当前位置:文档之家› 第七章-焙烧工艺-《炭素材料》教学课件

第七章-焙烧工艺-《炭素材料》教学课件

石墨电极的原料及制造工艺

石墨电极的原料及制造工艺 一、石墨电极的原料 1、石墨电极 是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。2、石墨电极的原料 生产石墨电极的原料有石油焦、针状焦和煤沥青 (1)石油焦 石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑多孔,主要元素为碳,灰分含量很低,一般在%以下。石油焦属于易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 石油焦按硫分的高低区分,可分为高硫焦(含硫%以上)、中硫焦(含硫%%)、和低硫焦(含硫%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 (2)针状焦 针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在以上),在偏光显微镜下可观察到各向异性的纤维状结构,因而称之为针状焦。 针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。 (3)煤沥青 煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为-cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。 煤沥青在炭素工业中作为粘结剂和浸渍剂使用,其性能对炭素制品生产工艺和产品质量影响极大。粘结剂沥青一般使用软化点适中、结焦值高、β树脂高的中温或中温改质沥青,浸渍剂要使用软化点较低、 QI低、流变性能好的中温沥青。 二、石墨电极的制造工艺

黄金冶炼工艺流程

黄金冶炼工艺流程 我国黄金资源储量丰富,分布较广,黄金冶炼方法很多。其中包括常规的冶炼方法和新技术。冶炼方法、工艺的改进,促进了我国黄金工业的发展。目前我国黄金产量居世界第五位,成为产金大国之一。 黄金的冶炼过程一般为:预处理、浸取、回收、精炼。 1.黄金冶炼工艺方法分类 1.1矿石的预处理方法 分为:焙烧法、化学氧化法、微生物氧化法、其他预处理方法。 1.2浸取方法 浸取分为物理方法、化学方法两大类。其中,物理方法又分为混汞法、浮选法、重选法。化学方法分为氰化法(又分:氰化助浸工艺、堆浸工艺)与非氰化法(又分:硫脲法、硫代硫酸盐法、多硫化物法、氯化法、石硫合剂法、硫氰酸盐法、溴化法、碘化法、其他无氰提金法)。 1.3溶解金的回收方法 分为:锌置换沉淀法、炭吸附法、离子交换法、其它回收方法。 1.4精炼方法 主要有全湿法,它包括电解法、王水法、液氯法、氯化法、还原法火法、湿法一火法联合法。 2.矿石的预处理

随着金矿的大规模开采,易浸的金矿资源日渐枯竭,难处理金矿将成为今后黄金工业的主要资源。在我国已探明的黄金储量中,有30%为难处理金矿。因此,难处理金矿的预处理方法成为当前黄金工业提金的关键问题。 难处理金矿,通常又称为难浸金矿或顽固金矿,它是指即使经过细磨也不能用常规的氰化法有效地浸出大部分金的矿石。因此,通常所说的难处理金矿是对氰化法而言的。 2.1焙烧法 焙烧是将砷、锑硫化物分解,使金粒暴露出来,使含碳物质失去活性。它是处理难浸金矿最经典的方法之一。焙烧法的优点是工艺简单,操作简便,适用性强,缺点是环境污染严重。含金砷黄铁矿一黄铁矿矿石中加石灰石焙烧,可控制砷和硫的污染;加碱焙烧可以有效固定S、As等有毒物质。美国发明的在富氧气氛中氧化焙烧并添加铁化合物使砷等杂质进入非挥发性砷酸盐中,国内研发的用回转窑焙烧脱砷法,哈萨克斯坦研发的用真空脱砷法以及硫化挥发法,微波照射预处理法,俄罗斯研发的球团法等都能有效处理含砷难浸金矿石。 2.2化学氧化法 化学氧化法主要包括常压化学氧化法和加压化学氧化法。 常压化学氧化法是为处理碳质金矿而发展起来的一种方法。常温常压下添加化学试剂进行氧化,如常压加碱氧化,在碱性条件下,将黄铁矿氧化成Fe2(SO )3, 砷氧化成As(OH)3和As203,后者进一步生成砷酸盐,可以脱除。主要的氧化剂有臭氧、过氧化物、高锰酸盐、氯气、高氯酸盐、次氯酸盐、铁离子和氧等。加压氧化是采用加氧和加热的方法,通过控制化学反应过程来使硫氧化。根据不同的反应过程,可采用酸性或碱性条件。

磁选工艺

3.1 铁矿石的磁选 【铁矿床的分类】按地质成因和工业类型分为9大类。 【各类型铁矿的分析要素】 〖分布,储量,储量特点,矿物成分—主要矿物,共、伴生矿物,脉石矿物→综合利用〗 3.1.1磁铁矿石的磁选 【磁铁矿石的特点】—地质成因—属高中温热液接触交代矿床的矿石(矽卡岩型) —有效选矿方法—磁选。 —典型分选工艺流程图3-3-1 P355. —工艺特点:分段,球磨,磁选机选择。 3.1.2 磁铁石英岩矿石的磁选 【磁铁石英岩矿石特点】—沉积变质岩矿床产出,我国叫鞍山式贫磁铁矿,国外叫铁燧岩 —广泛选用磁选法分选。或磁铁石英岩 —分选工艺特点:阶段磁选、阶段磨矿。逐步减少下段负荷。 〖例〗首钢铁矿石基地—河北迁安大石河铁矿 —地质成因:构成矿体岩层系属于前震旦纪麻岩并呈条带状和片麻岩构造。 矿体间和矿体内广布各类型夹石。→开采时易于混入(废石),矿石贫化严重。 地质品位30.18%,入选矿石品位只有25%。 【矿石中主要金属矿物、伴生矿、主次脉石】 【有用矿物与非有用矿物的结合状态】 【结晶粒度】—分磁铁矿和赤铁矿 【解离粒度】 【矿石化学多项分析结果】表3-3-1 【流程】—图3-3-2 P356. —工艺特点: —流程的主要技术指标。 【上述内容就是我们一般考察一个矿种及其选矿工艺时,所应基本了解和掌握的东西】差经济指标等。 3.1.3 弱磁性铁矿物的磁化焙烧与弱磁选 1.磁化焙烧简介 【磁性较低或弱磁性矿物】赤铁矿、褐铁矿、菱铁矿、黄铁矿 —通过焙烧变成强磁性铁矿物(磁铁矿或γ型赤铁矿),然后用若磁选的方法回收。【磁化焙烧】—是矿石加热到一定温度后,在相应的气氛中进行物理化学反应的过程。 〖按焙烧原理分类〗还原焙烧、中性焙烧、氧化焙烧。 ①还原焙烧—适用于赤铁矿、褐铁矿,还原剂有C、CO和H2。 主要是将Fe2O3→(还原成)Fe3O4,即将Fe3+→ ②中性焙烧—适用于菱铁矿Fe3O4 主要是将FeCO3→分解为Fe3O4 ③氧化焙烧—适用于黄铁矿 主要是将FeS→氧化为Fe7O8磁黄铁矿 →氧化时间很长,则磁黄铁矿变为磁铁矿。 还有氧化还原焙烧和还原氧化焙烧。还原剂为气体、液体和固体。煤气、重油和煤。

石墨电极

石墨电极 石墨电极(graphite electrode) 以石油焦、沥青焦为颗粒料,煤沥青为黏结剂,经过}昆捏、成型、焙烧、石墨化和机械加工而制成的一种耐高温的石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温为热源,使炉料熔化进行炼钢,其他一些电冶炼或电解设备也常使用石墨电极为导电材料。2000年全世界消耗石墨电极100万t左右,中国2000年消耗石墨电极25万t左右。利用石墨电极优良的物理化学性能,在其他工业部门中也有广泛的用途,以生产石墨电极为主要品种的炭素制品工业已经成为当代原材料工业的重要组成部门。 简史早在1810年汉佛莱?戴维(Humphry Davy)利用木炭制成通电后能产生电弧的炭质电极,开辟了使用炭素材料作为高温导电电极的广阔前景,1846年斯泰特(Stair)和爱德华(Edwards)用焦炭粉及蔗糖混合后加压成型,并在高温下焙烧从而制造出另一种炭质电极,再将这种炭质电极浸在浓糖水中以提高其体积密度,他们获得了生产这种电极的专利权。1877年美国克利夫兰(Cleveland)的勃洛希(C.F.Brush)和劳伦斯(https://www.doczj.com/doc/be3259552.html,wrence)采用煅烧过的石油焦研制低灰分的炭质电极获得成功。1899年普利查德(O.G.Pritchard)首先报道了用锡兰天然石墨为原料制造天然石墨电极的方法。1896年卡斯特纳(H.Y.Gastner)获得了使用电力将炭质电极直接通电加热到高温,而生产出比天然石墨电极使用性能更好的人造石墨电极的专利权。1897年美国金刚砂公司(Carborundum Co.)的艾奇逊(E.G.Acheson)在生产金刚砂的电阻炉中制造了第一批以石油焦为原料的人造石墨电极,产品规格为22mm×32m mX380mm,这种人造石墨电极当时用于电化学工业生产烧碱,在此基础上设计的“艾奇逊”石墨化炉将由石油焦生产的炭质电极及少量电阻料(冶

黄金冶炼工艺流程

黄金冶炼工艺流程 我国黄金资源储量丰富,分布较广,黄金冶炼方法很多。其中包括常规的冶炼方法和新技术。冶炼方法、工艺的改进,促进了我国黄金工业的发展。目前我。国黄金产量居世界第五位,成为产金大国之一 黄金的冶炼过程一般为: 预处理、浸取、回收、精炼。 1. 黄金冶炼工艺方法分类 1.1 矿石的预处理方法 分为: 焙烧法、化学氧化法、微生物氧化法、其他预处理方法。 1.2 浸取方法浸取分为物理方法、化学方法两大类。其中,物理方法又分为混汞法、浮选法、重选法。化学方法分为氰化法(又分:氰化助浸工艺、堆浸工艺)与非氰化法(又分: 硫脲法、硫代硫酸盐法、多硫化物法、氯化法、石硫合剂法、硫氰酸盐法、溴化法、碘化法、其他无氰提金法)。 1.3 溶解金的回收方法 分为: 锌置换沉淀法、炭吸附法、离子交换法、其它回收方法。 1.4 精炼方法主要有全湿法,它包括电解法、王水法、液氯法、氯化法、还原法火法、湿法一火法联合法。 2. 矿石的预处理随着金矿的大规模开采,易浸的金矿资源日渐枯竭,难处理金矿将成为今后黄金工业的主要资源。在我国已探明的黄金储量中,有30%为难处理金矿。因此,难处理金矿的预处理方法成为当前黄金工业提金的关键问题。 难处理金矿,通常又称为难浸金矿或顽固金矿,它是指即使经过细磨也不能用常规的氰化法有效地浸出大部分金的矿石。因此,通常所说的难处理金矿是对氰化法而言的。

2.1 焙烧法 焙烧是将砷、锑硫化物分解,使金粒暴露出来,使含碳物质失去活性。它是处理难 浸金矿最经典的方法之一。焙烧法的优点是工艺简单,操作简便,适用性强,缺点是环境污染严重。含金砷黄铁矿一黄铁矿矿石中加石灰石焙烧,可控制砷和硫的污染;加碱焙烧可以有效固定S、As等有毒物质。美国发明的在富氧气氛中氧化焙烧并添加铁化合物使砷等杂质进入非挥发性砷酸盐中,国内研发的用回转窑焙烧脱砷法,哈萨克斯坦研发的用真空脱砷法以及硫化挥发法,微波照射预处理法,俄罗斯研发的球团法等都能有效处理含砷难浸金矿石。 2.2 化学氧化法化学氧化法主要包括常压化学氧化法和加压化学氧化法。 常压化学氧化法是为处理碳质金矿而发展起来的一种方法。常温常压下添加化学试剂进行氧化,如常压加碱氧化,在碱性条件下,将黄铁矿氧化成Fe(SO ),23砷氧化成As(OH)和AsO,后者进一步生成砷酸盐,可以脱除。主要的氧化剂 323 有臭氧、过氧化物、高锰酸盐、氯气、高氯酸盐、次氯酸盐、铁离子和氧等。加压氧化是采用加氧和加热的方法,通过控制化学反应过程来使硫氧化。根据不同的反应过程,可采用酸性或碱性条件。 加压氧化法具有金回收率高(9O% ~98% )、环境污染小、适应面广等优点,处理大多数含砷硫难处理金矿石或金精矿均能取得满意效果。加压氧化包括高压氧化、低压氧化和高温加压氧化。如加压硝酸氧化法,用硝酸将砷和硫氧化成亚砷酸和硫酸,使包裹金充分解离,金的浸出率在95% 以上,缺点是酸耗较高。 2.3 微生物氧化法微生物氧化又称细菌氧化,它是利用细菌氧化矿石中包裹了金的硫化物和砷化物而将金裸露出来的一种预处理方法。目前,细菌浸出可用于处理矿石和精矿,对精矿一般 采用搅拌浸出,对于低品位矿石则多采用堆浸。 所使用的细菌最适宜的是氧化亚铁硫杆菌,目前已在工业上获得应用。氧化亚铁硫

磁选工艺

第三章磁选工艺 一、铁矿石的磁选 我国已探明的主要铁矿床可划分为9大类。 鞍山式铁矿是我国最重要的铁矿床,占总储量的50%左右。矿石中金属矿物以磁铁矿为主,其次是赤铁矿、菱铁矿;脉石矿物有石英、绿泥石、角闪石、云母、长石和方解石等。 镜铁山式铁矿主要分布在我国西北部甘肃境内,矿石中主要金属矿物为镜铁矿、菱铁矿等,共生有价矿物为重晶石。脉石矿物主要为碧玉、铁白云石等。 攀枝花式铁矿是一种伴生钒、钛、钴等多种元素的磁铁矿,其矿石 储量居我国铁矿总储量的第二位。矿石中主要金属矿物有含钒钛磁铁 矿、钛铁矿,硫化物以磁黄铁矿为主。 根据含铁矿物的不同,有工业价值的铁矿石主要有:磁铁矿石、赤铁矿石、褐铁矿石、菱铁矿石和混合型铁矿石(赤铁矿一磁铁矿混合矿石、含钛磁铁矿石、含铜磁铁矿石)等。 1)磁铁矿石磁选 磁铁矿石属高中温热液接触交代矿床的矿石,这种矿石最有效的选矿方法是磁选,典型的分选流程如所示。其分选工艺多配有一段或二段干式磁选分选中碎或细碎产品,作为分选前的准备作业。 干式磁选主要是排出粗粒尾矿和获得进一步进行深选的产品。对进一步深选产品经二段或三段细磨,再进行二段或三段湿式磁选,得最终精矿产品。 2)弱磁性铁矿物的磁化焙烧与弱磁选

由于赤铁矿、褐铁矿、菱铁矿、黄铁矿等矿物的磁性较低,用弱磁选无法回收,但可以利用磁化焙烧的方法将它们变成强磁性铁矿物(磁铁矿或γ-赤铁矿),然后利用弱磁选的方法回收。 磁化焙烧是矿石加热到一定温度后在相应气氛中进行物理化学反应的过程。根据矿石不同,化学反应不同。磁化焙烧按其原理可分为还原焙烧、中性焙烧和氧化焙烧等。 焙烧磁化产物一般用弱磁选的方法进行分选。典型的(洒钢选矿厂)生产流程见图。 3)弱磁性铁矿物的强磁选 琼斯湿式强磁选机被大量用于氧化铁矿石的磁选。 二、锰矿石的磁选 我国的锰矿石储量居世界第四位。 我国碳酸锰矿多,约占锰矿总量的57%。目前,锰矿选矿方法有重选、重介质一强磁选、焙烧一强磁选、单一强磁选、浮选以及多种方法联合等。 锰矿物属于弱磁性矿物,其比磁化率与脉石矿物的差别较大,因此,锰矿石的强磁选占有重要的地位。对组成比较简单、嵌布粒度较粗的碳酸锰矿石和氧化锰矿石用单一磁选流程可获得较好的分选指标。 图6-3-7是湖南桃江锰矿强磁选流程。

耐火材料及型壳制备.

课题名称耐火材料及型壳制备课次授课日期 授课班级 授课地点 教学目的与 要求学习目标: 1.了解不同型壳的特点。 2.掌握涂料的制备方法。 3.掌握制壳工艺各步骤的要领。 能力目标:能根据铸件特点正确型壳种类,配制符合要求的涂料,能根据特点制定型壳工艺。 素质目标:培养学生团队合作能力,具体问题具体分析的能力。 重点难点及解决方法重点: 1.制壳工艺 2.水玻璃粘结剂难点: 1. 型壳的焙烧 教学设计(方法、教具、手段、内容)方法:讲授 教具:模料样品模组 手段:多媒体 内容: 一、型壳的选择 1.常用熔模铸造型壳 2.型壳选择依据 二、耐火涂料的配制 1.耐火涂料的工艺性能与控制 2. 水玻璃粘结剂 三、制壳工艺 1. 准备工作 2.工序 3.涂挂涂料 4.撒砂 5.干燥 6.硬化 7.脱模8.型壳的焙烧 课外作业阅读相关章节,浏览精品课程网站

授课内容耐火材料及型壳制备 一、型壳的选择 1. 常用熔模铸造型壳 2.型壳选择依据 二、耐火涂料的配制 1.耐火涂料的工艺性能与控制 2.水玻璃粘结剂 三、制壳工艺 1. 准备工作 2. 工序 3.涂挂涂料 4.撒砂 5.干燥 6.硬化 7.脱模 8.型壳的焙烧10min 5min 10min 10min 10min 5min 10min 10min 10min 10min 5min 5min

授课内容备注 一、型壳的选择 1. 常用熔模铸造型壳 A 水玻璃型壳 价格低廉、型壳耐火度低,表面不够光洁,尺寸精度低,脱蜡 时容易酥烂,硬化时污染环境 B 硅溶胶型壳 硅溶胶价格适中,型壳服役性能好,制壳时不放出有害物质, 处理和配制工艺简单,造型时间长。 C 硅酸乙酯型壳 耐火度高,强度大,铸件尺寸精度和表面粗糙度都好,但价格 昂贵,配好后保质期短。 D 复合型壳 面层和背层用两种涂料,可以兼顾两者的优点。 2.型壳选择依据 主要根据产品的精度和工艺要求来选择,在能够满足工艺要求 的前提下,尽量选择成本低的型壳,选择是应注意粘结剂和耐火材 料的配比。 二、耐火涂料的配制 1.耐火涂料的工艺性能与控制 耐火涂料是用粉状耐火材料和粘结剂按比例组成的悬浮液。型 壳的耐火度、高温化学稳定性、热膨胀性、强度、型腔表面的质量 主要取决于耐火材料和粘结剂本身的性能,以及耐火涂料的工艺性 能。 耐火涂料的工艺性能主要有粘度、涂挂性、分散性和稳定性等。 耐火涂料的粘度大小决定了流动性好坏、涂料层厚度及涂覆层

熔模铸造的工艺流程

熔模铸造的工艺流程 时间:2010-04-21 10:18来源:unknown 作者:36 点击:9次 2009年07月15日 熔模铸件尺寸精度较高,一般可达DT4-6(砂型铸造为DT10~13,压铸为 DT5~7),当然由于熔模铸造的工艺过程复杂,影响铸件尺寸精 2009年07月15日 熔模铸件尺寸精度较高,一般可达DT4-6(砂型铸造为DT10~13,压铸为 DT5~7),当然由于熔模铸造的工艺过程复杂,影响铸件尺寸精度的因素较多,例如模料的收缩、熔模的变形、型壳在加热和冷却过程中的线量变化、合金的收缩率以及在凝固过程中铸件的变形等,所以普通熔模铸件的尺寸精度虽然较高,但其一致性仍需提高(采用中、高温蜡料的铸件尺寸一致性要提高很多)。压制熔模时,采用型腔表面光洁度高的压型,因此,熔模的表面光洁度也比较高。此外,型壳由耐高温的特殊粘结剂和耐火材料配制成的耐火涂料涂挂在熔模上而制成,与熔融金属直接接触的型腔内表面光洁度高。所以,熔模铸件的表面光洁度比一般铸造件的高,一般可达Ra.1.6~3.2μm。熔模铸造最大的优点就是由于熔模铸件有着很高的尺寸精度和表面光洁度,所以可减少机械加工工作,只是在零件上要求较高的部位留少许加工余量即可,甚至某些铸件只留打磨、抛光余量,不必机械加工即可使用。由此可见,采用熔模铸造方法可大量节省机床设备和加工工时,大幅度节约金属原材料。 熔模铸造方法的另一优点是,它可以铸造各种合金的复杂的铸件,特别可以铸造高温合金铸件。如喷气式发动机的叶片,其流线型外廓与冷却用内腔,用机械加工工艺几乎无法形成。用熔模铸造工艺生产不仅可以做到批量生产,保证了铸件的一致性,而且避免了机械加工后残留刀纹的应力集中。中国精密铸造、中国铜合金精密铸造、中国不锈钢铸造生产企业,新疆精密铸造欢迎您。 1)适应范围广。铸造法几乎不受铸件大小、厚薄和形状复杂程度的限制 , 铸造的壁厚可达 0.3 ~ 1000mm, 长度从几毫米到十几米 , 质量从几克到 300t 以上。最适合生产形状复杂 , 特别是内腔复杂的零件 , 例如复杂的箱体、阀体、叶轮、发动机汽缸体、螺旋桨等。 2)铸造法能采用的材料广 , 几乎凡能熔化成液态的合金材料均可用于铸造。如铸钢、铸铁飞各种铝合金、铜合金、续合金、铁合金及钵合金等铸件。对于塑性较差的脆性合金材料 ( 如普通铸铁等 ) , 铸造是惟一可行的成形工艺 , 在工业生产中以铸铁件应用最广 , 约占铸件总产量的 70% 以上。 3)铸件具有一定的尺寸精度。一般情况下 , 比普通锻件、焊接件成形尺寸精确。 4)成本低廉、综合经济性能好、能源、材料消耗及成本为其它金属成形方法所不及。

石墨电极的生产工艺流程和质量指标的及消耗原理知识讲解

石墨电极的生产工艺流程和质量指标的及 消耗原理

目录 一、石墨电极的原料及制造工艺 二、石墨电极的质量指标 三、电炉炼钢简介及石墨电极的消耗机理 石墨电极的原料及制造工艺 ●石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混 捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。生产石墨电极的原料有石油焦、针状焦和煤沥青 ●石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑 多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于 易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 ●石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟 焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 ●石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中 硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 ●针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石 墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结 构,因而称之为针状焦。 ●针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具 有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 ●针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青 原料生产的煤系针状焦。 ●煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合 物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。

提金工艺(专利)

金矿提金专利 1、氨法分离金泥中的金银 2、氨氧化炉废料回收铂金的方法 3、边磨边浸-液膜萃取提金工艺方法 4、从低品位金矿中回收金的工艺方法 5、从废催化剂回收金和钯的方法及液体输送阀 6、从废炭中回收金的新工艺 7、从浮选金精矿焙砂废矿浆中回收金的方法 8、从含金含铁硫化物矿当中回收黄金的工艺 9、从含金贫液中萃取金的方法 10、从含金物中无氰浸提金的方法 11、从碱性氰化液中萃取金的方法 12、从金矿提取金、铂、钯的方法 13、从金矿尾矿库溢流水中回收金的方法 14、从金矿中综合提取金、银、铜的工艺过程 15、从金铜矿中提取铜铁金银硫的方法 16、从硫化物铜矿中浸提回收铜、银、金、铅、铁、硫的方法及设备 17、从难处理金精矿中提取金的方法 18、从难处理金矿中回收金、银 19、从难浸矿石中提取金的方法 20、从难浸硫化物矿石、碳质矿石中提金的预处理方法及其专用设备 21、从难熔含金含铁的硫化物矿石中回收黄金 22、从难熔含金含铁硫化物精矿中回收黄金的工艺 23、从贫金液、废金液中提取金的液膜及工艺 24、从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 25、从铅阳极泥中回收银、金、锑、铜、铅的方法 26、从氰化含金废水中回收金的吸附装置 27、从铁矿中综合回收金的方法 28、从铜电解阳极泥中提取金、银的萃取工艺 29、从铜阳极泥中回收金铂钯和碲 30、从载金炭上解吸电解金的工艺方法 31、催化氧化酸法预处理难冶炼金精矿 32、萃取分离金和钯的萃取剂及其应用 33、低温硫化焙烧—选矿法回收铜、金、银 34、低压热酸浸聚氨酯泡沫提金法 35、高含量黄金样品中金含量的快速测定法 36、高压釜内快速氰化提金方法 37、含金矿粉氰化提金添加剂 38、含金氯化液还原制取金的方法 39、含金尾矿库浸工艺 40、含金尾矿无制粒化学疏松堆浸工艺 41、含砷等难处理金精矿的预处理方法 42、含砷含硫难浸金矿的强化碱浸提金工艺

焙烧生产工艺技术操作规程1

焙烧生产工艺技术操作规程 1 目的范围:焙烧是通过对焙烧温度和负压的控制,按工艺标准和要求移动火焰系统,以及对焙烧系统和控制系统的监视和调整,使阳极焙烧生块按一定的标准升温曲线进行焙烧的间接加热过程,阳极达到使用要求。主要由焙烧炉系统及辅助系统组成。 2技术条件 2.1装炉 2.1.1 炉室温度不大于60oC。 2.1.2炉底料厚度60-100 ㎜,层间料厚度30㎜,覆盖料厚度大于550㎜。 2.1.3每炉箱卧装6层,每层3块。块距炉墙不小于40㎜。 2.1.4填充料粒度2-8㎜,不允许有大于15㎜的结块。 2.2温度控制 2.2.1 采用煤气加热,煤气温度5-25°C。 2.2.2 高温炉室火道温度1170--1250°C,制品温度1050--1100°C,升温误差:800以下±20°C,800--1200

±30°C,升温超出误差时应在20分钟内调整到正常。 2.2.3 测制品温度的热电偶应插在炉箱尾端正中位置,插入深度为1200㎜。 2.3 负压 燃烧嘴处:1--5 Pa 火道:100—150Pa 烟斗:600—1000Pa 排烟机入口:大于2.5Kpa 2.4 升温曲线 5室运转180小时升温曲线 阶段温度区间(°C)需用时间(小时) 1 150--500 36 2 500--800 36 3 800--1000 36 4 1000--1200 24 5 1200 48 合计 180

6室运转240小时升温曲线 阶段温度区间(°C)需用时间(小时) 1 150--450 40 2 450--600 40 3 600--760 40 4 760--1000 40 5 1000--1200 32 6 1200 48 合计 240 8室运转256小时升温曲线 阶段温度区间(°C)需用时间(小时) 1 150--360 32 2 360--540 64 3 540--650 32 4 650--780 32 5 780--960 32

砂型铸造工艺流程

砂型铸造工艺流程 砂型铸造工艺流程图 制作木模-造型-熔化-浇注-落砂-冒口拆除-检验入库 熔模铸造工艺 失蜡铸造现在称为熔模铸造。这是一种很少切割或不切割的铸造工艺,是铸造行业的一项优秀技术。它被广泛使用。它不仅适用于各种类型和合金的铸造,而且可以生产出比其他铸造方法具有更高尺寸精度和表面质量的铸件,甚至复杂的、耐高温的、难以加工的、其他铸造方法难以铸造的铸件也可以通过熔模精密铸造来铸造。 熔模铸造是在古代蜡模铸造的基础上发展起来的。作为一个古老的文明,中国是最早使用这项技术的国家之一。早在公元前几百年,中国古代劳动人民就创造了这种失传的铸蜡技术,用来铸造钟鼎和具有各种精美图案和文字的器皿,如春秋时期曾侯乙墓的青铜板。曾侯乙墓雕像板的底座是多条龙缠绕在一起,首尾相连,上下交错,形成一个中间镂空的多层云纹图案。这些图案很难用普通的铸造工艺来制作,而失蜡法的铸造工艺可以利用石蜡无强度、易雕刻的特点,用普通的工具雕刻出与曾侯乙墓的雕像板相同的石蜡工艺品,然后加入浇注系统,经过上漆、脱蜡、浇注,得到精美的曾侯乙雕像板 现代熔模铸造法在20世纪40年代实际应用于工业生产当时,航空喷气发动机的发展要求制造具有复杂形状、精确尺寸和光滑表面的耐热合金部件,如叶片、叶轮和喷嘴。由于耐热合金材料难以加工,零件形状复杂,因此不可能或难以用其他方法制造。因此,需要找到一

种新的精确的成型工艺。因此,现代熔模铸造法借鉴了古代传下来的失蜡铸造法,通过对 材料和工艺的改进,在古代工艺的基础上取得了重要的发展。因此,航空工业的发展促进了熔模铸造的应用,熔模铸造的不断改进也为航空工业进一步提高性能创造了有利条件。 中国在20世纪50年代和60年代开始将熔模铸造应用于工业生产此后,这种先入为主的铸造技术得到了极大的发展,并已广泛应用于航空、汽车、机床、船舶、内燃机、燃气轮机、电信仪器、武器、医疗器械、切割工具等制造业,以及工艺品的制造。所谓的 熔模铸造工艺简单地指用易熔材料(如蜡或塑料)制作易熔模型(称为熔模或模型),在其上涂覆几层特殊的耐火涂层,干燥并硬化形成整体外壳,然后用蒸汽或温水将外壳上的模型熔化,然后将外壳放入砂箱中,在其周围填充干砂,最后将模具放入穿透式烘烤器中进行高温烘烤(例如,当使用高强度外壳时,脱模后的外壳可以不造型直接烘烤)、模具或外壳 熔模铸件尺寸精度高,一般可达CT4-6(砂型铸造CT10~13,压铸CT5~7)。当然,由于熔模铸造工艺过程复杂,影响铸件尺寸精度的因素很多,如模具材料的收缩、熔模的变形、加热和冷却过程中模壳的线性变化、合金的收缩率以及铸件在凝固过程中的变形等。因此,普通熔模铸件的尺寸精度相对较高,但其一致性仍有待提高(使用中高温蜡材料的铸件的尺寸一致性有待提高)用 压制熔体模具时,采用型腔表面光洁度高的型材,因此熔体模具的

石墨电极的原料及制造工艺

石墨电极的原料及制造工艺

石墨电极的原料及制造工艺 一、石墨电极的原料 1、石墨电极 是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。 2、石墨电极的原料 生产石墨电极的原料有石油焦、针状焦和煤沥青 (1)石油焦 石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 (2)针状焦 针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结构,因而称之为针状焦。 针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。 (3)煤沥青 煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。 煤沥青在炭素工业中作为粘结剂和浸渍剂使用,其性能对炭素制品生产工艺和产品质量影响极大。粘结剂沥青一般使用软化点适中、结焦值高、β树脂高的中温或中温改质沥青,浸渍剂要使用软化点较低、 QI低、流变性能好的中

金矿石预处理工艺之焙烧氧化工艺

2焙烧氧化工艺 焙烧法是利用高温充气的条件下,使包裹金的硫化矿物分解为多孔的氧化物而使浸染其中的金暴露出来。焙烧法作为难浸金矿的预处理方法已有几十年的历史了。该法对矿石具有较广泛的适应性,操作、维护简单,技术可靠,但由于传统的焙烧处理放出S02, AS203等有毒气体,环境污染严重,因此其应用受到限制。但随着两段焙烧、循环沸腾焙烧、富氧焙烧、固化焙烧、闪速焙烧、微波焙烧等焙烧新工艺的出现,在一定程度上减少了环境污染,提髙了金的回收率,并且投资和生产成本相应降低,从而使焙烧氧化法又成为难浸金矿石预处理优先考虑的方案之一。 2.1焙烧氧化工艺的基本原理 高温条件下,难处理金矿将发生如下主要化学反应: 对于黄铁矿: 3FeS 2+ 8O 2 ====Fe3 3 4 + 6SO 2 ↑ (5) 4FeS 2+ 11O 2 ====2Fe 2 O3 + 8SO 2 ↑ (6) 对于砷黄铁矿,在氧气不足和约450℃时: 3FeAsS==== FeAs 2 + 2FeS + AsS ↑ (7) 12FeAsS + 29O 2====4Fe 3 O 4 + 6As 2 O 3 ↑ + 12SO 2 ↑ (8) 在600℃以上时: 4FeAsS====4FeS + As 4 ↑ (9) As 4+ 3O 2 ==== 2As 2 O 3 ↑ (10) 2.2焙烧氧化工艺技术特点 (1)该工艺处理速度快,适应性强,尤其是对含有机碳的矿石针对性强。 (2)副产品可以回收利用,可以综合回收砷、硫等伴生元素。

(3)在焙烧过程中,能造成硫化矿的“欠烧”或“过烧”,影响金的浸出率。 (4)焙烧过程产生大量的二氧体硫和三氧化二砷等有害气体,收尘系统复杂。 (5)工艺流程长而且复杂,操作参数要求严格,生产调试周期长。 (6)受到硫酸市场的影响和制约,酸价的波动直接影响该工艺的合理性。两段焙烧原则工艺流程见图2。 图2两段焙烧原则工艺流程图 2.3国内外焙烧氧化技术的开发和应用现状 目前最常见的焙烧氧化工艺主要有针对金精矿的两段沸腾焙烧和针对原矿 的固化沸腾焙烧。 对于含相当数量砷的金精矿一般采用两段焙烧工艺,即在400 ~450弋下控制弱氧化焙烧气氛或中性气氛,含砷矿物被氧化生成挥发性的三氧化二砷,同时

焙烧工艺操作

沸腾炉的工艺操作 沸腾炉的工艺操作并不十分复杂,主要是根据各种测量仪表的指示和观察焙砂质量来进行控制。通过正确的调节,维持炉子的风量、温度、加料量、压力等指标和炉内酸化条件的相对稳定,保证炉子安全运行,产出合格焙砂和烟气。(1)操作要求。 1)要全面掌握炉子的运行情况,包括技术指标、原料、排渣、供风、烟气及系统相关工序运转的大致情况。 2)要具有对各项指标、各个因素综合分析的能力。炉子的任何一个指标,任何一个因素都是相互影响的,在日常操作中,要学会观察分析,多动脑筋,多做笔记,不断积累经验,确实掌握了解每个指标、每人因素的因果关系,提高自己的分析判断能力。 3)养成细致入微的工作作风。炉子运行过程中会出现不同的情况,出现问题后,一定要先做全面细致的了解,冷静分析,把问题搞清楚再作处理。一些表面现象、原因可能会有多种多样,如果没有严谨的工作作风,盲目调节,就有可能把小问题搞大,适得其反,甚至把炉子搞垮。 4)提倡一个“勤”字,做预见性调节。炉子在运行过程中,如果运行发生了变化,基本上事先都要经过一个变化过程,这就是要求操作时一定要勤观察、勤思考、勤分析,找准问题,调节时,动作要求小,要勤调,不怕麻烦,只有这样才

能对炉子做到准确的预见性调节,才能做到万无一失。(2)操作调节诸因素分析。 1)温度。沸腾炉温度的特点是床层温度的均匀性,由于各点温差不大,只要局部条件的变化就可以起到调节整个床层温度的任用。 ①硫的影响。炉内的热量来自硫的燃烧,原料含硫量高,炉温上升快,但当过剩空气不足时生成四氧化三铁黑渣,常伴有硫化亚铁生成,这时投矿量增加,炉温反而会下降。在这种情况下,一旦断料会使炉内氧气过剩,四氧化三铁和硫化亚铁被氧化放热,便会造成高温结疤。硫含量的变化对温度影响很大,可采用调节投矿量的方法进行控制。 ②风量影响。风量的变化也影响炉温的改变,当炉内呈四氧化三铁黑渣时,不要随便减风;;当炉内呈三氧化二铁红渣时,不要随便加风;当炉温骤升时,不要调节风量(生产中多不采取风量控制温度)。 ③冷却介质影响。当炉温高时加水会降低炉温,但它只是将气体显热变成水汽的潜热,并未将热量从炉内移走,从而增加了炉后冷却净化设备的负荷。 2)炉底压力。沸腾层的阻力大小决定于静止料层的厚度和它的堆积重量,同炉内流速无关,流速高低只能改变炉内沸腾层的孔隙率和膨胀比。但当风量开大时,沸腾层的膨胀比增大,排渣量增大而使炉底压力降低;当增加投矿量时会增

制造工艺详解——铸造

制造工艺详解——铸造 铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。 一、铸造的定义和分类 铸造的定义:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,获得具有一定形状、尺寸和性能金属零件毛坯的成型方法。 常见的铸造方法有砂型铸造和精密铸造,详细的分类方法如下表所示。 砂型铸造:砂型铸造——在砂型中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 精密铸造:精密铸造是用精密的造型方法获得精确铸件工艺的总称。它的产品精密、复杂、接近于零件最后形状,可不加工或很少加工就直接使用,是一种近净形成形的先进工艺。 铸造方法分类 二、常用的铸造方法及其优缺点 1. 普通砂型铸造

制造砂型的基本原材料是铸造砂和型砂粘结剂。最常用的铸造砂是硅质砂,硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。 砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分 为粘土湿砂型、粘土干砂型和化学硬化砂型3种。 砂型铸造用的是最流行和最简单类型的铸件已延用几个世纪.砂型铸造是用来制造大型部件,如灰铸铁,球墨铸铁,不锈钢和其它类型钢材等工序的砂型铸造。其中主要步骤包括绘画,模具,制芯,造型,熔化及浇注,清洁等。 工艺参数的选择 加工余量:所谓加工余量,就是铸件上需要切削加工的表面,应预先留出一定的加工余量,其大小取决于铸造合金的种类、造型方法、铸件大小及加工面在铸型中的位置等诸多因素。 起模斜度:为了使模样便于从铸型中取出,垂直于分型面的立壁上所加的斜度称为起模斜度。 铸造圆角:为了防止铸件在壁的连接和拐角处产生应力和裂纹,防止铸型的尖角损坏和产生砂眼,在设计铸件时,铸件壁的连接和拐角部分应设计成圆角。 型芯头:为了保证型芯在铸型中的定位、固定和排气,模样和型芯都要设计出型芯头。 收缩余量:由于铸件在浇注后的冷却收缩,制作模样时要加上这部分收缩尺

提金技术工艺大全(专利)

提金技术工艺大全(专利) 提金技术工艺大全(专利) 金矿提金专利 1、氨法分离金泥中的金银 2、氨氧化炉废料回收铂金的方法 3、边磨边浸-液膜萃取提金工艺方法 4、从低品位金矿中回收金的工艺方法 5、从废催化剂回收金和钯的方法及液体输送阀 6、从废炭中回收金的新工艺 7、从浮选金精矿焙砂废矿浆中回收金的方法 8、从含金含铁硫化物矿当中回收黄金的工艺 9、从含金贫液中萃取金的方法 10、从含金物中无氰浸提金的方法 11、从碱性氰化液中萃取金的方法 12、从金矿提取金、铂、钯的方法 13、从金矿尾矿库溢流水中回收金的方法 14、从金矿中综合提取金、银、铜的工艺过程 15、从金铜矿中提取铜铁金银硫的方法 16、从硫化物铜矿中浸提回收铜、银、金、铅、铁、硫的方法及设备 17、从难处理金精矿中提取金的方法 18、从难处理金矿中回收金、银

19、从难浸矿石中提取金的方法 20、从难浸硫化物矿石、碳质矿石中提金的预处理方法及其专用设备 21、从难熔含金含铁的硫化物矿石中回收黄金 22、从难熔含金含铁硫化物精矿中回收黄金的工艺 23、从贫金液、废金液中提取金的液膜及工艺 24、从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 25、从铅阳极泥中回收银、金、锑、铜、铅的方法 26、从氰化含金废水中回收金的吸附装置 27、从铁矿中综合回收金的方法 28、从铜电解阳极泥中提取金、银的萃取工艺 29、从铜阳极泥中回收金铂钯和碲 30、从载金炭上解吸电解金的工艺方法 31、催化氧化酸法预处理难冶炼金精矿 32、萃取分离金和钯的萃取剂及其应用 33、低温硫化焙烧—选矿法回收铜、金、银 34、低压热酸浸聚氨酯泡沫提金法 35、高含量黄金样品中金含量的快速测定法 36、高压釜快速氰化提金方法 37、含金矿粉氰化提金添加剂 38、含金氯化液还原制取金的方法 39、含金尾矿库浸工艺 40、含金尾矿无制粒化学疏松堆浸工艺

煅烧 焙烧与烧结的区别

焙烧 焙烧与煅烧是两种常用的化工单元工艺。焙烧是将矿石、精矿在空气、氯气、氢气、甲烷和氧化碳等气流中不加或配加一定的物料,加热至低于炉料的熔点,发生氧化、还原或其他化学变化的单元过程,常用于无机盐工业的原料处理中,其目的是改变物料的化学组成与物理性质,便于下一步处理或制取原料气。煅烧是在低于熔点的适当温度下,加热物料,使其分解,并除去所含结晶水、二氧化碳或三氧化硫等挥发性物质的过程。两者的共同点是都在低于炉料熔点的高温下进行,不同点前者是原料与空气、氯气等气体以及添加剂发生化学反应,后者是物料发生分解反应,失去结晶水或挥发组分。 烧结也是一种化工单元工艺。烧结与焙烧不同,焙烧在低于固相炉料的熔点下进行反应,而烧结需在高于炉内物料的熔点下进行反应。烧结也与煅烧不同,煅烧是固相物料在高温下的分解过程,而烧结是物料配加还原剂、助熔剂的化学转化过程。烧结、焙烧、煅烧虽然都是高温反应过程,但烧结是在物料熔融状态下的化学转化,这是它与焙烧、煅烧的不同之处。 焙烧 1. 焙烧的分类与工业应用 矿石、精矿在低于熔点的高温下,与空气、氯气、氢气等气体或添加剂起反应,改变其化学组成与物理性质的过程称为焙烧。在无机盐工业中它是矿石处理或产品加工的一种重要方法。 焙烧过程根据反应性质可分为以下六类,每类都有许多实际工业应用。 (1) 氧化焙烧 硫化精矿在低于其熔点的温度下氧化,使矿石中部分或全部的金属硫化物变为氧化物,同时除去易于挥发的砷、锑、硒、碲等杂质。硫酸生产中硫铁矿的焙烧是最典型的应用实例。硫化铜、硫化锌矿的火法冶炼也用氧化焙烧。 硫铁矿(FeS2)焙烧的反应式为: 4FeS2+11O2=2Fe2O3+8SO2↑ 3FeS2+8O2=Fe3O4+6SO2↑ 生成的SO2就是硫酸生产的原料,而矿渣中Fe2O3与Fe3O4都存在,到底那一个比例大,要视焙烧时空气过剩量和炉温等因素而定。一般工厂,空气过剩系数大,含Fe2O3较多;若温度高,空气过剩系数较小,渣成黑色,且残硫高,渣中Fe3O4多。焙烧过程中,矿中所含铝、镁、钙、钡的硫酸盐不分解,而砷、硒等杂质转入气相。 硫化铜(CuS)精矿的焙烧分半氧化焙烧和全氧化焙烧两种,分别除去精矿中部分或全部硫,同时除去部分砷、锑等易挥发杂质。过程为放热反应,通常无需另加燃料。半氧化焙烧用以提高铜的品位,保持形成冰铜所需硫量;全氧化焙烧用于还原熔炼,得到氧化铜。焙烧多用流态化沸腾焙烧炉。 锌精矿中的硫化锌(ZnS)转变为可溶于稀硫酸的氧化锌也用氧化焙烧,温度850~900℃,空气过剩系数~,焙烧后产物中90%以上为可溶于稀硫酸的氧化锌,只有极少量不溶于稀酸的铁酸锌(ZnO·Fe2O3)和硫化锌。 氧化焙烧是钼矿化学加工的主要方法,辉钼矿(MoS2)含钼量大于45%,被粉碎至60~80目,在焙烧炉中于500~550℃下氧化焙烧,生成三氧化钼。三氧化钼是中间产品,可生成多种钼化合物与钼酸盐。 有时,氧化焙烧过程中除加空气外,还加添加剂,矿物与氧气、添加剂共同作用。如铬铁矿化学加工的第一步是纯碱氧化焙烧,工业上广泛采用。原料铬铁矿(要求含 Cr2O335%以上),在1000~1150℃下氧化焙烧为六价铬:

相关主题
文本预览
相关文档 最新文档