当前位置:文档之家› 2021高考数学专题讲义《椭圆题型归纳》

2021高考数学专题讲义《椭圆题型归纳》

2021高考数学专题讲义《椭圆题型归纳》
2021高考数学专题讲义《椭圆题型归纳》

椭圆典型题型归纳

题型一. 定义及其应用

例1.已知一个动圆与圆2

2

:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程;

例2. 方程2x =+所表示的曲线是

练习:

1.6=对应的图形是( )

A.直线

B. 线段

C. 椭圆

D. 圆

2.10=对应的图形是( )

A.直线

B. 线段

C. 椭圆

D. 圆

3.10=成立的充要条件是( )

A.

2212516x y += B.221259x y += C. 2211625x y += D. 22

1925

x y +=

4.1m =+表示椭圆,则m 的取值范围是

5.过椭圆2

2

941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的另一个焦点2F 构成的2ABF ?的周长等于 ;

6.设圆2

2

(1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段

AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ;

题型二. 椭圆的方程 (一)由方程研究曲线

例1.方程

22

11625

x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹;

(二)分情况求椭圆的方程

例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程;

(三)用待定系数法求方程

例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程;

例4.求经过点(2,3)-且与椭圆2

2

9436x y +=有共同焦点的椭圆方程;

注:一般地,与椭圆22

221x y a b

+=共焦点的椭圆可设其方程为222221()x y k b a k b k +=>-++; (四)定义法求轨迹方程;

例5.在ABC ?中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>且,,b a c 成等差数列时顶点A 的轨迹;

(五)相关点法求轨迹方程;

例6.已知x 轴上一定点(1,0)A ,Q 为椭圆2

214

x y +=上任一点,求AQ 的中点M 的轨迹方程;

(六)直接法求轨迹方程;

例7.设动直线l 垂直于x 轴,且与椭圆2

2

24x y +=交于,A B 两点,点P 是直线l 上满足

1PA PB =的点,求点P 的轨迹方程;

(七)列方程组求方程

例8.中心在原点,一焦点为F 的椭圆被直线32y x =-截得的弦的中点的横坐标为

1

2

,求此椭圆的方程;

题型三.焦点三角形问题

例1.已知椭圆

2211625x y +=上一点P 的纵坐标为53

,椭圆的上下两个焦点分别为2F 、1F ,求1PF 、2PF 及12cos F

PF ∠;

题型四.椭圆的几何性质

例1.已知P 是椭圆22221x y a b +=上的点,的纵坐标为5

3

,1F 、2F 分别为椭圆的两个焦点,

椭圆的半焦距为c ,则12PF PF 的最大值与最小值之差为

例2.椭圆22

221x y a b

+=(0)a b >>的四个顶点为,,,A B C D ,若四边形ABCD 的内切圆恰

好过焦点,则椭圆的离心率为 ;

例3.若椭圆

22114x y k +=+的离心率为1

2

,则k = ; 例4.若P 为椭圆22221(0)x y a b a b +=>>上一点,1F 、2F 为其两个焦点,且0

1215PF F ∠=,

02175PF F ∠=,则椭圆的离心率为

题型五.求范围

例1.方程22

22

1(1)x y m m +

=-表示准线平行于x 轴的椭圆,求实数m 的取值范围;

题型六.椭圆的第二定义的应用

例1. 方程2x y =++所表示的曲线是 例2.求经过点(1,2)M ,以y 轴为准线,离心率为

1

2

的椭圆的左顶点的轨迹方程; 例3.椭圆

221259x y +=上有一点P ,它到左准线的距离等于52

,那么P 到右焦点的距离为

例4.已知椭圆13

42

2=+y x ,能否在此椭圆位于y 轴左侧的部分上找到一点M ,使它到左准线的距离为它到两焦点12,F F 距离的等比中项,若能找到,求出该点的坐标,若不能找

到,请说明理由。

例5.已知椭圆15

92

2=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.求22

3

PF PA +的最小值及对应的点P 的坐标.

题型七.求离心率

例1. 椭圆22

221x y a b

+=(0)a b >>的左焦点为1(,0)F c -,(,0)A a -,(0,)B b 是两个顶点,

如果

1F 到直线AB e = 例2.若P 为椭圆22

221(0)x y a b a b +=>>上一点,1F 、2F 为其两个焦点,且12PF F α∠=,

212PF F α∠=,则椭圆的离心率为

例 3. 1F 、2F 为椭圆的两个焦点,过2F 的直线交椭圆于,P Q 两点,1PF PQ ⊥,且

1PF PQ =,则椭圆的离心率为 ;

题型八.椭圆参数方程的应用

例1. 椭圆22

143

x y +=上的点P 到直线270x y -+=的距离最大时,点P 的坐标

例2.方程2

2

sin cos 1x y αα-=(0απ<<)表示焦点在y 轴上的椭圆,求α的取值范围;

题型九.直线与椭圆的关系 (1)直线与椭圆的位置关系

例1. 当m 为何值时,直线:l y x m =+与椭圆2

2

916144x y +=相切、相交、相离? 例2.曲线2

2

2

22x y a +=(0a >)与连结(1,1)A -,(2,3)B 的线段没有公共点,求a 的取值范围。

例3.过点)0 ,3(-P OAB ?分析:的斜率一定要存在,3-=my x 了运算。

解:设11(,),(A x y B )(3|)||(|3||||2

1

||||21212121y y y y y OP y OP S AOB -=+=?+?=

? 把3-=my x 代入椭圆方程得:0124)332(32

22=-++-y my y m ,即

0336)43(22=--+my y m ,4336221+=

+m m y y ,4

33

22

1+-=m y y 48144431

4312)43(108||22

222221++=+++=-x m m m m y y 3)13(1

33443133443394222222+++?=

++?=++=

m m m m m

m 23

23

41

33133422=≤

++

+=

m m m ∴3223

=?≤

S ,此时1

331322+=+m m 3

=m 令直线的倾角为α,则tan 2α==± 即OAB ?面积的最大值为3,此时直线倾斜角的正切值为2

6

±

。 例 4.求直线cos sin 2x y θθ+=和椭圆2

2

36x y +=有公共点时,θ的取值范围

(0)θπ≤≤。

(二)弦长问题

例1.已知椭圆2

2

212x y +=,A 是x 轴正方向上的一定点,若过点A ,斜率为1的直线被

椭圆截得的弦长为

3

13

4,求点A 的坐标。 分析:若直线y kx b =+与圆锥曲线(,)0f x y =相交于两点11(,)P x y 、22(,)Q x y , 则弦PQ 的长度的计算公式为||1

1||1||212

212

y y k x x k PQ -+=-+=, 而21221214)(||x x x x x x -+=

-,因此只要把直线y kx b =+的方程代入圆锥曲线

(,)0f x y =方程,消去y (或x )

,结合一元二次方程根与系数的关系即可求出弦长。 解:设0(,0)A x (00x >),则直线l 的方程为0y x x =-,设直线l 与椭圆相交于11(,)P x y 、

22(,)Q x y ,由022

212

y x x x y =-??+=?,可得22

00342120x x x x -+-=, 3

4021x

x x =+,31222

21-=?x x x ,则 2

02

020212

21212363

234889164)(||x x x x x x x x x -=--=-+=-

||13144212x x x -?+=,即2

02363

223144x -??= ∴2

04x =,又00x >,∴02x =,∴(2,0)A ;

例2.椭圆22

1ax by +=与直线1x y +=相交于,A B 两点,C 是AB 的中点,

若22||=AB ,O 为坐标原点,OC 的斜率为2

2

,求,a b 的值。

例 3.椭圆

120

452

2=+y x 的焦点分别是1F 和2F ,过中心O 作直线与椭圆交于,A B 两点,若

2ABF ?的面积是20,求直线方程。

(三)弦所在直线方程

例1.已知椭圆22

1164

x y +=,过点(2,0)P 能否作直线l 与椭圆相交所成弦的中点恰好是P ;

例2.已知一直线与椭圆2

2

4936x y +=相交于,A B 两点,弦AB 的中点坐标为(1,1)M ,求直线AB 的方程;

例3. 椭圆E 中心在原点O ,焦点在x 轴上,其离心率3

2

=

e ,过点(1,0)C -的直线l 与椭圆E 相交于,A B 两点,且C 分有向线段AB 的比为2. (1)用直线l 的斜率(0)k k ≠表示OAB ?的面积; (2)当OAB ?的面积最大时,求椭圆E 的方程.

解:(1)设椭圆E 的方程为122

22=+b

y a x ,由23c e a ==,∴a 2=3b 2

故椭圆方程2

2

2

33x y b +=;

设1122(,),(,)A x y B x y ,由于点(1,0)C -分有向线段AB 的比为2.

∴???

????=+-=+03213

2212

1y y x x ,即???-=+-=+21212)1(21y y x x

由???+==+)

1(33222x k y b y x 消去y 整理并化简得(3k 2+1)x 2+6k 2x+3k 2-3b 2=0 由直线l 与椭圆E 相交于1122(,),(,)A x y B x y 两点

???

?

?

?

???

+-=

+-=+>-+-=13331360)23)(13(436222212

2212224k b k x x k k x x b k k k Δ 而122222211333

|||2||||(1)||||1|22222

OAB S y y y y y k x k x ?=

-=--==+=+ ⑥ 由①④得:222131x k +=-+,代入⑥得:23||

(0)31

OAB k S k k ?=≠+.

(2

)因2

3||31313||||

OAB k S k k k ?=

=≤=++当且仅当,3

3

±

=k OAB S ?取得最大值. 此时121x x +=-,又∵12

213

x x +=-,∴121,2x x =-=-; 将12,x x 及2

13

k =

代入⑤得3b 2=5,∴椭圆方程22

35x y +=. 例4.已知11022(,),(1,),(,)A x y B y C x y 是椭圆22

143

x y +=上的三点,F 为椭圆的左焦点,且,,AF BF CF 成等差数列,则AC 的垂直平分线是否过定点?请证明你的结论。

(四)关于直线对称问题

例 1.已知椭圆22

143

x y +=,试确定m 的取值范围,使得椭圆上有两个不同的点关于直线4y x m =+对称;

例2.已知中心在原点,焦点在y 轴上,长轴长等于6,离心率3

2

2=

e ,试问是否存在直③

④ ⑤

线l ,使l 与椭圆交于不同两点,A B ,且线段AB 恰被直线2

1

-=x 平分?若存在,求出直线l 倾斜角的取值范围;若不存在,请说明理由。

题型十.最值问题

例1.

若(P -,2F 为椭圆116

252

2=+y x

的最大值和最小值。

分析:欲求2MP MF +的最大值和最小值 可转化为距离差再求。由此想到椭圆第一定义

212MF a MF =-, 1F 为椭圆的左焦点。

解:212MP MF MP a MF +=+-,连接1PF ,延长1PF 交椭圆于点M 1,延长1F P 交椭圆于点2M 由三角形三边关系知111

PF MP MF PF -≤-≤

当且仅当M 与1M 重合时取右等号、M 与2M 重合时取左等号。

因为1210,2a PF ==,所以2max ()12MP MF +=, 2min ()8MP MF +=;

结论1:设椭圆12222=+b

y a x 的左右焦点分别为12,F F ,00(,)P x y 为椭圆内一点,(,)M x y 为

椭圆上任意一点,则2MP MF +的最大值为12a PF +,最小值为12a PF -;

例2.(2,6)P -,2F 为椭圆

116

252

2=+y x 的右焦点,点M 在椭圆上移动,求2MP MF +的最大值和最小值。

分析:点P 在椭圆外,2PF 交椭圆于M ,此点使2MP MF +值最小,求最大值方法同例1。

解:212MP MF MP a MF +=+-,连接1PF 并延长交椭圆于点M 1,

则M 在M 1处时1MP MF -取最大值1PF ;

∴2MP MF +最大值是10+37,最小值是41。

结论2设椭圆122

22=+b

y a x 的左右焦点分别为12,F F ,00(,)P x y 为椭圆外一点,(,)M x y 为

椭圆上任意一点,则2MP MF +的最大值为12a PF +,最小值为2PF ; 2.二次函数法

例3.求定点(,0)A a 到椭圆122

22=+b

y a x 上的点之间的最短距离。

分析:在椭圆上任取一点,由两点间距离公式表示PA ,转化为,x y 的函数求最小值。 解:设(,)P x y 为椭圆上任意一点,

2

22222211()()1(2)122

PA x a y x a x x a a =-+=-+-=-+-

由椭圆方程知x 的取值范围是[

(1)若2

a ≤

,则2x a =时,min PA =

(2)若a >

,则x =min PA a =

(3)若2

a <-

,则min PA a =结论3:椭圆122

22=+b

y a x 上的点(,)M x y 到定点A(m,0)或B(0,n)距离的最值问题,可以用

两点间距离公式表示︱MA ︱或︱MB ︱,通过动点在椭圆上消去y 或x,转化为二次函数求

最值,注意自变量的取值范围。 3.三角函数法

例4.求椭圆14

2

22=+y x 上的点(,)M x y 到直线:24l x y +=的距离的最值;

解:三角换元d =

∵142

22=+y x ∴令()R y x ∈?

??==θθθsin cos 2

则)24

d π

θ=

=+-

当sin()14

π

θ+

=时min 5d =

;当sin()14

π

θ+=-时,max 5d =结论4:若椭圆122

22=+b

y a x 上的点到非坐标轴上的定点的距离求最值时,可通过椭圆的参数

方程,统一变量转化为三角函数求最值。

4.判别式法

例4的解决还可以用下面方法

把直线平移使其与椭圆相切,有两种状态,一种可求最小值,另一种求最大值。

解。令直线:20m x y c ++=将2x y c =--代入椭圆方程整理得2

2

8440y cy c ++-=,

由△=0解得c =±, c =-时直线:20m x y +-=与椭圆切于点P , 则P 到直线l 的距离为最小值,且最小值就是两平行直线m 与l 的距离,

所以min 5

d =

c =:20m x y ++=与椭圆切于点Q ,则Q 到直线l 的距离为最大值,且

最大值就是两平行直线m 与l 的距离,所以max 5

d =

结论5:椭圆上的点到定直线l 距离的最值问题,可转化为与l 平行的直线m 与椭圆相切的问题,利用判别式求出直线m 方程,再利用平行线间的距离公式求出最值。

例5.已知定点(A -,点F 为椭圆

22

11612

x y +=的右焦点,点M 在该椭圆上移动时,求2AM MF +的最小值,并求此时点M 的坐标;(第二定义的应用)

例3.已知1F 、2F 分别为椭圆22

110064

x y +=的左、右焦点,椭圆内一点M 的坐标为(2,6)-,P 为椭圆上的一个动点,试分别求:

(1)25

3

PM PF +的最小值; (2)2PM PF +的取值范围. 解:(1)

44

3

,此时点P 为过点M 且垂直于l 的线段与椭圆的交点; (2)由椭圆的定义知1220PF PF +=,故2120PM PF PM PF +=+-, ①1110PM PF MF -≤=,故230PM PF +≤

(当且仅当P 为有向线段1MF 的延长线与椭圆的交点时取“=”); ②1110PF PM MF -≤=,故2120()10PM PF PF PM +=--≥; (当且仅当P 为有向线段1MF 的反向延长线与椭圆的交点时取“=”) 综上可知,2PM PF +的取值范围为[10,30]; 题型十一.轨迹问题

例1.到两定点(2,1),(2,2)--的距离之和为定值5的点的轨迹是 ( ) A .椭圆 B.双曲线

C.直线 D.线段

例2.已知点(3,0)A ,点P 在圆2

2

1x y +=的上半圆周上(即y >0),∠AOP 的平分线交PA 于Q ,求点Q 的轨迹方程。

例3.已知圆2

2

:(3)100C x y -+=及点(3,0)A -,P 是圆C 上任一点,线段PA 的垂直平分线l 与PC 相交于Q 点,求Q 点的轨迹方程。

题型十二.椭圆与数形结合

例1.关于x 22220x kx k -+=有两个不相等的实数解,求实数k 的取值范围. 例2.求函数246t t μ=

+-

2019年高考数学试题带答案

2019年高考数学试题带答案 一、选择题 1.已知二面角l αβ--的大小为60°,b 和c 是两条异面直线,且,b c αβ⊥⊥,则b 与 c 所成的角的大小为( ) A .120° B .90° C .60° D .30° 2.设集合(){} 2log 10M x x =-<,集合{ } 2N x x =≥-,则M N ?=( ) A .{} 22x x -≤< B .{} 2x x ≥- C .{}2x x < D .{} 12x x ≤< 3.如图所示的组合体,其结构特征是( ) A .由两个圆锥组合成的 B .由两个圆柱组合成的 C .由一个棱锥和一个棱柱组合成的 D .由一个圆锥和一个圆柱组合成的 4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 5.已知P 为双曲线22 22:1(0,0)x y C a b a b -=>>上一点,12F F , 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =± B .34 y x =? C .3 5 y x =± D .53 y x =± 6.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A . 53 B . 35 C . 37 D . 57 7.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A 2B 3 C .22 D .328.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).

2021年新高考数学名校地市选填压轴题好题汇编(五)(原卷版)

2021年新高考数学名校地市选填压轴题好题汇编(五) 一.选择题(共25小题) 1.(2021?全国模拟)已知抛物线22y px =上三点(2,2)A ,B ,C ,直线AB ,AC 是圆22(2)1x y -+=的两条切线,则直线BC 的方程为( ) A .210x y ++= B .3640x y ++= C .2630x y ++= D .320x y ++= 2.(2021?全国模拟)已知5a <且55a ae e =,4b <且44b be e =,3c <且33c ce e =,则( ) A .c b a << B .b c a << C .a c b << D .a b c << 3.(2020秋?静安区期末)在平面直角坐标系xOy 中,α、β是位于不同象限的任意角,它们的终边交单位圆(圆心在坐标原点)O 于A 、B 两点.若A 、B 两点的纵坐标分别为正数a 、b ,且cos()0αβ-,则a b +的最大值为( ) A .1 B C .2 D .不存在 4.(2020秋?杨浦区校级期末)已知三角形ABC 的三个顶点都在椭圆22143 x y +=上,设它的三条边AB 、BC 、 AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为 1 、2 、 3 ,且 1 、 2 、 3 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则 1 2 3 1 1 1 (+ += ) A .4 3 - B .3- C .1813- D .32 - 5.(2020秋?大兴区期末)已知数列{}n a 的前n 项和122n n S +=-,若*n N ?∈,24n n a S λ+恒成立,则实数 λ的最大值是( ) A .3 B .4 C .5 D .6 6.(2020秋?大兴区期末)已知椭圆2222:1(0)x y C a b a b +=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为 直径的圆与直线20bx ay ab -+=相切,则椭圆C 的离心率为 ( ) A B C . 23 D 7.(2020秋?大通县期末)已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,且l 过点(3,2)-,M 在抛物线C 上,若点(2,4)N ,则||||MF MN +的最小值为( ) A .2 B .3 C .4 D .5 8.(2020秋?大通县期末)已知点A ,B 是双曲线22221(0,0)x y a b a b -=>>的左、右顶点,1F ,2F 是双曲线

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

2019高考数学复习专题:集合(含解析)

一、考情分析 集合是高考数学必考内容,一般作为容易题.给定集合来判定集合间的关系、集合的交、并、补运算是考查的主要形式,常与函数的定义域、值域、不等式(方程)的解集相结合,在知识交汇处命题,以选择题为主,多出现在试卷的前3题中. 二、经验分享 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;如下面几个集合请注意其区别: ①{}220x x x -=;②{}22x y x x =-;③{}22y y x x =-;④(){} 2,2x y y x x =-. (2)二元方程的解集可以用点集形式表示,如二元方程2xy =的整数解集可表示为()()()(){}1,2,2,1,1,2,2,1----. (3)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题. (4)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系. (5)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况. (6)解决以集合为背景的新定义问题,要抓住两点:①紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;②用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质. 三、知识拓展 1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1. 2.A ?B ?A ∩B =A ?A ∪B =B ()()U U A B A B U ?=??=痧 . 3.奇数集:{}{}{} 21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z . 4. 数集运算的封闭性,高考多次考查,基础知识如下:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.自然数集N 对加法运算是封闭的;整数集Z 对加、减、乘法运算是封闭的.有理数集、复数

高考数学选择题之压轴题

高考数学压轴选择题 _________班______号姓名_________________ 一、2007年以来广东高考数学压轴选择题的基本情况 1、(2007广东8)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的a b S ∈,,对于有序元素对(a b ,),在S 中有唯一确定的元素*a b 与之对应).若 对任意的a b S ∈,,有()**a b a b =,则对任意的a b S ∈,,下列等式中不恒成立的是( ) A .()**a b a a = B .[()]()****a b a a b a = C .()**b b b b = D .()[()]****a b b a b b = 2、(2008广东8)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( ) A . 1142+a b B .2133+a b C .11 24 +a b D .1 233 + a b 3、(2009广东8)已知甲、乙两车由同一起点同时出发,并沿同一路线〈假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( ) A .在1t 时刻,甲车在乙车前面 B .1t 时刻后,甲车在乙车后面 C .在0t 时刻,两车的位置相同 D .0t 时刻后,乙车在甲车前面 4、(2010广东8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定。每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁。在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。如果要实现所有不同的闪烁,那么需要的时间至少是 ( ) A .1205秒 B .1200秒 C .1195秒 D .1190秒 5、(2011广东) 8.,,,,.,,.,,,,,,,.:( ) A. T,V B.T,V C. T,V S Z a b S ab S S T V Z T V Z a b c T abc T x y z V xyz V ?∈∈=?∈∈?∈∈设是整数集的非空子集如果有则称关于数的乘法是封闭的若是的两个不相交的非空子集且有有则下列结论恒成立的是中至少有一个关于乘法是封闭中至多有一个关于乘法是封闭中有且只有一个关于乘法是封闭 D.T,V 中每一个关于乘法是封闭

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

高考数学压轴题专练

题型突破练——压轴题专练 压轴题专练(一) 建议用时:40分钟 1.[2015·山西质监]已知椭圆E 的两焦点分别为(-1,0),(1,0), 且经过点? ?? ???1,22. (1)求椭圆E 的方程; (2)过P (-2,0)的直线l 交E 于A ,B 两点,且PB →=3PA →,设A ,B 两点关于x 轴的对称点分别是C ,D ,求四边形ACDB 的外接圆的方程. 解 (1)由题意知c =1,2a -2 2 = 22 +? ?? ?? ?222 ,∴a =2,b =a 2-c 2=1,椭圆E 的方程为x 2 2 +y 2=1. (2)设l :x =my -2,代入椭圆方程得(m 2+2)y 2-4my +2=0, 由Δ=8m 2-16>0得m 2>2. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m m 2+2,①y 1y 2=2 m 2+2.② 由PB →=3PA →,得y 2=3y 1.③

由①②③解得m 2=4,符合m 2>2. 不妨取m =2,则线段AB 的垂直平分线的方程为y =-2x -2 3 ,则 所求圆的圆心为? ?? ?? -13,0.又B (0,1), ∴圆的半径r =10 3 . ∴圆的方程为? ????x +132+y 2 =109. 2.已知函数f (x )=(ax 2+bx +c )e x 在[0,1]上单调递减且满足 f (0)=1,f (1)=0. (1)求实数a 的取值范围; (2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值. 解 (1)由f (0)=1,f (1)=0得c =1,a +b =-1, 则f (x )=[ax 2-(a +1)x +1]e x , f ′(x )=[ax 2+(a -1)x -a ]e x . 依题意知,对任意的x ∈[0,1],有f ′(x )≤0. 当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图象开口向上,而f ′(0)=-a <0,所以f ′(1)=(a -1)e ≤0,即0<a ≤1;当a =0时,对任意的x ∈[0,1],f ′(x )=-x e x ≤0,符合条件;当a <0时,f ′(0)=-a >0,不符合条件. 故实数a 的取值范围是[0,1]. (2)因为g (x )=(-2ax +1+a )e x ,g ′(x )=(-2ax +1-a )e x , ①当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e. ②当a =1时,对任意的x ∈[0,1]有g ′(x )=-2x e x ≤0,g (x )在x =0处取得最大值g (0)=2,在x =1处取得最小值g (1)=0.

精品解析:2020年浙江省高考数学试卷(原卷版)

2020年普通高等学校招生全国统一考试(浙江卷) 数学 本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页;非选择题部分3至4页.满分150分.考试用时120分钟. 考生注意: 1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上. 2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式: 选择题部分(共40分) 一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合P ={|14}<

A. 1 B. –1 C. 2 D. –2 3.若实数x ,y 满足约束条件31030x y x y -+≤?? +-≥?,则z =2x +y 的取值范围是( ) A. (,4]-∞ B. [4,)+∞ C. [5,)+∞ D. (,)-∞+∞ 4.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为( ) A. B. C. D. 5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( ) A. 73 B. 143 C. 3 D. 6 6.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 7.已知等差数列{a n }前n 项和S n ,公差d ≠0, 11a d ≤.记b 1=S 2,b n+1=S n+2–S 2n ,n *∈N ,下列等式不可能成立的是( ) A. 2a 4=a 2+a 6 B. 2b 4=b 2+b 6 C. 2428a a a = D. 2428b b b =

北京市高考数学压轴题汇编51题(含答案)

1.如图,正方体1111ABCD A B C D -中,E ,F 分别为 棱1DD ,AB 上的点. 已知下列判断: ①1 AC ^平面1B EF ;②1B EF D 在侧面11BCC B 上 的正投影是面积为定值的三角形;③在平面 1111A B C D 内总存在与平面1B EF 平行的直线;④平 面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点E 的位置有关,与点F 的位 置无关. 其中正确判断的个数有 (A )1个 (B )2个 (C )3个 (D )4个(B ) 2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F//面A 1BE ,则B 1F 与平面CDD 1C 1 所成角的正切值构成的集合是 C A. {}2 B. 255?? ? ??? C. {|222}t t ≤≤ D. 2 {|52}5 t t ≤≤ 3. 如图,四面体OABC 的三条棱OC OB OA ,,两两垂直,2==OB OA ,3=OC ,D 为四 面体OABC 外一点.给出下列命题. ①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等 ④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是D (A )①② (B )②③ (C )③ (D )③④ 4. 在一个正方体1111ABCD A B C D -中,P 为正方形 1111A B C D 四边上的动点,O 为底面正方形ABCD 的中心, ,M N 分别为,AB BC 中点,点Q 为平面ABCD 内一点,线段1D Q 与OP 互相平分,则满足MQ MN λ=u u u u r u u u u r 的实数λ的值 有 C A. 0个 B. 1个 C. 2个 D. 3个 5. 空间点到平面的距离定义如下:过空间一点作平面的垂线,这点和垂足之间的距离叫做 A B C D E 1A 1 D 1 B 1 C O A B D C A 1 D 1 A 1 C 1 B D C B O P N M Q

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

2019年全国一卷高考数学试题分析

2019年高考数学试题整体分析 1.试题突出特色: “突出数学学科特色,着重考查考生的理性思维能力,综合运用数学思维方法 分析问题、解决问题的能力。”2019年高考数学卷一个突出的特点是,试题突出 学科素养导向,注重能力考查,全面覆盖基础知识,增强综合性、应用性,以反映 我国社会主义建设的成果和优秀传统文化的真实情境为载体,贴近生活,联系社会 实际,在数学教育、评价中落实立德树人的根本任务。 2.试题考查目标: (1)素养导向,落实五育方针 2019年高考数学科结合学科特点,在学科考查中体现五育要求,整份试卷 站在落实“五育”方针的高度进行整体设计。理科Ⅰ卷第4题以著名的雕塑 “断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。文 科Ⅰ 卷第17题以商场服务质量管理为背景设计,体现对服务质量的要求,倡 导高质量的劳动成果。理科Ⅰ卷第(15)题引入了非常普及的篮球运动,以其 中普遍存在的比赛结果的预估和比赛场次的安排提出问题,要求考生应用数学 方法分析、解决体育问题。这些试题在考查学生数学知识的同时,引导学生加 强体育锻炼,体现了对学生的体育教育。(2)突出重点,灵活考查数学本质2019年高考数学试题,突出学科素养导向,将理性思维作为重点目标,将基 础性和创新性作为重点要求,以数学基础知识为载体,重点考查考生的理性思维和 逻辑推理能力。固本强基,夯实发展基础。理科(4)题源于北师大版必修五67页;理科(22)题源于北师大版4-4第53页;理科(16)和华师大附中五月押题卷(14)几乎一模一样。理科(21)题可视为2011清华大学七校联考自主招生考试 题的第15题改编。题稳中有变,助力破解应试教育。主观题在各部分内容的布局 和考查难度上进行动态设计,打破了过去压轴题的惯例。这些改革释放了一个明显 的信号:对重点内容的考查,在整体符合《考试大纲》和《考试说明》要求的前提下,在各部分内容的布局和考查难度上都可以进行调整和改变,这在一定程度上有 助于考查考生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重 点知识和重点内容,同时有助于破解僵化的应试教育。 (3)情境真实,综合考查应用能力数学试题注重考查数学应用素养,体现综合性 和应用性的考查要求。试卷设置的情境真实、贴近生活,同时具有深厚的文化底蕴,体现数学原理和方法在解决问题中的价值和作用。 理科Ⅰ卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置 了排列组合试题,体现了中国古代的哲学思想。理科第(21)题情境结合社会现实,贴近生活,反映了数学应用的广阔领域,体现了数学的应用价值,有利于在中学数 学教育中激发学生学习数学的热情,提高对数学价值的认识,提升数学素养,对中 学的素质教育有很好的导向和促进作用。

高考数学压轴题汇编

高考数学压轴题汇编 1.〔本小题满分12分〕设函数在上是增函数.求正实数的取值范围; 设,求证:1 ,0>>a b .ln 1b b a b b a b a +<+<+ 高考数学压轴题练习2 2.已知椭圆C 的一个顶点为,焦点在x 轴上,右焦点到直线(0,1)A -10x y -+= 〔1〕求椭圆C 的方程; 〔2〕过点F 〔1,0〕作直线l 与椭圆C 交于不同的两点A 、B ,设,若的取值范围. 高考数学压轴题练习2 2.已知椭圆C 的一个顶点为,焦点在x 轴上,右焦点到直线(0,1)A -10x y -+= 〔1〕求椭圆C 的方程; 〔2〕过点F 〔1,0〕作直线l 与椭圆C 交于不同的两点A 、B ,设,若的取值范围. 高考数学压轴题练习4 4.设函数3 2 2 ()f x x ax a x m =+-+(0)a > 〔1〕若时函数有三个互不相同的零点,求的范围; 〔2〕若函数在内没有极值点,求的范围; 〔3〕若对任意的,不等式在上恒成立,求实数的取值范围. 高考数学压轴题练习5 5.〔本题满分14分〕 已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切. 〔Ⅰ〕求椭圆的方程; 〔Ⅱ〕设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P ,线段 PF2的垂直平分线交于点M ,求点M 的轨迹C2的方程; 〔Ⅲ〕若AC 、BD 为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD 的面积的最小值. 高考数学压轴题练习6 6.〔本小题满分14分〕 已知椭圆+=1〔a>b>0〕的左.右焦点分别为F1.F2,离心率e =,右准线方程为x =2. 〔1〕求椭圆的标准方程; 〔2〕过点F1的直线l 与该椭圆相交于M .N 两点,且|+|=,求直线l 的方程. 高考数学压轴题练习7 7.〔本小题满分12分〕 已知,函数,〔其中为自然对数的底数〕. 〔1〕判断函数在区间上的单调性; 〔2〕是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.

2019高考数学大题必考题型及解题技巧分析

快戳!数学6大必考题型全总结!掌握好轻松考到140+! 高考数学大题必考题型及解题技巧分析 1 排列组合篇 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。 6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。 7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。 8. 会计算事件在n次独立重复试验中恰好发生k次的概率。 2 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立体几何中的计算型问题,而解答题着重考查立

体几何中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点;

新课标高考数学填空选择压轴题汇编

高考数学填空选择压轴题试题汇编(理科) 目录(120题) 第一部分函数导数(47题)······································2/26 第二部分解析几何(23题)······································9/33 第三部分立体几何(11题)··································13/34 第四部分三角函数及解三角形(10题)···················15/36 第五部分数列(10题)········································17/37 第六部分概率统计(6题)···································19/38 第七部分向量(7题)·········································21/39 第八部分排列组合(6题)···································22/40 第九部分不等式(7题)······································23/42 第十部分算法(2题)·········································24/43 第十一部分交叉部分(2题)···································25/43 第十二部分参考答案··············································26/43 【说明】:汇编试题来源 河南五年高考真题5套;郑州市2011年2012年一模二模三模试题6套;2012年河南省各地市检测试题12套;2012年全国高考文科试题17套。共计40套试题.试题为每套试卷选择题最后两题,填空最后一题。

高考数学压轴题精编精解100题

个 个 高考数学压轴题精编精解 精选100题,精心解答{完整版} 1.设函数()1,12 1,23x f x x x ≤≤?=?-<≤? ,()()[],1,3g x f x ax x =-∈, 其中a R ∈,记函数()g x 的最大值与最小值的差为()h a 。 (I )求函数()h a 的解析式; (II )画出函数()y h x =的图象并指出()h x 的最小值。 2.已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<, ()1n n a f a +=; 数列{}n b 满足1111 ,(1)22 n n b b n b +=≥+, *n N ∈.求证: (Ⅰ)101;n n a a +<<<(Ⅱ)21;2 n n a a +< (Ⅲ)若12 ,2a =则当n ≥2时,!n n b a n >?. 3.已知定义在R 上的函数f (x ) 同时满足: (1)2 1212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数); (2)(0)()14f f π==;(3)当0, 4x π ∈[] 时,()f x ≤2 求:(Ⅰ)函数()f x 的解析式;(Ⅱ)常数a 的取值范围. 4.设)0(1),(),,(22 222211>>=+b a b x x y y x B y x A 是椭圆上的两点, 满足0),(),( 2211=?a y b x a y b x ,椭圆的离心率,23 =e 短轴长为2,0为坐标原点. (1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 5.已知数列{}n a 中各项为: 12、1122、111222、 (111) ??????14243222n ??????14243 …… (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .

2019年高考数学试题分类汇编——集合

2019年高考数学试题分类汇编 集合部分(共12道试题) 试题编号2019001 (2019北京文1)(共20题的第1题 8道选择题第1题 150分占5分) 已知集合{}12A x x =-<<,{}1B x x =>,则A B =U ( ) A.()1,1- B.()1,2 C.()1,-+∞ D.()1,+∞ 答案:C 解:因为{}12A x x =-<<,{}1B x x =>,所以{}1A B x x =>-U , 故选C 。 试题编号2019002 (2019全国卷Ⅱ文1)(共23题的第1题 12道选择题第1题 150分占5分) 已知集合{}=1A x x >-,{}2B x x =<,则A B =I ( ) A.()1,-+∞ B.(),2-∞ C.()1,2- D.? 答案:C 解:{}{}{}=1212A B x x x x x x >-<=-<

2018年浙江省高考数学试卷

2018年浙江省高考数学试卷 一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(4分)(2018?浙江)已知全集U={1,2,3,4,5},A={1,3},则?U A=()A.?B.{1,3}C.{2,4,5}D.{1,2,3,4,5} 2.(4分)(2018?浙江)双曲线﹣y2=1的焦点坐标是() A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2) 3.(4分)(2018?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是() A.2 B.4 C.6 D.8 4.(4分)(2018?浙江)复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i 5.(4分)(2018?浙江)函数y=2|x|sin2x的图象可能是() A.B.C.

D. 6.(4分)(2018?浙江)已知平面α,直线m,n满足m?α,n?α,则“m∥n”是“m∥α”的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 7.(4分)(2018?浙江)设0<p<1,随机变量ξ的分布列是 则当p在(0,1)内增大时,() A.D(ξ)减小B.D(ξ)增大 C.D(ξ)先减小后增大D.D(ξ)先增大后减小 8.(4分)(2018?浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则() A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1 9.(4分)(2018?浙江)已知,,是平面向量,是单位向量.若非零向量 与的夹角为,向量满足﹣4?+3=0,则|﹣|的最小值是()A.﹣1 B.+1 C.2 D.2﹣ 10.(4分)(2018?浙江)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则() A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

相关主题
文本预览
相关文档 最新文档