各设置10个神经元,第4层是输出层.网络中相邻层之间采用全互连方式进行连接,而同层的各个神经元之间没有任何连接关系,输入层与输出层之间也没有任何直接的连接关系[2,3],蒸汽压力p也只能在规定的上下限内变化:M IN-p

当优化出决策变量,求得最佳氧含量及炉膛负压值之后,还须进一步求取风门挡板的开度、引风挡板的开度、回油阀的开度、氧含量及炉膛负压最佳值.这就需要再构造另外的神经网络模型,来建立起氧含量和风门挡板的开度、引风挡板的开度、回油阀的开度及蒸汽流量之间的关系;建立起炉膛负压和风门挡板的开度、引风挡板的开度、回油阀的开度及蒸汽流量之间的关系,从而实现最佳值的求取.

上述优化模型的参数最优化问题中,具有一定的限制条件,在寻优过程中,可以用代价函数法或互相寻优法来进行处理[4].其中代价函数法是一种对实际计算和理论研究都非常有价值的优化方法,广泛用来求解约束问题.其原理是将优化问题中的不等式约束和等式约束加权转换后,和原目标函数结合成新的目标函数,求解该新目标函数的无约束极小值,以期得到原问题的约束最优解.在这里就是采用代价函数法来对优化模型进行求解,为此需将各个限制条件考虑到优化模型中,即将优化模型改写为

R( )=k1x1+k2x2+k3x3+ 8k=1c k g2k( )式中:c k(k=1,2,,8)是一个大于零的正数,在寻优过程中,开始时取一个较小值;g k(k=1,2, ,8)是据风门挡板开度的最小和最大规定值,引风挡板开度的最小和最大规定值、回油阀开度的最小和最大规定值,蒸汽流量最小和最大规定值而取得的限制条件.寻优的过程如下:

(1)取c k初值,按指标函数R( )进行寻优,即设法找到使R( )!min的 n.

(2)增大c k值,再次对指标函数R( )进行寻优,得到另一个值 n+1.

(3)若| n+1- n|? ( 为事先给定的一个逼近精度),则说明 n+1就是最优值,否则回到#,重新进行寻优.因为c k是个大于零的正数,

R( )的第二项又是 8k=1c k g2k( ),若 n+1与 n相差很小,则g k( n+1)必定十分接近于零,也就是说,符合限制条件,因此 n+1就是最优值.

2 4层前向神经网络模型的训练

函数p=f(x1,x2,x3,q stm)是一个4层前向神经网络模型,对网络模型的训练就是利用输入输出样本集对,对网络的权值和阈值进行学习和调整,以使网络实现给定的输入输出映射关系.这样经过训练的BP网络,对于不是样本集中的输入

46

大连海事大学学报 第30卷

也能给出合适的输出,使代价函数最小,从而具有泛化(Generalization)功能.

由于在复杂系统控制中,任何预先设计好的训练数据都难以覆盖实际系统所有可能的模式,因此,为提高网络在实际应用中具有良好的推广特性,应采用动态数据集合对网络进行在线跟踪训练,做到对系统的跟踪逼近,使用时,训练数据随控制周期动态更新,能全局寻优的自适应快速多层前馈神经网络算法(即GCAQBP 算法)[5]

是这样的一种算法.

GCAQBP 算法的实现过程如下:

(1)网络及训练参数初始化.给出训练参数:初始学习率增益 0,系数!,动量因子 .在[-0.1,0.1]之间随机选取网络初始权、阈值.对网络输入信息进行归一化处理.

(2)正向传播计算.根据网络输入输出关系,计算网络输出.

其中,网络各层神经元的输入输出关系为

y l

i =?(x l

i )

x l

i

= N

l -1

j =1

#l ij y

l -1j

+?l i

(l =1,2,3,4)

(3)反向传播计算.首先计算反向误差函数%j

(%l

i )(k )=y l

i (k )-y di (k ) (l =1,2,3,4)

(%l i

)(k )=

N

l -1

j =1

%

l +1j

(k )

??(x

l +1

j

(k ))#l +1ij

(k ) (l =1,2,3,4)

其次,计算误差函数对权值梯度向量的范数

% W E %2

=

4

l =2 N

l

i =1

N

l -1

j =1

(%l i )2(??(x l i ))2(y l -1

j )2

最后计算学习率&(t )及对学习率进行修正.考虑BP 算法中误差和误差梯度信息对权值调整的综合影响,学习率&取为如下自适应形式:

&(t )= E ! % W E %

2

式中:E 为误差指标函数;!取值范围为00为学习率增益,为避免初始学习时误差过大而造成学习过程振荡,以及个别受扰点大误差的影响,增强学习过程的鲁棒性,对学习率增益

作如下修正:

= 0

(1+ )其中: 0为初始学习率增益.当学习率自适应变化时,为有效避免学习过程产生振荡,加快收敛速度,?E >0时,动量因子 的取值为0;当?E <

0时,动量因子 的取值为 .

(4)据GCAQBP 算法的计算公式#l

ij (k +1)=#l

ij (k )-&%l

i (k )??(x l

i (k ))

y l -1

j (k )+ ?#l

ij (k )

更新权值.

(5)判断训练是否满足精度和学习时限要求,若满足精度要求,则应用所得结果;若不满足精度要求,且学习时限没到,则直接返回步骤(2),重新学习;若不满足精度要求,学习时限又已到,则需先更新训练数据再返回步骤(2),重新学习[4]

.在取得模型的优化结果后,为了与底层控制系统进行连接,在这里还用类似的方法来建立氧含量和喷油量、送风量、引风量和蒸汽流量之间的关系模型及建立炉膛负压和喷油量、送风量、引风量和蒸汽流量之间的关系模型.所建立的这两个关系模型,使用与前述的前向神经网络模型相类似的模型来表示,训练方法也与前述的前向神经网络模型的方法一样,除输入、输出数据不一样外,算法是一样的,但训练出来的模型表示了不同的关系.

3 实时控制系统的控制规律

在船舶锅炉燃烧实时控制系统中,蒸汽压力的控制是保证锅炉运行过程中,其波动不超出允

许的范围;送风量控制则是在保证送风压力在规定范围内变化时,在送风压力允许的条件下,按规定的风油比来调节送风量,维持烟气中的氧含量在一定的范围内,实现经济燃烧;引风量控制则是用来保证炉膛负压值为最优值,实现尽可能大的

燃烧效率.为了保证控制系统能长期稳定运行,船舶锅炉的燃烧控制采用模糊控制算法与常规定值

控制算法相结合的控制规律.当被控量蒸汽压力的偏差值及被控量的变化率在事先设置的偏差死区范围及偏差变化率死区范围内时,实时控制系统按照定值控制规律进行控制;而当被控量的偏差值及被控量的变化率超过事先设置的偏差死区范围及偏差变化率死区范围内时,则采用模糊控制规律来进行控制.这样,系统即能满足船舶锅炉蒸汽压力的变化要求,又允许被控量在规定范围内变化,从而避免了执行机构不必要的频繁动作,实现船舶锅炉的燃烧优化控制.

4 结束语

本控制方案通过提出以下控制策略:建立蒸

47第1期 李维坚,等:船舶锅炉燃烧系统的优化控制

汽压力与喷油量、送风量、引风量和蒸汽流量之间的关系模型;建立氧含量和喷油量、送风量、引风量和蒸汽流量之间的关系模型及建立炉膛负压和喷油量、送风量、引风量和蒸汽流量之间的关系模型,来对船舶锅炉燃烧控制系统的运行参数进行优化.该控制策略采用了传统的PID 控制与最优控制相结合的方法,是作为实现系统长期稳定运

行及取得相应节能效果的措施之一.

参 考 文 献:

[1]方金和.轮机自动化[M ].大连:大连海事大学出版社,1998.290.

[2]潘 丰,须文波.基于Honeyw ell Dcs 的锅炉燃烧稳态优化控制[J].电子技术应用,2003(3):29 30.[3]徐礼国,徐 玲,须文波,等.锅炉燃烧系统稳态运行参数优化[J].电子技术应用,2001(7):40 42.[4]熊光楞.控制系统数字仿真[M ].北京:清华大学出版社,1991.155 157.

[5]何玉彬,李新忠.神经网络控制技术及其应用[M ].北京:科学出版社,2000.39 45

Research on the optimizing control of marine auxiliary boiler burning control system

LI Weijian 1

,YU Hongliang

2

(1.M arine E ng .Dep t .Guangzhou M aritime College,Guangzhou 510725,China;

2.Marine Eng .College ,Dalian Maritime Univ.,Dalian 116026,China)

Abstract :T he running characteristics of marine aux iliary boiler burning control system is analyzed.The construction of optimizing model to marine auxiliary boiler burning control system and the solution of the optimizing model,the control regulation of marine aux iliary boiler real time burning system are discussed.A control method is introduced that combines classical PID control and optimal control.The parameters of the marine auxiliary boiler burning control system is optim ized by construction of the relationship model be tw een the amount of spray oil,amount of sending w ind,amount of pilot w ind,steam rate of flow to steam pressure,the oxygen content and the negative pressure of furnace.

Key words :marine auxiliary boiler;burning control system;optimizing model,BP neural network

(上接第44页)

Harmonic analysis in an electric propulsion

system with the cyclo converter

NIE Yansheng 1

,WANG Xiaoyan 2

,WANG Yongquan 1

,HUANG Pengcheng

1

(1.Marine Eng .College ,Dalian Maritim e U niv.,Dalian 116026,China;

2.Dalian Br anch ,China Shipping Development CO.LTD.Tramp CO.,Dalian 116001,China)Abstract :One of main problems to block the broader application of marine electric propulsion is a lot of har monic w ave generated in marine electric power system.A brief description about the harm of the harmonic w ave to m arine electric pow er system is given,then the harmonic generation and the feature of harmonic w ave in input current of the marine cyclo converter are analyzed.Based on this,the methods for compen sating the harmonic wave are discussed.At last,w hen trying to use cyclo converter marine electric propul sion system,an active pow er filter has to be used;has to be considered w hen ty pe selecting.Both of the marine electric propulsion system and the harmonic trap devices.

Key words :marine electric propulsion system;harmonic w ave analysis;cyclo converter

48 大连海事大学学报 第30卷

基于声波测温的电站锅炉燃烧优化控制系统

基于声波测温的电站锅炉燃烧优化控制系统 项目建议书 华北电力大学

一目前电站锅炉燃烧系统存在的问题 1.1 共性问题 1.1.1 两对矛盾需要解决 ①锅炉效率()与污染排放(NOx)之间的矛盾 当我们追求高的锅炉效率的时候,势必要使煤粉在炉充分燃烧。要达到这一目的,则需要提高炉燃烧温度以及使用较高的过量空气系数,而这两方面都会增加污染的排放。反之,则锅炉效率较低。炉的高温燃烧还会带来水冷壁结渣等事故的发生。因此需要在两者之间做出最佳的折中选择。 ②锅炉排烟热损失()和机械未完全燃烧热损失()之间的矛盾 对于锅炉效率影响最大的两项热损失—排烟热损失()和机械未完全燃烧热损失()—而言,也存在类似的矛盾。提高炉燃烧温度以及使用较高的过量空气系数,可以降低机械未完全燃烧热损失(),但是排烟热损失()则会随之增加。因此也需要在两者之间做出最佳的折中选择。 1.1.2 四个优化问题需要解决 ①锅炉效率()与污染排放(NOx)的联合优化 通过寻找最佳的二次风门和燃尽风门组合,建立良好的炉燃烧空气动力场,可以达到锅炉效率()与污染排放(NOx)的共赢。 ②锅炉排烟热损失()和机械未完全燃烧热损失()的联合优化 通过寻找最佳的烟气含氧量(O2)设定值,可以达到锅炉排烟热损失()和机械未完全燃烧热损失()的共赢。 ③汽温控制方案的优化 联合调节燃烧器和喷水,尽量使用燃烧器摆角等方式来调节汽温而减少减温水的使用量,可以较大幅度的提高机组热效率。 ④防止炉结渣的优化 这可以通过以下方法实现:一是寻找最佳的煤粉和二次风门、燃尽风门的组合,调整均衡燃烧,防治火焰偏斜;二是调节炉膛出口温度目标值;三是组织合理的吹灰优化。 1.1.3 炉膛三个参数的测量需要解决

燃烧控制系统的设计(DOC)

目录 一绪论...................................................................................................................................... 二燃烧控制系统的设计 2.1燃烧过程控制任务 2.2燃烧过程调节量 2.3燃烧过程控制特点 三燃料控制系统 ........................................................................................................................ 3.1燃料调节系统...................................................................................................................... 3.2燃料调节——测量系统...................................................................................................... 3.3给煤机指令.......................................................................................................................... 四600MW火电机组DCS系统设计 4.1 电源部分 4.2 通信部分 4.3 系统接地 4.4 软件部分 五结论................................................................................................................................... 参考文献...................................................................................................................................

锅炉控制系统简介

锅炉控制系统简介 本锅炉控制系统设计遵循先进、可靠、安全、经济、适用、开放的原则。系统控制器采用DCS、计算机系统,能实现锅炉及辅机的热工控制、电气检测、联锁保护、自动调节及控制等,实现锅炉房生产过程控制自动化。 系统组成及技术要求 1系统组成 锅炉采用DCS控制系统集中监控,在锅炉房就地控制室内布置锅炉控制设备。整个锅炉系统的监视及控制功能将通过DCS控制系统实现,DCS将对锅炉系统所有被控对象进行监控,包括闭环控制、设备启、停控制,设备启停状态、远方/就地切换、主要工艺参数的监视(数据采集、LCD画面显示、参数处理、越限报警、制表打印等),并完成设备的连锁保护。机组正常运行时,运行人员主要在锅炉房就地控制室中通过LCD液晶显示器、键盘、鼠标来完成锅炉系统控制功能,只有非正常状态下,运行人员通过就地手操进行控制。 锅炉控制系统采用一套带冗余配置的DCS系统控制器及操作员站,实现对锅炉系统的集中监控,能对锅炉系统进行按键操作的全自动启动和停止的控制。控制系统由下述几部分组成:传感器、变送器,调节器及电动执行器等。同时系统能实现 对重要设备的手/自动切换和必要的手操功能。 锅炉自动调节系统包含下列项目: a 汽包水位自动调节; b 炉膛压力自动调节; c 蒸汽温度自动调节; DCS控制系统按dcS系统进行设计,其系统的配置及主要特性如下: 2、控制方式 采用集控、单机控制方式,集控方式下可以通过操作员站

的键盘和鼠标,对主、辅机设备进行启停,并由联锁功能;对各调节回路进行手动和自动控制;在手动方式下,通过备用操作盘启停设备和用硬手操对调节回路进行控制。系统主要运行在集控方式,只有控制系统故障时才在单机方式下运行。 集控方式下控制的设备有:引风机,鼓风机,给煤机,给水泵等。集控方式下的调节回路有:锅炉喂煤调节,炉膛负压调节,主蒸汽温度自控调节、汽包水位三冲量调节等。 3、主要画面监视及操作功能: 流程图参数显示 调节回路操作显示 电机控制显示 顺序启停操作 事件、报警显示 趋势记录显示保护报警显示 信号一缆表显示报表打印

锅炉控制系统的组态设计

; 济南铁道职业技术学院 电气工程系 毕业设计指导书 课题名称: 锅炉控制系统的组态设计《 专业电气自动化 班级电气0831 姓名 cmy ~ 设计日期至 指导教师 ly ? 2010、11

济南铁道职业技术学院电气工程系 毕业设计指导书 2010、11 一、设计课题: ! 锅炉控制系统的组态设计 锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。由此组成一个简单的液位控制系统。 二、设计目的: 通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。 三、设计内容: 掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。 — 四、设计要求及方法步骤: 1.设计要求: (1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。 (2)各控制画面要有手/自动切换。

(3)掌握PID控制算法。 2.运用的相关知识 (1)组态控制技术。 (2)过程控制技术。 ~ 3.设计步骤: (1)熟悉、掌握锅炉的生产工艺。 (2)设计各分系统的控制方案。 (3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。 (4)编写设计论文。 五、设计时间的安排: 熟悉题目、准备资料 1周 @ 锅炉控制系统的工艺了解 1周 监控画面的设计 2周 控制算法的编制和系统调试 3周 论文的编写 2周 准备毕业设计答辩 1周 六、成绩的考核 在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。 … 答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。 成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。 成绩按优秀、良好、中、及格、不及格五个等级进行评定。

锅炉APC先进过程优化控制解决方案

专业服务,创造价值 循环流化床锅炉APC先进过程 优化控制解决方案 2013-11-13

1 公司简介 集团(中控)始创于是中国领先的自动化与信息化技术、产品、解决方案供应商,业务涉及工厂自动化、公用工程信息化、装备自动化等领域。公司是中控科技集团的核心成员企业,致力于工厂自动化领域的现场总线与控制系统以及流程模拟仿真系统的研究开发、生产制造、市场营销及工程服务。 2 行业背景 2.1 行业现状 循环流化床(CFB)燃烧技术是最近几十年发展起来的一种新型燃烧技术,由于循环流化床锅炉具有燃料适应性广、燃烧效率高、高效脱硫的特点,因此近年来有了很大的发展,我国的循环流化床也经历了小型、中型、大型三个发展阶段,循环流化床能够解决我国燃烧锅炉存在包括环境问题在内的诸多现实问题,因此中国将成为循环流化床锅炉最大的商业市场。 2.2 行业难点 由于循环流化床锅炉燃料是在流化状态下燃烧,锅炉燃烧系统惯性大,各个变量之间相互影响,加上有飞灰循环等影响因素,因此CFB锅炉燃烧系统是一个大滞后、强耦合,多干扰的复杂非线性系统,自动燃烧优化控制难度较大,是业内公认的控制难点。 鉴于循环流化床锅炉燃烧的复杂性和特殊性,对一般煤粉锅炉和其他过程控制对象行之有效的常规控制方法,已难保证循环流化床锅炉各项控制指标的实现。有别于常规控制,中控锅炉APC先进控制解决方案采用多变量模型预测控制、专家规则控制等智能控制策略,能够更好地结合专家经验的同时克服系统大滞后、强耦合、多干扰等控制难点,可以较好地实现CFB锅炉系统安全高效率的燃烧自动控制,各项指标稳定度大幅提升,经济效益比较可观。

3 项目可行性分析 3.1 现场概述 贵公司炉机系统属中小型循环流化床多炉多机系统,实行母管制运行方式。 一次检测仪表性能良好,风机调节为挡板和变频控制,主汽温度挡板调节,除挡板调节死区稍大外,其余执行器调节死区小于1%,即执行器死区情况基本满足优化控制需求。 流化床控制系统采用中控DCS系统,DCS上配置传统的PID自动控制回路中,汽包水位控制回路、给煤控制、一次风控制、二次风控制、引风控制、减温水控制等大部分回路,现场均由操作人员手动操作。 3.2 优化空间 3.2.1 数据分析 对现场DCS数据进行取样分析,以#炉为例,数据包选取年10月1日至年10月20日,总计20天的数据,进行离线统计分析,主要分析主汽压力、主汽温度、烟氧含量、炉膛负压、床层温度、床层压差六个指标的平均值与平均波动幅度两项特性值。如下表所示: 序号指标平均值平均波动范围备注 1 主汽压力8.3MPa +0.5Mpa 2 主汽温度540℃+0.5℃ 3 烟氧含量 3.5% +1% 氧量较低 4 炉膛负压10Pa +120Pa 5 床层温度955℃+15℃床温较高 6 床层压差8.9KPa +0.3KPa 通过数据统计结果分析可知,由于现场燃煤的挥发分较高,氧量平均值较低,同时床温已经较高,因此燃烧效率本身提高空间就有限了,但各指标的平稳度还是有提升空间的,同时通过综合调整,可适当提高锅炉的传热效率,从而进一步

船舶辅锅炉及造水装置

第七章船舶辅锅炉及造水装置 锅炉是船舶动力装置的重要组成部分,其通过燃料(一般为燃油)的燃烧把化学能转化为热能,使炉的水变成蒸汽(或热水)。在以蒸汽轮机为主机的船上,锅炉产生的过热蒸汽用于驱动船舶,故称其为主锅炉,这种形式在普通商船上已经很少采用;而在柴油机为主机的船上,锅炉产生的饱和蒸汽仅用于加热燃油、滑油以及满足生活使用,故称其为辅锅炉,“育鲲”轮便是如此。 商船一般设置1台饱和蒸汽压力为0.5~1.0MPa、蒸发量为0.4~2.5t/h的辅锅炉。而油轮则因为需要加热货油、驱动货油泵、清洗油舱等,需要大量蒸汽,故一般应设置两台辅锅炉。在大型客船上,因旅客人数较多,一般也设置两台辅锅炉,万一有一台损坏也不至于影响旅客和船员的日常生活。 船舶在航行过程中,主机的排气量很大,温度也很高。大型低速二冲程船舶柴油机的排气温度一般在300℃以上,四冲程中速柴油机的排气温度可达400℃左右。而水蒸气在压力为0.5 MPa时,其饱和蒸汽温度为165℃;压力为1.3MPa时,饱和蒸汽的温度也仅为194℃。所以,可以利用船舶主柴油机的排气余热来产生蒸汽。在船舶主柴油机的排气管上,一般都装设有废气锅炉。废气锅炉不但可以节约燃油,还可以降低柴油机排气噪音,起到节能减排之功效。 锅炉的主要性能指标有:蒸发量、饱和蒸汽压力、效率、受热面积、蒸发率、炉膛容积热负荷等。 “育鲲”轮在机舱顶部装有燃油锅炉和废气锅炉各一台。停泊时,由燃油锅炉提供蒸汽;航行时,主要由废气锅炉提供蒸汽,必要时燃油锅炉可同时使用。 第一节燃油锅炉 一、燃油锅炉的结构 燃油锅炉利用燃油燃烧时发出的热量来产生蒸汽。燃油锅炉本体一般包括炉膛、蒸发受热面、水腔和蒸汽空间等。锅炉本体上还应有一系列的附件,如水位计、安全阀、主蒸汽阀、炉水取样阀、上/下排污阀等。 传统的燃油锅炉主要有两种类型,即烟管锅炉和水管锅炉。若燃油燃烧产生的烟气在受热面管流动,管外是水,则该锅炉为烟管锅炉。若锅炉受热面管流动的是水或汽水混合物,而烟气在管外流动,则该锅炉为水管锅炉。近些年,一种新型的针形管锅炉在船上取得了广泛应用,“育鲲”轮燃油辅锅炉便是这种类型。 “育鲲”轮针形管式燃油锅炉为德国生产的SAACKE KLN/VM-2.5/7型,其结构如图7-1所示。该锅炉的圆筒形锅壳(汽水空间)10部为水腔B,上部是蒸汽空间A,下部设有圆筒形的炉膛3。炉膛底板11焊接在炉膛本体上,上面覆盖有耐火层12。 在炉膛顶部和汽水空间有一系列的垂直烟管4,有针形管5,每一个烟管及其部的针形管构成一个单元。流经各烟管的烟气最终汇聚到烟箱1,然后经顶部的烟囱7排至大气

燃烧控制系统及优化

燃烧控制系统及优化 一、燃烧控制系统 1风烟系统流程与作用 锅炉烟风系统主要包括一次风机、送风机及引风机等系统。一次风机和送风机主要用来克服供燃料燃烧所需空气在空气预热器、煤粉设备和燃烧设备等风道设备的系统阻力;引风机主要用来克服热烟气在受热面管束(过热器、炉膛后墙排管和省煤器等)、空气预热器、电除尘器等烟道的产生的系统阻力,并使炉膛出口处保持一定的负压。锅炉的风烟系统由送风机、引风机、空气预热器、烟道、风道等构成。冷空气由两台送风机克服送风流程(空气预热器、风道、挡板等)的阻力,并将空气送入空气预热器预热;空气预热器出口的热风经热风联络母管,一部分进入炉两侧的大风箱,并被分配到燃烧器二次风进口,进入炉膛;另一部分由一次风机经空预器引到磨煤机热风母管作干燥剂并输送煤粉。炉膛内燃烧产生的烟气经锅炉各受热面分两路进入两台空气预热器,空气预热器后的烟气进入电除尘器,由两台引风机克服烟气流程(包括受热面、脱硝设备、除尘器、烟道、脱硫设备、挡板等)的阻力将烟气抽吸到烟囱排入大气。 引风机:克服尾部烟道、除尘器、空气预热器等的压力损失。使炉膛内产生的烟气能够顺利排除,并使炉膛内维持一定的负压,让锅炉能够良好的充分燃烧。以提高经济效益。 一次风系统:一次风的作用是用来输送和干燥煤粉,并供给煤粉挥发份燃烧所需的空气。 二次风系统:二次风是在煤粉气流着火后混入的。由于高温火焰的粘度很大,二次风必须以很高的速度才能穿透火焰,以增强空气与焦碳粒子表面的接触和混合。二次风由两台二次风机供给,进入空气预热器内加热后,由二次热风道送到锅炉四周,再由二次风管分层在不同高度进入炉内,供给燃料燃烧所需要的氧量,并实现分级送风,降低NOx排放。另一路从二次热风道引出送到给煤口和石灰石管线上作为密封风。 燃烧方式:鸳鸯湖电厂采用的燃烧方式是四角切圆燃烧方式,有24个燃烧器。工作原理是:煤粉气流在射出喷口时,虽然是直流射流,但当四股气流到达炉膛中心部位时,以切圆形式汇合,形成旋转燃烧火焰,同时在炉膛内形成一个自下

基于DCS的锅炉控制系统设计

DCS控制系统设计 一.被控对象: 图1 锅炉设备工艺 二.工艺要求 燃料和热空气按一定比例送入燃烧室燃烧,生成热量传递给蒸汽发生系统,产生饱和蒸汽Ds,然后经过热器,形成一定气温的过热蒸汽D,汇集至蒸汽母管。压力为Ph的过热蒸汽经负荷设备调节阀供给生产设备负荷用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱,排入大气。 三.DCS选型 本控制系统选择浙大中控Webfield JX-300XP系统。 四.硬件 ①控制站硬件 1.机柜:SP202 结构:拼装 尺寸:2100*800*600 ESD:防静电手腕 散热:两风扇散热 接地:工作接地,安全接地 2.机笼 电源机笼:四个电源模块,型号:XP521 I/O机笼:20个槽位,用于固定卡件 3.接线端子板 冗余端子板:XP520R 4.端子转接板 5.主控卡:XP243X 地址范围:2到127。 后备锂电池模块:JP2,保持参数不丢失。 6.数据转发卡:XP233

地址范围:0到15 7.I/O卡件 (a)I/O点数计算 Ⅰ.锅炉控制系统中数字量输入点数: 启动;停止;点火;手动关闭蒸汽阀 以上共计四个数字量输入。 Ⅱ.锅炉控制系统中数字量输出点数: 给风;1号风机;给燃料;2号风机;蒸汽阀 以上共计五个数字量输出。 Ⅲ.锅炉控制系统中模拟量输入点数: 汽包液位、温度、压力。 以上共有三个模拟量输入(为了使模拟信号可以远传,变送器均选择电压式)。 (b)卡件选择 Ⅰ.XP363:触点型开关量输入卡。8路输入,统一隔离。 Ⅱ.XP362:触点型开关量输出卡。8路输出,统一隔离。 Ⅲ.SP314X:电压信号输入卡。4 路输入,点点隔离,可冗余 Ⅳ.XP221:电源指示灯。 ②操作员站硬件 1.PC机: 显示器;主机;操作员键盘,鼠标;操作员站狗; 2.Windows XP操作系统 3.安装Advan Trol-Pro实时监控软件。 ③工程师站硬件 1.PC机 显示器;主机;工程师键盘,鼠标;工程师站狗 2.工程师站硬件可以取代操作员站硬件 3.Windows XP操作系统 4.安装Advan Trol-Pro实时监控软件 5.安装组态软件包 ④通信网络 (a)信息管理网 通讯介质:双绞线(星形连接),50Ω细同轴电缆、50Ω粗同轴电缆(总线形连接,带终端匹配器),光纤等; 通讯距离:最大 10km; 传输方式:曼彻斯特编码方式; (b)过程控制网络(SCnet Ⅱ网) 传输方式:曼彻斯特编码方式; 通讯控制:符合 TCP/IP 和 IEEE802.3 标准协议; 通讯速率:10Mbps; 节点容量:最多 15个控制站,32个操作站、工程师站或多功能站; 通讯介质:双绞线,50Ω细同轴电缆、50Ω粗同轴电缆、光缆;

#蒸汽锅炉控制系统技术方案

DL-1000燃煤蒸汽锅炉控制系统技术方案 设计依据和原则 1.依据客户北京昌科供暖中心有关45t/h、35t/h、20t/h燃煤蒸汽锅炉控制系统的要求,并按照自控装置系统必须科学、合理、成熟、安全可靠、稳定、可扩展以及性价比高的原则进行设计。 2.符合以下规范与标准: 《蒸汽锅炉安全技术监察规程》1996; 《锅炉房设计规范》GB50041-92; 《工业锅炉监测与控制装置的配置标准》DB31/T72-1999; 《工业锅炉热工试验规范》GB10180-88; 《电气装置安装工程施工及验收规范》GB50303-2002; 《低压电器基本标准》GB1497-93; 《工业自动化仪表工程施工及验收规范》GBJ50093-2003。 1.0系统概述 本系统为DL-1000分散型集中控制系统,是集控制技术,通讯技术于一体,是当今控制系统的主流机型。可完成调节控制,联锁保护,顺序控制,数据采集等任务。人机接口采用触摸屏及上位机进行实时监控。运用多媒体技术,具有3D动画、全中文显示、声光提示等丰富多彩的人机互动界面,能直观地显示锅炉和燃烧的实际情况及燃烧负荷状态,各运行数据实时动感地显示在彩色触摸屏上,使锅炉的运行状态一目了然,操作更直观、更简便。该系统具有良好的互联性和开放性,留有充分的升级和后备功能,满足IEC61158和EN50170标准的要求。并且具有在恶劣工作环境下安全可靠运行和全视角直观显示锅炉系统工作状态的优点。 1.1 硬件 1.1.1 概述 本方案所配置的系统硬件均是有现场运行实绩的,先进可靠的和使用以微处理器为基础的分散型硬件。 1.1.2 处理器模件(PLC CPU226) PLC为可编程逻辑控制器,是一种以微处理器为基础,综合了现代计算机技术、自动控制技术和通讯技术发展起来的一种通用的工业自动控制装置,由于它拥有体积小、功能强、程序设计简单、维护方便等众多优点,特别是它适应恶劣工业环境的能力和它的高可靠性,使它的应用越来越广泛。 其主要负责数字量的数据处理和运行(控制),数据高速公路通讯管理和过程输入/输

船舶辅锅炉燃烧时序控制

船舶辅助锅炉的燃烧时序控制 目录 一前言 (3) 二锅炉的类型 (3) 三电磁阀认识 (5) 四时序控制功能 (7) 五燃烧时序控制实例 (9) 六参考文献 (13)

摘要 在现代内燃机动力装置的船舶上,辅助蒸汽锅炉(简称辅锅炉)是对水进行加热而产生蒸汽的设备。船用锅炉的种类较多,从结构、工作特性方面基本可分为火管式和水管式两大类。锅炉是发电、炼油、化工、造纸、制糖等工业部门必不可少的动力设备。由于设备分散、管理不善或技术上的原因,多数锅炉目前处于人工控制状态。人工控制不仅加大了操作工人的劳动强度,而且燃料的消耗量与蒸汽生产量的比值主要取决于操作工人的技术水平和工作责任心,难以使锅炉处于良好的工况,增加了燃料消耗,降低了锅炉的热效率,增加了环境污染。由于计算机具有记忆、高速运算和便于集中控制等优点,而且计算机程序具有灵活性,可以方便地组成和修改控制算法,所以在锅炉控制中采用微机代替人工进行控制。 关键词:辅助蒸汽锅炉计算机控制电磁阀PLC

前言 在柴油机动力装置的货船上,加热燃油、滑油、水及供生活所需要的蒸汽,都来自小型辅锅炉。 辅锅炉具有蒸发量小(一般小于5t/h),气压低(一般低于1MPa),对蒸汽品质要求不高等特点,所以容易实现自动化。它包括水位和蒸汽压力自动控制,燃烧的时序控制及安全保护等。控制系统要求工作可靠,维修简单。造价低,便于管理。船用锅炉的种类较多,从结构、工作特性方面基本可分为火管式和水管式两大类。锅炉是发电、炼油、化工、造纸、制糖等工业部门必不可少的动力设备。由于设备分散、管理不善或技术上的原因,多数锅炉目前处于人工控制状态。人工控制不仅加大了操作工人的劳动强度,而且燃料的消耗量与蒸汽生产量的比值主要取决于操作工人的技术水平和工作责任心,难以使锅炉处于良好的工况,增加了燃料消耗,降低了锅炉的热效率,增加了环境污染。由于计算机具有记忆、高速运算和便于集中控制等优点,而且计算机程序具有灵活性,可以方便地组成和修改控制算法,所以在锅炉控制中采用微机代替人工进行控制。 锅炉的类型 在现代内燃机动力装置的船舶上,辅助蒸汽锅炉(简称辅锅炉)是对水进行加热而产生蒸汽的设备。船用锅炉的种类较多,从结构、工作特性方面基本可分为火管式和水管式两大类。 锅炉的组成主要包裹三部分:燃烧室——供燃油燃烧产生热量的炉膛(或炉胆);火管(或水管)——将热量给炉水使其气化的管簇;容汽空间——蒸汽从水中分离出来所占的空间。 船用辅锅炉主要有以下类型。 1.烟管式(又称火管式)辅锅炉

锅炉温度控制系统设计方案

锅炉温度控制系统设计方案 第1章绪论 1.1课题背景及研究的意义 锅炉是工业生产中最常用的能量转换设备之一,它通过转化燃料中的化学能或利用电能转化为能,成为人们广为依赖的采暖工具。在电锅炉中,利用电阻在通电流状态下发热的原理,通过对电流的大小的控制对温度的控制。由于电流易控制的特点,电锅炉在小型锅炉和精密控温的到使用者的青睐。但是,在大部分城市中,由于国家实行“西气东输”计划,燃气价格为普通人家所接受,经数据统计和计算,燃气锅炉更便宜,比电锅炉应用更受欢迎。 锅炉温度的稳定是锅炉性能的一项重要指标,温度过高和温度过低都会给锅炉的稳定运行和生产造成重大的的影响,甚至发生安全事故。温度过高,导致锅炉金属材料和相关部件的超温过热,加速管材金属氧化,降低锅炉和相关部件的使用寿命;温度过低,假定在保持锅炉蒸发量不变的情况下,锅炉的损耗将大幅上升,能源利用率因此下降,而且负荷也将受到限制。所以,限定锅炉在安全温度成为每一个温度控制系统的核心部分。 随着科技发展,人们对采暖方式和热水方式渐渐发生变化,家用燃气锅炉进入寻常百姓家,但是国燃气锅炉的开发与应用还处于较落后的阶段,市场上的大多数此类商品还是以国外为主,所以燃气锅炉依然有广大市场与研究价值。 本设计以家用燃气锅炉为研究目标,使用AT89C51单片机为控制核心组成温度控制系统,采用热电阻感应温度的变化,单片机实现收集数据、处理数据、发送控制命令的功能,从各方面详细的说明单片机在温度控制的应用。 1.2 温度传感技术 自工业时代以来,随着大型机械的出现和广泛应用,温度对机械工作性能的影响越来越被人们所重视,对温度的未知可能造成机械损坏或发生重大事故。于是温度传感器便应运而生。温度传感器用在生活的方方面面,从冶金行业到每一个人身边中的一部分,它已经随着时代的步伐在进步。 目前使用的较为先进的温度传感器是数字传感器。数字传感器的优点是不需要像传统方式一样加入转换部分,利用当今成熟的集成技术,在其部已经集成了感应温度系统和温度转换系统,尤其是它单端数据输出的功能,极大减少对主控

循环流化床锅炉燃烧过程自动控制的优化方法

循环流化床锅炉燃烧过程自动控制的优化方法循环流化床锅炉CFB的控制系统的现状 目前,国内中、大型循环流化床锅炉CFB(CirculatingFluidizeBed)投运数量越来越多,这些电厂一般采用DCS(DistributedControlSystem:分散控制系统)进行机组运行控制。DCS控制系统应用于煤粉锅炉经验已经很成熟,而且自动化水平、安全性都比较高。对于国内的循环流化床锅炉,目前的DCS控制系统现状基本是套用煤粉炉的DCS控制逻辑,只是稍加改动;另外基于国内电厂基建现状,多数机组都是在抢工期的情况下投运的,所以留给控制系统研究人员的研究时间几乎没有。然而循环流化床锅炉的燃烧机理十分复杂,循环流化床锅炉的设计尚处于经验设计阶段,系统中变量之间的耦合比较紧密,而且具有严重的非线性。循环流化床锅炉热工自动控制,特别是燃烧自动控制方面的问题已成为其进一步推广应用的主要障碍,循环流化床锅炉的运行自动化已成为其走向实用的关键之一。 在机组基建调试期间,大家对于控制系统一般都是只要能保证锅炉正常启动和停运就行了,至于控制系统的优化、逻辑的优化、自动的投入与优化、锅炉保护的设定等都是简单地在煤粉炉的控制理念下做一些简单修改。然而,循环流化床锅炉和煤粉锅炉从燃烧机理上说有很大的区别,这就决定了控制逻辑及理念应该有很大的不同。所以套用煤粉锅炉的控制理念往往不能适合循环流化床锅炉。这也就是目前为什么许多循环流化床锅炉很多自动投不上、许多保护不敢投,从

而造成循环流化床锅炉的运行人员数量多,劳动强度高,效率低下等,而且锅炉的运行也极为不稳定。这就给我们的制造厂、电厂及试验研究人员提出了一个课题:如何使DCS控制系统更加适合循环流化床锅炉。 循环流化床锅炉燃烧过程自动控制的特点 循环流化床锅炉不同于煤粉炉,其控制回路多,系统比较复杂,控制系统一般包括以下主要回路:汽包水位控制;过热汽温控制;燃料控制;风量及烟气含氧量控制;炉膛负压控制;床层温度控制;料层高度控制;循环灰控制。对于汽包水位控制和过热汽温控制特性与通常的煤粉炉相同,在此不予以分析,只对与循环流化床锅炉燃烧相关的控制系统的特点进行分析。循环流化床锅炉燃烧过程自动控制的基本任务是使送入锅炉内的燃煤燃烧所提供的热量适应锅炉蒸汽负荷的需要,同时还要保证锅炉安全经济运行,燃烧控制系统的任务归纳起来有如下几个方面: 2.1.维持主蒸汽压力稳定。汽压的变化表示锅炉的蒸汽量与负荷的耗汽量不匹配,需要相应地改变燃料的供给量,以改变锅炉的蒸发量。 2.2.保证锅炉燃烧过程的经济性。改变燃料量的同时,相应地调节送风量,使之与燃料量匹配,保证锅炉燃烧的经济性. 2.3.引风量与送风量相配合以保证炉膛压力在正常的范围内,保证炉膛的安全运行;

船舶辅锅炉操作与运行

船舶辅锅炉操作与运行 一、辅锅炉点火前的准备工作 1.本体及汽水系统的准备 (1)检查锅炉本体,并使其处于工作状态 (2)检查给水系统,并使其处于工作状态 (3)检查蒸汽系统并使其处于工作状态 (4)检查凝水系统,并使其处于工作状态 (5)检查排污系统,并使其处于工作状态 (6)给水泵试运转正常 2.燃油供风报警系统检查 (1)检查燃油系统及燃油设备,并使其处于工作状态 (2)油泵试运转正常 (3)检查供风系统,开启风机试运转正常 (4)检查自动调节报警系统无缺陷 3.安全阀空气阀水位表检查 (1)检查并实验安全阀强开装置 (2)检查水位表,并关闭冲洗阀,开启通汽和通水阀 (3)开启压力表旋塞,压力表泄放阀,空气阀,待产生蒸汽后,关闭泄放阀和空气阀4.上水与关闭主停汽阀操作 (1)启动给水泵给水,并使水位达到水管锅炉水位计低水位处(火管锅炉水位至水位计高水位处) (2)关紧主停汽阀后,再开启1/4周 二、辅锅炉点火升汽 1.辅锅炉点火操作 (1)准备工作完成后,启动风机进行预扫风 (2)关小风门,点火,高火燃烧。(每燃烧0.5-1分钟,按下停止按钮,停烧10-15分钟,然后再起炉) (3)当放汽阀有汽,投入正常升汽燃烧 2.供汽前的准备与暖管送气操作 (1)空气阀有蒸汽出来后应关闭 (2)当汽压达到0.3-0.4Mpa时,停炉检查,曾拆国的人孔和手孔螺栓在拧紧一次 (3)在升汽的过程中应多次冲洗水位计 (4)当压力达到额定工作压力后应进行上排污一次,冲洗水位计 (5)稍开主停汽阀,开蒸汽系统泄水阀,当有大量蒸汽冲出时关闭之,全开主停汽阀,对外供汽 三、辅锅炉运行管理 1.本体.系统.仪表读数检查 (1)经常检查锅炉本体是否有参漏 (2)经常检查附属装置是否有参漏 (3)经常检查个系统及附件工作是否正常 (4)经常检查和观察个仪表所指示的参数是否正常 2.水位冲洗计操作 (1)开冲洗阀关通水阀冲洗汽连通管后关闭通气阀 (2)开通水阀,冲洗水连通管后关闭

基于PLC的锅炉燃烧控制系统

专业英语 项目作业 指导教师 班级 姓名 学号 齐齐哈尔工程学院电气工程及其自动化专业 2016年12月29日

基于PLC的锅炉燃烧控制系统 1 引言 燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。 2 控制方案 锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能可靠工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在最佳燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。 2.1 控制系统总体框架设计 燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要最大限度的实施燃烧优化控制。控制系统的总体框架如图1所示。 图1单元机组燃烧过程控制原理图1 1徐亚飞,温箱温度PID与预测控测控制.2004,28(4):554-5572

P为机组负荷热量信号。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。 2.2 燃料量控制系统 当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中最基本也是最主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图2简单表示。 图2 燃料量控制策略 其中:NB为锅炉负荷要求;B为燃料量;F(x)为执行机构。 设置燃料量控制子系统的目的之一就是利用它来消除燃料侧内部的自发扰动,改善系统的调节品质。另外,由于大型机组容量大,各部分之间联系密切,相互影响不可忽略。特别是燃料品种的变化、投入的燃料供给装置的台数不同等因素都会给控制系统带来影响。燃料量控制子系统的设置也为解决这些问题提供了手段。 2.3 送风量控制系统 为了实现经济燃烧,当燃料量改变时,必须相应的改变送风量,使送风量与燃料量相适应。燃料量与送风量的关系见图3。2 刘官敏,温箱温度PID与预测控测控制.2004,28(4):554-5572

加热炉智能燃烧控制系统的优化

加热炉智能燃烧控制系统的优化 一、加热炉燃烧控制系统的组成 加热炉燃烧控制系统主要包括蓄热式烧嘴,换向阀、换向程序及安全控制单元,空气供给系统,煤气供给系统,放散系统,排烟系统,点火系统等7 部分。其中点火系统是整个燃烧系统的核心,能否稳定运行直接影响整个鋼坯的质量以及后续产品的轧制质量。蓄热式烧嘴供热系统采用三段供热,三段炉温制度。每个供热段均设有上下加热,即均热段上下加热、第一加热段上下加热、第二加热段上下加热。空气供给系统由助燃风机、空气管道、空气换向阀等组成。空气压力应考虑蓄热室、换向阀、空气管道及其调节测量装置在内的整个系统阻力损失。同空气管道一样,煤气由炉前煤气总管(直径DN1 200m m )分成三段分别进入煤气换向阀,从换向阀出来后经蓄热式烧嘴完成热交换后喷入炉内燃烧。在煤气总管上设有盲板阀、无泄露双偏心蝶阀和煤气低压快速切断阀。 二、加热炉存在的问题以及原因 1、存在的问题 目前,加热炉存在的主要问题是加热温度不均,加热能力不足。现在两座加热炉实际加热能力300 ~450t / h,低于设计能力480 ~520t / h(冷坯~热坯)。加热温度不均,板坯炉间温差25 ~35℃,同板温差20 ~45℃。而国内同类生产线加热质量指标是,板坯炉间温差≤ 15℃,同板温差≤ 15℃。 2、原因 对于目前的斯坦因加热炉燃烧模型,当产量、加热钢种、尺寸、坯料入炉温度、待(停)轧时间、开轧温度变化时,均需一段时间使得加热炉温度缓慢提升,以避免对整个煤气系统的强烈冲击,但由于现场节奏的提升,操作人员不能等到温度的缓慢上升,更不能及时准确地调整加热策略,同时受人为因素的影响,以及四班、个人操作

锅炉燃烧优化闭环控制系统的研究

锅炉燃烧优化闭环控制系统的研究锅炉燃烧优化闭环控制系统的研究 [摘要]: 锅炉燃烧过程是一个复杂的物理化学变化过程,目前的技术还无法从锅炉燃烧的机理来剖析整个燃烧过程。本文通过对目前国内外几类主要的燃烧优化技术的分析,了解到模型预测技术是解决这个问题的有效手段。常用的模型预测技术包括神经网络,贝叶斯概率统计等。这种技术将锅炉燃烧过程作为一个黑箱操作过程,通过大量历史数据的训练,调整模型结构,最终使模型具备模拟锅炉燃烧过程的功能。在此基础上,再通过多目标最优化技术,调整锅炉操作变量,使锅炉运行在优化区间,实现经济、环保、安全运行的目标。欧美国家已经在这种技术的基础上,开发了多个成熟的燃烧优化闭环控制系统,并有了很多成功的实施案例。 全文可以分为三个部分。首先,通过燃烧优化综述,明确目前火电厂实施燃烧优化闭环控制系统的必要性和可行性,并且比较了主要的几类燃烧优化技术,确定了使用基于模型预测多目标优化技术的燃烧优化闭环控制系统的目标;其次,根据模型预测技术的不同,从系统原理,系统架构,系统实施,系统运行等方面分别介绍了基于神经网络技术和贝叶斯概率统计技术的两类燃烧优化软件平台,并给出了各种软件平台的特性与实施效果综合比较表;最后,在结论部分提出了几点电厂在实施燃烧优化闭环控制系统可供借鉴的经验。 [关键词]:燃烧优化,闭环燃烧优化,模型预测,多目标优化,神经网络,贝叶斯概率统计,NeuSIGHT,Power Perfecter,GNOCIS PLUS,ULTRAMAX

1 燃烧优化综述 1.1前言 电厂安全节能运行和环保控制加强的需求。 用电负荷的持续紧张,导致多数电厂长期处于满负荷运行状态,其满负荷运行时间已达到6900~7000小时/年,一方面电厂运行安全的压力陡增,另一方面从增加负荷方面来提升利润空间已很小。在当前形势下,如何采用新技术来综合提升电力企业安全控制水平和成本控制成为新的课题。。随着国家针对电力企业污染物排放控制的加强,如何综合考虑污染物排放收费和节能增效间存在的冲突成为电力企业急需解决的课题。 自动化水平的不断进步,为燃烧优化闭环控制系统的成功实施奠定了基础。 随着科技进步,电力企业的自动化控制水平不断提高,就地设备执行控制能力逐步完善,使电厂DCS对设备实现更有效、更稳定的控制,为DCS系统响应运行优化系统的控制指令提供了高效保证,为燃烧优化闭环控制系统的成功实施奠定了基础。 国外的优化闭环控制系统已处于成熟应用阶段。 在国外,特别是欧美发达国家,优化闭环控制系统(包括电力、石化、制造业等)的应用已广泛开展,已经有非常多的成功应用案例,目前此类应用正发挥着极大的效益。 1.2燃烧优化技术介绍与分析 1.2.1 主要燃烧优化技术分类 关于燃烧优化技术的研究探讨,国内外已经开展了很多工作,大致可分为以下几类: DCS的控制模块改进。 通过对DCS内控制模块的优化、改进,使其符合控制对象的特点。碍于DCS系统的数据处理和分析能力及其侧重于目标控制对象的安全、稳定的控制,未能在综合分析、整体优化上突破。 常规性的燃烧优化试验调整。

基于PLC控制的锅炉自动输煤系统设计..

摘要 本论文主要是以锅炉的自动输煤系统为研究对象,自动输煤系统的出现不仅仅解决了在锅炉输煤过程中只能使用人力的现状,也解决了工作强度大、工作时间长的问题。论文首先简述了锅炉概况,对自动输煤系统的工艺流程进行分析设计,然后对输入输出点进行分配,设计了主电路,对PLC进行分析选择,最后画出梯形图。通过对原有锅炉输煤系统控制方面存在的问题进行分析,采用PLC 控制系统选用日本三菱F1-30MR型PLC,通过硬件选取,软件调试,实现整体控制系统结构合理,运转良好的目的。个机械之间均涉及安全连锁保护控制共嫩:系统的输煤电机启停有严格控制顺序,彼此间有相应的联锁互动关系,当启停某台输煤系统设备时。从该设备下面流程的最终输煤设备开始向上逐级启用,最后才能使该台设备启动;当停止某台输煤设备或某台设备故障时,从该设备上面流程的源头给煤设备开始向下逐级停机,左后才能使该台设备停止。这样就保证了上煤传输的正常运行在线控制煤流量,避免了皮带上煤的堆积,也保护了皮带。PLC控制系统硬件设计布局合理,工作可靠,操作,维护方便,工作良好。用PLC 输煤程控系统。用PLC来对锅炉输煤系统进行控制。锅炉输煤系统,是指从卸煤开始,一直到将合格的煤块送到煤仓的整个工艺过程,它包括以下几个主要环节:卸煤生产线、煤场、输煤系统、破碎与筛分、配煤系统以及一些辅助生产环节。本设计中主要研究的是其中的输煤系统部分,即煤块从给煤机传输到原煤仓的过程。采用了顺序控制的方法。不但实现了设备运行的自动化管理和监控。提高了系统的可靠性和安全性,而且改善了工作环境,提高了企业经济效益和工作效率。因此PLC电气控制系统具有一定的工程引用和推广价值。 关键词:PLC;自动输煤系统;煤料自动控制

单片机的船舶辅助锅炉智能控制系统

基于单片机的船舶辅助锅炉智能控制系统 目前,国内多数船舶的机舱服务设备仍采用大量的继电器、接触器、时间继电器组成,实现各种控制功能,它们的共同特点是线路复杂、可靠性差、有时容易出现误动作,特别是触头氧化及铁芯与衔铁弄脏后的吸力不足,机械运动部件运动不灵活而出现被卡烧坏 线圈等故障,给维护过程带来极大不便,甚至会影响正常营运工作,而且,这种设备体积大、重量重、价格贵。因此采用先进的设计思想对船用控制系统进行全新设计尤为必要。? 1 单片机智能辅助锅炉控制系统原理 ?基于单片机的船舶辅助锅炉控制系统的工作原理如图1—1所示。系统的被控对象是锅炉,执行机构是锅炉的风、油门驱动电器,被控参数为锅炉内的压力,本系统利用压力传感器检测锅炉内的压力,传感器输出的电信号经信号变换后送至单片机智能控制器,控制器根据此信号的大小,利用智能控制算法计算出输出控制信号,经放大器放大后以调节风、油门的大小,从而控制锅炉内的压力。 2 智能控制器的设计? 众所周知,二阶系统是工程上最常见而又最重要的一类系统,这一系统的形式代表了许许多多控制系统的动力学特征。正因为如此,经典控制理论将二阶系统作为典型系统,并通过对二阶系统阶跃响应的过渡过程分析,定义了表示系统控制质量的一些特征量,其中以调节时间、最大超调量和稳态误差3个特征量作为性能指标。但是,控制系统的动态过程是不断变化的,以常规PID控制器控制,难以解决稳定性和准确性之间的矛盾,原因在于这种控制方式以不变的统一模式之间的矛盾,原因在于这种控制方式以不变的统一模式来处理变化多端的动态过程。?为了有效地模拟人的智能控制行为,并采用微机实现智能控制,在模糊控制中通常采用误差e和误差变化率Δe作为描述控制系统动态特征的输入变量。根据船舶辅助锅炉控制系统的特点,从误差e和误差变化率Δe这两个基本的模糊控制变量出发,引出两个特征变量e·Δe和Δe/e,利用这些信息设计智能控制器。 2.1 利用e·Δe取值量是否大于0,可以描述系统动态过程误差变化的趋势

锅炉燃烧系统的控制系统设计

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (5) 2.2.4影响炉内燃烧的因素 (6) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (24) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (27)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (33) 致谢 (34) 参考文献 (35)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

相关主题
文本预览
相关文档 最新文档