当前位置:文档之家› 基于LabVIEW的温度采集系统报告

基于LabVIEW的温度采集系统报告

基于LabVIEW的温度采集系统报告
基于LabVIEW的温度采集系统报告

汕头大学工学院

二级项目报告

项目题目:基于labview的温度采集系统

指导教师:庄哲民

系别:电子工程系专业:电子信息工程完成时间: 2011年8月1日至 9月10日

成绩:评阅人:庄哲民

虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密的融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。

本设计采用USB5935数据采集卡,运用虚拟仪器及其相关技术于温度采集系统的设计。该系统具有数据同时采集、采集数据实时显示、存储与管理、报警记录等功能。

本文首先概述了测控技术和虚拟仪器技术,探讨了虚拟仪器的总线及其标准、框架结构、LabVIEW开发平台,然后介绍了数据采集的相关理论,给出了数据采集系统的硬件结构图。在分析本系统功能需求的基础上,介绍了程序模块化设计中用到的技术,最后一章给出了本设计的前面板图。

关键字:虚拟仪器;数据采集;LabVIEW

1.1 引言

测控技术在现代科学技术、工业生产和国防科技等诸多领域中应用十分广泛,它的现代化已被认为是科学技术、国防现代化的重要条件和明显标志。20世纪70年代以来,计算机、微电子等技术迅猛发展,在其推动下,测控仪器与技术不断进步,相继诞生了智能仪器、PC仪器、VXI仪器、虚拟仪器及互换性虚拟仪器等微机化仪器及其自动测控系统,计算机与现代化仪器设备间的界限日渐模糊,测控领域和范围不断拓宽[1]。

近年来,以计算机为中心、以网络为核心的网络化测控技术与网络化测控系统得到越来越多的应用,尤其是在航空航天等国防科技领域。网络化的测控系统大体上由两部分组成:测控终端与传输介质,随着个人计算机的高速发展,测控终端的位置越来越多的被个人计算机所占据,其中,软件系统是计算机系统的核心,甚至是整个测控系统的灵魂,应用于测控领域的软件系统称为监控软件。传输介质组成的通信网络主要完成数据的通信与采集,这种数据采集系统是整个测控系统的主体,是完成测控任务的主力。因此,这种“监控软件-数据采集系统”构架的测控系统结构在很多领域都得到了广泛的应用,并形成了一套完整的理论[1]。

1.2 课题背景

虚拟仪器(VI)是计算机技术和传统的仪器技术相结合的产物,是仪器发展的一个重要方向。LabVIEW是一个基于图形化编程语言的虚拟仪器软件开发工具。本文重点介绍了虚拟仪器的界面,LabVIEW应用,并设计了一个基于虚拟仪器的数字化温度测量和控制系统,阐述了系统开发过程中数据的采集和软硬件的设计,虚拟仪器设备可以由使用者自己定义,这意味着可以自由地组合计算机平台,硬件(包括传统仪器),软件,以及各种实现应用所需要的附件。这种灵活性在由供应商定义,功能固定,独立的传统仪器上是很难达到的。常用的数字万用表,示波器,信号发生器,数据记录仪,以及温度和压力监控仪器就是这种传统仪器的代表。从传统仪器设备向虚拟仪器设备的转变,为现代实验带来了更多实际的利益,同时也促进着实验手段不断更新。

1.3 本设计所做的工作

本设计以两个独立通道进行设计,从传感器来的模拟输入信号,经过信号调理后,输入到USB5935数据采集卡,然后经过USB总线送入PC机,由软件进行数据处理,包括采样波形的实时显示,并进行历史数据保存,边采集边保存,还有实时报警并记录处理等功能。

虚拟仪器

2.1虚拟仪器技术概述

2.1.1 虚拟仪器的概念

虚拟仪器的概念是由美国国家仪器公司(National Instruments)最先提出的[4][5]。所谓虚拟仪器是基于计算机的软硬件测试平台,它可代替传统的测量仪器,如示波器、逻辑分析仪、信号发生器、频谱分析仪等;可集成于自动控制、工业控制系统之中;可自由构建成专有仪器系统。虚拟仪器是智能仪器之后的新一代测量仪器。

虚拟仪器的核心技术思想就是“软件即是仪器”。该技术把仪器分为计算机、仪器硬件和应用软件三部分。虚拟仪器以通用计算机和配备标准数字接口的测量仪器(包括GPIB、RS-232等传统仪器以及新型的VXI模块化仪器)为基础,将仪器硬件连接到各种计算机平台上,直接利用计算机丰富的软硬件资源,将计算机硬件(处理器、存储器、显示器)和测量仪器(频率计、示波器、信号源)等硬件资源与计算机软件资源(包括数据的处理、控制、分析和表达、过程通讯以及图形用户界面)有机的结合起来。

2.1.2 虚拟仪器的特点及优势

虚拟仪器是基于计算机的功能化硬件模块和计算机软件构成的电子测试仪器,而软件是虚拟仪器的核心[6][7][8],如图1所示,其中软件的基础部分是设备驱动软件,而这些标准的仪器驱动软件使得系统的开发与仪器的硬件变化无关。这是虚拟仪器最大的优点之一,有了这一点,仪器的开发和换代时间将大大缩短。虚拟仪器中应用程序将可选硬件(如GPIB,VXI,RS-232,DAQ板)和可重复用库函数等软件结合在一起,实现了仪器模块间的通信、定时与触发。源代码库函数为用户构造自己的虚拟仪器(VI)系统提供了基本的软件模块。由于VI的模块化、开放性和灵活性,以及软件是关键的特点,当用户的测试要求变化时可以方便地由用户自己来增减硬、软件模块,或重新配置现有系统以满足新的测试要求。这样,当用户从一个项目转向另一个项目时,就能简单地构造出新的VI系统而不丢失己有的硬件和软件资源。

虚拟仪器开发者

虚拟仪器软件面板

虚拟仪器软件开发平台

底层驱动程序

硬件模块

虚拟仪器开发者操作系统

图1虚拟仪器开发框图

虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。虚拟仪器技术十分符合国际上流行的“硬件软件化”的发展趋势,因而常被称作“软件仪器”。它功能强大,可实现示波器、逻辑分析仪、频谱仪、信号发生器等多种普通仪器全部功能,配以专用探头和软件还可

检测特定系统的参数,如汽车发动机参数、汽油标号、炉窑温度、血液脉搏波、心电参数等多种数据;它操作灵活,完全图形化界面,风格简约,符合传统设备的使用习惯,用户不经培训即可迅速掌握操作规程。

2.1.3虚拟仪器测试系统的组成

虚拟仪器是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向。这种结合基本有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。另一种方式是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能,虚拟仪器主要是指这种方式[9]。虚拟仪器的组成与传统仪器一样,主要由数据采集与控制、数据分析和处理、结果显示三部分组成。如图2所示。

采集与控制

插入式数据采集板

GPIB仪器

VXI/PXI

仪器RS-232仪器

数据分析和处理

数字信号处理

数字滤波

统计分析

数值分析

结果显示

网络通信

硬盘拷贝输出

文件I/O

图形用户接口图2虚拟仪器的内部功能的划分

对于传统仪器,这三个部分几乎均由硬件完成;对于虚拟仪器,前一部分由硬件构成,后两部分主要由软件实现。与传统仪器相比,虚拟仪器设计日趋模块化、标准化,设计工作量大大减小。

通常虚拟仪器测试系统硬件组成部分是由传感器部件、信号调理及信号采集部件(如外置或内置数据采集卡、图形图像采集卡及摄像机及其用于辅助测量并能与计算机通讯的常规仪器等)、通用计算机、打印机等构成。系统软件部分通常用专用的虚拟仪器开发语言(如LabVIEW)编写而成,并可通过Internet实现网络扩展。2.1.4 虚拟仪器I/O接口设备

I/O接口设备主要用来完成被测输入信号的采集、放大、模数转换。可根据实际情况采用不同的I/O接口硬件设备,如数据采集卡/板(DAQ)、GPIB总线仪器、VXI总线仪器、串口仪器、USB等。这里主要讲数据采集卡。

DAQ(Data Acquisition)数据采集卡是指基于计算机标准总线(如ISA、PCI、USB等)的内置功能插卡。其中USB是最新技术的数据采集卡,具有精度高,可携性好等优点,它更加充分地利用计算机的资源,大大增加了测试系统的灵活性和扩展性;利用DAQ卡可方便快速地构建虚拟仪器系统。在性能上,随着A/D转换技术,滤波技术和信号调理技术的发展,DAQ卡的采样速率已达1GB/s,精度高达24位,通道数高达64个,并具有数字I/O,模拟I/O和计数器/定时器等通道。各仪器厂家生产了大量的DAQ卡功能模块供用户选择,如示波器、串行数据分析仪、动态信号分析仪、任意波形发生器等。在计算机上挂接多个DAQ功能模块,配合相应的软件,就可以构成一台具有多功能的测试仪器。这种基于计算机的仪器,既具有高档仪器的测量品质,又能满足测量需求的多样性。对我国大多数用户来说,它具有很高的性能价格比,是一种特别适合我国国情的虚拟仪器方案。

2.1.5 虚拟仪器的软件结构

虚拟仪器技术的核心是软件,其软件基本结构如图3所示。用户可以采用各种编程软件来开发自己所需要的应用软件。以美国NI公司的软件产品LabVIEW和LabWindows/CVI为代表的虚拟仪器专用开发平台是当前

流行的集成化开发工具。这些软件开发平台提供了强大的仪器软面板设计工具和各种数据处理工具,再加上虚拟仪器硬件厂商提供的各种硬件的驱动程序模块,简化了虚拟仪器的设计工作。随着软件技术的迅速发展,软件开发的模块化、复用化,和各种硬件仪器驱动软件的模块化、标准化,虚拟仪器软件开发将变得更加快速、方便。

用户界面

数据处理

硬件驱动程序

图3 虚拟仪器软件结构

2.2虚拟仪器的开发软件

2.2.1 图形化虚拟仪器开发平台——LabVIEW

LabVIEW(Laboratory Virtual Instrument Engineering)是一种图形化的编程语言,它广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。LabVIEW集成了与满足GPIB、VXI、RS-232和RS-485协议的硬件及数据采集卡通讯的全部功能。它还内置了便于应用TCP/PI、ActiveX等软件标准的库函数,是一个功能强大且灵活的软件。利用它可以方便地建立自己的虚拟仪器,其图形化的界面使得编程及使用过程都更加形象化。

传统的文本式编程是一种顺序的设计思路,设计者必须写出执行的语句。而LabVIEW是基于数据流的工作方式,同时是基于图形化的编程,这使得设计者不必掌握大量的编程语言和程序设计技巧便可设计出虚拟仪器系统[11]。

目前,在以PC机为基础的测试和工控软件中,LabVIEW的市场普及率仅次于C++/C语言。LabVIEW具有一系列无与伦比的优点:首先,LabVIEW作为图形化语言编程,采用流程图式的编程,运用的设备图标与科学家、工程师们习惯的大部分图标基本一致,这使得编程过程和思维过程非常相似;同时,LabVIEW提供了丰富的VI库和仪器面板素材库,近600种设备的驱动程序(可扩充)如GPIB设备控制、VXI总线控制、串行口设备控制、以及数据分析、显示和存储;并且LabVIEW还提供了专门用于程序开发的工具箱,使得用户能够设置断点,调试过程中可以使用数据探针和动态执行程序来观察数据的传输过程,更加便于程序的调试。因此,LabVIEW受到越来越多工程师、科学家的普遍青睐。

2.2.2 基于LabVIEW平台的虚拟仪器程序设计

所有的LabVIEW应用程序,即虚拟仪器(VI),它包括前面板(Front Panel)、流程图(Block Diagram)以及图标/连结器(Icon/Connector)三部分。

1)前面板:前面板是图形用户界面,也就是VI的虚拟仪器面板,这一界面上有用户输入和显示输出两类对象,具体表现有开关、旋钮、图形以及其他控制和显示对象。但并非画出两个控件后程序就可以运行,在前面板后还有一个与之对应的流程图。

2)流程图:流程图提供VI的图形化源程序。在流程图中对VI编程,以控制和操纵定义在前面板上的输入和输出功能。流程图中包括前面板上的控件连线端子,还有一些前面板上没有,但编程必须有的东西,例如函数、结构和连线等。

如果将VI与传统仪器相比较,那么前面板上的控件对应的就是传统仪器上的按钮、显示屏等控件,而流程图上的连线端子相当于传统仪器箱内的硬件电路。在许多情况下,使用VI可以仿真传统仪器,不仅在屏幕上出现一个惟妙惟肖的标准仪器面板,而且其功能也与传统标准仪器相差无几。

系统设计理论及硬件平台的实现

3.1数据采集理论

该部分主要包括数据采集技术概述,传感器,输入信号的分析、调理以及测量系统的选择,下面分别予以说明。

3.1.1 数据采集技术概论

在计算机广泛应用的今天,数据采集的重要性是十分显著的。它是计算机与外部物理世界连接的桥梁。各种类型信号采集的难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多的实际的问题要解决。

假设现在对一个模拟信号x(t)每隔△t时间采样一次。时间间隔△t被称为采样间隔或者采样周期。它的倒数l/△t被称为采样频率,单位是采样数/每秒。t=0,△t,2△t,3△t……等等,x(t)的数值就被称为采样值。所有x(0),x(△t),x(2△t)都是采样值。这样信号x(t)可以用一组分散的采样值来表示:

{x(0),x(△t),x(2△t),x(3△t),…,x(k△t),…}

图4显示了一个模拟信号和它采样后的采样值。采样间隔是△t,注意,采样点在时域上是离散的。

图4模拟信号采样图

如果对信号x(t)采集N个采样点,那么x(t)就可以用下面这个数列表示:

X={x[0],x[l],x[2],x[3],…,x[N-l]}

这个数列被称为信号x(t)的数字化显示或者采样显示。这个数列中仅仅用下标变量编制索引,而不含有任何关于采样率(或△t)的信息。所以如果只知道该信号的采样值,并不能知道它的采样率,缺少了时间尺度,也不可能知道信号x(t)的频率。

根据采样定理,最低采样频率必须是信号频率的两倍。反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变的最大频率叫做恩奎斯特频率,它是采样频率的一半。如果信号中包含频率高于奈奎斯特频率的成分,信号将在直流和恩奎斯特频率之间畸变。图5和图6显示了一个信号分别用合适的采样率和过低的采样率进行采样的结果。

图5 合适采样率采样波形

图6 采样率过低采样波形

采样率过低的结果是还原的信号的频率看上去与原始信号不同。这种信号畸变叫做混叠。出现的混频偏差是输入信号的频率和最靠近的采样率整数倍的差的绝对值。为了避免这种情况的发生,通常在信号被采集(A/D)之前,经过一个低通滤波器,将信号中高于奈奎斯特频率的信号成分滤去。理论上设置采样频率为被采集信号最高频率成分的2倍就够了,但实际上工程中选用5-10倍,有时为了较好地还原波形,甚至更高一些。

3.1.2 采集系统的一般组成

3.1.3 传感器

传感器部分是跟外界沟通的门户,负责把外界的各种物理信息,如光、压力、温度、声音等物理信号变成电信号。因为被测试对象的信号来源已经是变换好了的电信号,所以传感器部分在设计中没有得到具体体现,但是这部分是设计过程中必需要考虑的。

3.1.4 信号调理

从传感器得到的信号大多要经过调理才能进入数据采集设备,信号调理功能包括放大、隔离、滤波、激励、线性化等。由于不同传感器有不同的特性,除了这些通用功能外,还要根据具体传感器的特性和要求来设计特殊的信号调理功能。信号调理的通用功能如下:

1)放大微弱信号都要进行放大以提高分辨率和降低噪声,使调理后信号的电压范围和A/D的电压范围相匹配。信号调理模块应尽可能靠近信号源或传感器,使得信号在受到传输信号的环境噪声影响之前已被放大,使信噪比得到改善。

2)隔离隔离是指使用变压器、光或电容耦合等方法在被测系统和测试系统之间传递信号,避免直接的电连接。使用隔离的原因:是从安全的角度考虑;二是隔离可使从数据采集卡读出来的数据不受地电位和输入模式的影响。如果数据采集卡的地与信号地之间有电位差,而又不进行隔离,那么就有可能形成接地回路,引起

误差。

3)滤波滤波的目的是从所测量的信号中除去不需要的成分。大多数信号调理模块有低通滤波器,用来滤除噪声。通常还需要抗混叠滤波器,滤除信号中感兴趣的最高频率以上的所有频率的信号。另外,某些高性能的数据采集卡自身带有抗混叠滤波器。

4)激励信号调理也能够为某些传感器提供所需的激励信号,比如应变传感器、热敏电阻等就需要外界电源或电流激励信号。很多信号调理模块都提供电流源和电压源以便给传感器提供激励。

5)线性化许多传感器对被测量的响应是非线性的,因而需要对其输出信号进行线性化,以补偿传感器带来的误差。目前,数据采集系统也可以利用软件来解决这一问题。

6)数字信号调理即使传感器直接输出数字信号,有时也有必要进行调理,其作用是将传感器输出的数字信号进行必要的整形或电平调整。大多数数字信号调理模块还提供其他一些电路模块,使得用户可以通过数据采集卡的数字I/O比直接控制电磁阀、电灯、电动机等外部设备。

如下是稳压模块设计,通过输出+-12V驱动信号调理电路进行信号采集。

图8 +-12V稳压电源

如下是信号调理电路。利用1mA恒定电流通过pt100热电阻产生相应的电压再通过低通滤波器滤掉100hz 以上的信号。利用差动放大器放大12倍再通过滤波器放大1.6倍。然后输出到数据采集卡进行信号采集。

图9 热电阻调理电路

3.1.5 输入信号的类型

在进行数据采集前,必须对要采集的信号有所了解,因为不同信号的测量方式和对采集系统的要求是不同的,只有了解被测信号,才能选择合适的测量方式和采集系统。

任意一个信号是随时间而改变的物理量。一般情况下,信号所运载信息是很广泛的,比如:状态(State)、速率(Rate)、电平(Level)、形状(Shape)、频率成分(Frequency Content)。根据信号运载信息方式的不同,可以将信号分为模拟或数字信号。数字信号又可分为开关信号和脉冲信号。模拟信号则可分为直流、时域、频域信号。

1)数字信号(Digital)

第一类数字信号是开关信号(On-Off),如图10所示。一个开关信号运载的信息与信号的瞬间状态有关。TTL 信号就是一个开关信号,一个TTL 信号如果在2.0V 到5.0V 之间,就定义它为逻辑高电平,如果在0到0.8V

之间,就定义为逻辑低电平。

On

State

Off

t

图10 开关信号

第二类数字信号是脉冲信号(Pulse Train),如图11所示。这种信号包括一系列的状态转换,信息就包含在状态转化发生的数目、转换速率、一个转换间隔或多个转换间隔的时间里。

Rate

t

图11 脉冲信号

2)模拟信号(Analog)

模拟直流信号(DC)是静止的或变化非常缓慢的模拟信号,如图12所示。

Level

t

图12模拟直流信号

直流信号最重要的信息是它在给定区间内运载的信息的幅度。常见的直流信号有温度、流速、压力、应变等。采集系统在采集模拟直流信号时,需要有足够的精度以正确测量信号电平。

模拟时域信号(Time Domain)运载的信息不仅有信号的电平,还有电平随时间的变化,如图13所示。在测量一个时域信号或者说是波形时,需要关注波形形状的特性,如斜度、峰值等。为了测量一个时域信号,必须有一个精确的时间序列,间隔也要合适,以保证信号的有用部分被采集到。现实中存在许多不同的时域信号,比如心脏跳动信号、视频信号等,测量它们通常是因为对波形的某些方面的特性感兴趣。

图13 模拟时域信号

模拟频域信号(Frequency Domain)与时域信号类似,但从频域信号中提取的信息是信号的频域内容,而不是波形的形状,也不是随时间变化的特性,如图14所示。用于测量一个频域信号的系统必须有必要的分析功能,用于从信号中提取频域信息。为了实现这样的数字信号处理,可以使用应用软件或特殊的DSP硬件来迅速而有效地分析信号。模拟频域信号也很多,比如声音信号、地球物理信号、传输信号等。

图14 模拟频域信号

现实中的信号并不是互相排斥的,一个信号可能运载有不只一种信息,可以用几种方式来定义信号并测量它,用不同类型的系统来测量同一个信号,从信号中取出需要的各种信息。

3.1.6 输入信号的连接方式

一个电压信号可以分为接地和浮动两种类型。测量系统可以分为差分(Differential)、参考地单端(RSE)、无参考地单端(NRSE)三种类型。

1)接地信号

接地信号,就是将信号的一端与系统地连接起来,如大地或建筑物的地。因为信号用的是系统地,所以与数据采集卡是共地的。接地最常见的例子是通过墙上的接地引出线,如信号发生器和电源。

2)浮动信号

一个不与任何地(如大地或建筑物的地)连接的电压信号称为浮动信号,浮动信号的每个端口都与系统地独立。一些常见的浮动信号的例子有电池、热电偶、变压器和隔离放大器。

3.1.7 测量系统分类

1)差分测量系统(DEF)

差分测量系统中,信号输入端与一个模拟入通道相连接。具有放大器的数据采集卡可配置成差分测量系统。图15描述了一个8通道的差分测量系统,用一个放大器通过模拟多路转换器进行通道间的转换。标有AIGND(模拟输入地)的管脚就是测量系统的地。

一个理想的差分测量系统仅能测出(+)和(-)输入端口之间的电位差,完全不会测量到共模电压。然而,实际应用的板卡却限制了差分测量系统抵抗共模电压的能力,数据采集卡的共模电压的范围限制了相对与测量系统地的输入电压的波动范围。共模电压的范围关系到一个数据采集卡的性能,可以用不同的方式来消除共模电压的影响。如果系统共模电压超过允许范围,需要限制信号地与数据采集卡的地之间的浮地电压,以避免测量数

据错误。 +

-MUX

CH0+

CH1+

CH2+

CH7+MUX

CH0+

CH1+

CH2+CH7+

Amplifier

Vm

AIGND

图 15八通道差分测量系统

2)参考地单端测量系统(RSE)

一个RSE 测量系统,也叫做接地测量系统,被测信号的一端接模拟输入通道,另一端连接系统地AIGND 。图16表示了一个16通道的RSE 测量系统。

+

-

MUX

CH0+

CH1+

CH2+CH15+

Amplifier Vm AIGND

图16十六通道RSE 测量系统

3)无参考地单端测量系统(NRSE)

在NRSE 测量系统中,信号的一端接模拟输入通道,另一端接一个公用参考端,但这个参考端电压相对于测量系统的地来说是不断变化的。图17说明了一个NRSE 测量系统,其中AISENSE 是测量的公共参考端,AIGND 是系统的地。

+

-

MUX

CH0+

CH1+

CH2+CH15+

Amplifier Vm AISENSE

AIGND

图 17 十六通道NRSE 测量系统

3.2数据采集卡的选择

数据采集板卡的性能与众多因素相关,要根据具体情况来具体分析。所以在选择数据采集卡构成系统时,首先必须对数据采集卡的性能指标有所了解。

3.2.1 数据采集卡的主要性能指标

1)采样频率

采样频率的高低,决定了在一定时间内获取原始信号信息的多少,为了能够较好的再现原始信号,不产生波形失真,采样率必须要足够高才行。根据奈奎斯特理论采样频率至少是原信号的两倍,但实际中,一般都需要5~10倍。

2)采样方法

采集卡通常都有好几个数据通道,如果所有的数据通道都轮流使用同一个放大器和A/D 转换器,要比每个通道单独使用各自的经济的多,但这仅适用于对时间不是很重要的场合。如果采样系统对时间要求严格,则必须同时采集,这就需要每个通道都有自己的放大和A/D 转换器。但是处于成本的考虑,现在普遍流行的是各个数据通道公用一套放大器和A/D 转换器。

3)分辨率

ADC 的位数越多,分辨率就越高,可区分的电压就越小。例如,三位的A/D 转换把模拟电压范围分成23=8段,每段用二进制代码在000到111之间表示。因而,数字信号不能真实地反映原始信号,因为一部分信息被漏掉了。如果增加到十二位,代码数从8增加到212=4096,这样就可以获得就能获得十分精确的模拟信号数字化表示。

4)电压动态范围

电压范围指ADC 能扫描到的最高和最低电压。一般最好能够使进入采集卡的电压范围刚好与其符合,以便利用其可靠的分辨率范围。例如,一个12位多功能DAQ 卡,其可选的范围从0到10V ,或-5到+5V ,其可选增益有1,2,5,10,20,50或100。电压取值范围从0到10V ,增益为50,则理想分辩电压是:

121048.8V 50*2V

μ

5)I/O 通道数

该参数表明了数据采集卡所能够采集的最多的信号路数。

3.2.2 数据采集卡(DAQ 卡)的组成

1)多路开关。将各路信号轮流切换至放大器的输入端,实现多参数多路信号的分时采集。

2)放大器。将切换进入采集卡的信号放大至需要的量程内。通常中的放大器都是增益可调的,使用者可根据需要来选择不同的增益倍数。

3)采样保持器。把采集到的信号瞬间值,保持在A/D 转换的过程中不变化。

4)A/D 转换器。将模拟的输入信号转化为数字量输出,完成信号幅值的量化。

目前,通常将采样保持器和A/D 转换器集成在同一块芯片上。以上四个部分是数据采集卡的重要组成部分,与其他的电路如定时/计数器、总线接口等电路仪器组成DAQ 。

系统软件设计的相关技术

软件是虚拟仪器的关键。设计一个虚拟仪器系统,在硬件平台确定之后,就可以通过设计不同的软件,实现不同的仪器功能。

在设计、实现虚拟仪器的软件系统时,需要考虑众多因素,如硬件需求、计算机硬件、操作系统;软件是否建立在开放的结构上,是否需要编程经验?利用此软件程序是否能在不同的计算机平台上移植?将来能否方便的扩展虚拟仪器的功能。由于选用专用的开发软件,必须具有一定的仪器以及数据采集设备配合使用。

4.1程序模块化设计概述

数据采集系统的性能在很大程度上取决于其应用软件的研究与开发,所以在明确了系统设计目标之后,应该采用好的程序开发方法,如结构化设计方法、模块化思想、多线程以及软件系统的评价标准等等。

4.1.1 程序设计的模块化原则

模块化结构是所有设计良好的软件系统的基本特点,任何一个大的程序系统,总是由若干功能相对独立的模块组成。好的软件结构应体现自顶向下的控制方式,模块之间的控制表现为统帅和从属的关系。

从属块间联系

块内联系

块内联系

统帅

块间联系

图18 模块化结构

信息抽象与信息隐含是模块的基本特征。模块(Module)实际上反映了数据(Data)与过程(Process)的抽象。在模块化问题求解时,在最高抽象级可以采用面向问题的环境语言的抽象术语进行描述;而在较低抽象级,则可采用过程性术语。模块化的概念加上逐步求精的办法,就把面向问题的术语和面向实现的术语两者结合起来。

模块独立性有两个定性的标准度量:即块内联系(内聚)与块间联系(耦合),如图18所示。块间联系是指模块之间的联系,块间联系越小,模块独立性越高。块内联系是指模块内部各部分(语句与语句段)之间的联系。一个模块的块内联系大,模块独立性会提高。好的模块结构,块间联系应尽可能小,块内联系应尽可能大。

4.2多线程技术

为了实现多通道数据采集的功能,本设计的软件部分必须实现信号的采集、数据的分析处理、定时存储及实时显示等功能。在用户看来,这些任务是同时进行着的。实际上,信号采集、定时存储和主控模块放在不同的线程中,利用Windows操作系统的多线程机制,使得各个功能模块能够有条不紊的运行。

本设计把用户命令输入、信号动态显示和历史数据的查询、分析处理放在主线程中实现,而把信号采集和定时存储功能分别放到两个工作线程中。

4.2.1 Windows的多线程机制

Windows是一个多任务操作系统,每个运行的程序对应着一个进程,而在一个进程内又可以有几个线程。Windows系统把CPU的运行分成许多小的时间片,按各个进程和进程内线程的优先级进行分配,从而使多个程序能“同时”运行。在同一进程内的不同线程都在自己的时间片内执行,避免了相互在时间上可能的冲突。4.2.2 LabVIEW与多线程

应用多线程技术,可以使得多个独立的任务并发执行,从而极大地提高程序的效率。LabVIEW把线程管理、线程间的通信等复杂操作封装了起来,因此用户可以不用学习复杂的多线程编程就可以编写多线程程序。在LabVIEW中,图形化编程为开发多线程代码带来了很大的好处,因为在数据流的编程环境中,用户可以很容易地“看到”并行代码,例如两个独立的循环或子VI就代表两段可以并发执行的代码。

多线程的优点:

1)更高的CPU利用率

2)更高的系统可靠性

3)提高在多处理器计算机上的执行速度

4.2.3 多线程技术在本设计中的应用

为了实现采集、显示、查询、报警和系统其他操作的并行执行,在程序中创建了两个工作线程:一个是采样工作线程,专门负责数据采集和存储;一个是数据报警和系统其他功能线程,负责定时把缓冲区中的数据存盘。在用户启动系统工作时,这两个工作线程被创建。但不同的是,采样工作线程是在循环往复的工作着,直到退出程序;而数据存储线程则是在一定的时刻被唤醒,比如在数据缓冲区满、或程序结束等时候,更多的时候,存储模块是处于挂起的状态。因为信号的采集工作和数据存储工作是长时间甚至长年累月运行着,这也是工业生产的实际情况所决定的。

通过采用多线程技术,实现了实时性要求高的数据采集与程序其它功能(如数据显示、读取、存储等)在时间上的相互独立,避免它们在时间上可能产生的冲突,提高了数据采集的稳定性[14]。

循环之间的数据传递即线程间的数据传递,可以由局部变量、全局变量、共享变量和队列等方式实现。循环之间的同步即线程之间的同步,这可以由同步技术来实现。如果需要为两个循环设置不同的优先级,可以通过定时循环来实现。

系统具体应用程序的实现

5.1 数据采集程序

系统采用的是USB5935采集卡,由于该卡自带AD采集程序,所以本设计是直接从该采集程序开发的,在这部分中,主要是采集参数的设置,其中包括物理通道的选择,采样模式、采样率、每通道采样数、输入方式的配置,采样最大最小值的设置。具体程序见图19。

19数据采集程序

5.2 数据保存程序

数据保存是把采集来的数据保存到tdms文件里。具体程序见图20。

(整理)基于LabVIEW和DAQmx的温度采集与控制系统1.

基于LabVIEW和DAQmx的温度采集与控制系统 学院:工程学院 专业:电子信息工程 姓名: 学号: 指导教师:

摘要 虚拟仪器的技术基础是计算机技术,核心是计算机软件技术。随着现代测试技术的不断发展,以LABVIEW为软件平台虚拟仪器测量技术正在现代测控领域占据越来越重要的位置。本次设计报告首先给出了虚拟温度测量系统总体方案的设计,然后对数据采集模块和LABVIEW的软件模块进行了设计。基LabVIEW为软件平台,通过热电偶冷端补偿的方法进行温度测量。有效地运用了LabVIEW虚拟仪器技术,将诸多重要步骤都在配备硬件的普通PC电脑上完成,与传统的温度测量仪表相比,该系统具有结构简单、成本低、构建方便、工作可靠等特点.具有较高应用价值,是虚拟仪器技术应用于温度测量领域的一个典型范例。 关键词:温度测量;LabVIEW虚拟仪器;热电偶;冷端补偿

目录 一、设计任务 (4) 二、设计所需设备 (5) 三、设计要求: (5) 四、设计步骤 (6) 五、总体方案的设计................................................................................... 错误!未定义书签。 六、LABVIEW软件模块的设计 (7) 6.1 温度信号处理的设计 (7) 6.1.1 前面板设计 (7) 6.1.2 框图程序设计(这里要根据我们的图描述) (7) 七、系统调试及结果分析 (10) 结论及尚存在的问题..................................................................................... 错误!未定义书签。课程设计感想 (12)

基于LabVIEW的温度检测系统

基于LabVIEW的温度检测系统

摘要 温度是个基本的物理量,他是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度测量的要求也越来越高,而且测量范围也越来越广。合理的温度范围和精确地温度的测量队提高产品的质量、产量,降低消耗,实现工业生产自动化,均有积极作用,因此温度检测技术的研究具有重大意义。 本系统是一个基于LabVIEW的温度检测系统,采用多点温度检测,能检测较大区域内的温度变化,主要包括上位机和下位机两个部分。下位机使用的DS18B20传感器和AT89C51单片机。上位机和下位机的通讯方式是串口通讯。上位机使用的是虚拟仪器LabVIEW,主要功能是实时温度的显示,温度曲线时间轴的显示,历史温度曲线的显示以及超限温度报警。 关键字:Labview 温度测量

ABSTRACT The temperature is a basic physical quantity, it is one of the most common industrial processes, the most important process parameters. With the continuous development of industry, the requirements for temperature measurement is also getting higher and higher, and the increasingly wide range of measurement. Reasonable temperature range and accurate temperature measurement team to improve product quality, production, reduce consumption, to achieve the automation of industrial production, had an active role in temperature sensing technology is of great significance. This system is a temperature sensing system based on LabVIEW, using multi-point temperature detection can detect temperature changes within the larger area, including two parts of the upper and lower machine. The next bit machine using the DS18B20 sensors and AT89C51 microcontroller. The upper and lower machine communication is serial communication. The host computer using a virtual instrument LabVIEW, the main function is to display real-time temperature, the temperature curve Timeline display, alarm display and gauge the temperature of the historical temperature curve. Keywords: LabVIEW Temperature survey

基于单片机的温度数据采集系统实验报告

基于单片机的温度数据采集系统实验报告 班级:电技10—1班 姓名:田波平 学号:1012020108 指导老师:仲老师

题目:基于单片机的温度数据采集系统 一.设计要求 1.被测量温度范围:0~120℃,温度分辨率为0.5℃。 2.被测温度点:2个,每5秒测量一次。 3.显示器要求:通道号2位,温度4位(精度到小数点后一位)。 显示方式为定点显示和轮流显示。 4.键盘要求: (1)定点显示设定;(2)轮流显示设定;(3)其他功能键。 二.设计内容 1.单片机及电源模块设计 单片机可选用AT89S51及其兼容系列,电源模块可以选用7805等稳压组件,本机输入电压范围9-12v。 2.存储器设计 扩展串行I2C存储器AT24C02。 要求: AT24C02的SCK接P3.2 AT24C02的SDA接P3.4 2.传感器及信号转换电路 温度传感器可以选用PTC热敏电阻,信号转换电路将PTC输出阻值转换为0-5V。 3.A/D转换器设计 A/D选用ADC0832。 要求: ADC0832的CS端接P3.5 ADC0832的DI端接P3.6 ADC0832的DO端接P3.7 ADC0832的CLK端接P2.1 4.显示器设计。 6位共阳极LED显示器,段选(a-h)由P0口控制,位选由P2.2-P2.7控制。数码管由2N5401驱动。 5.键盘电路设计。 6个按键,P2.2-P2.7接6个按键,P3.4接公共端,采用动态扫描方式检测键盘。 6.系统软件设计。 系统初始化模块,键盘扫描模块,数据采集模块,标度变换模块、显示模块等。 三.设计报告要求 设计报告应按以下格式书写: (1)封面; (2)设计任务书; (3)目录; (4)正文;

基于labview的温度采集系统

目录 1 绪论 0 1.1 课题背景 0 1.2 虚拟仪器简介 0 1.3 图形化编程语言LabVIEW的简介 (2) 1.4 本论文任务 (2) 2 温度控制设计方案 (4) 2.1 硬件及软件的选择 (4) 2.1.1硬件的选择 (4) 2.1.2软件的选择 (5) 2.2 硬件及软件设计方案 (5) 2.2.1硬件设计方案 (6) 2.2.2软件设计方案 (6) 3 LabVIEW 开发环境以及PID和模糊控制模块简介 (10) 3.1 LabVIEW前台显示面板与后台控制面板 (10) 3.1.1 LabVIEW前台显示面板 (10) 3.1.2 LabVIEW后台控制面板 (10) 3.2 LabVIEW程序执行流程 (10) 3.3 LabVIEW中的仪器控制和驱动 (10) 3.3.1常用的仪器通信方式 (11) 3.3.2 LabVIEW支持的GPIB、VXI、标准串口I/O仪器的驱动 (11) 3.3.3 VISA简介 (11) 3.4 PID控制模块简介 (12) 3.5 模糊控制模块简介 (13) 4 以单片机为核心的下位机的设计 (16) 4.1 下位机设计方案 (16) 4.2下位机的硬件设计 (16) 4.2.1主控部分 (16) 4.2.2 DS18B20测温部分 (16) 4.2.3通信部分 (17) 4.2.4程序下载部分 (17) 4.3 下位机的软件设计 (17) 4.3.1DS18B20工作原理及应用 (18) 4.3.2单片机串口通信部分 (19) 4.3.3单片机PWM功率控制部分 (19) 5 基于PC的上位机编程设计 (22) 5.1 方案设计与选择 (22) 5.2 上位机各模块设计 (22) 5.2.1串口通信模块设计 (22) 5.2.2数据处理部分设计 (22) 5.2.3 PID控制部分设计 (23) 6 总结 (24) 参考文献 (25) 谢辞 (26) 附录 (27)

基于LabVIEW的温度测量及数据采集系统设计

LabVIEW技术大作业 题目:基于LabVIEW的温度测量及数据采集系统设计学院(系):信息与通信工程学院 班级:通信133 学号:xxxxxxxxx 姓名:xxxxxx

一、设计背景 LABVIEW最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW可以非常便捷的控制这些硬件设备。同时,用户也可以十分方便地找到各种适用于测试测量领域的LabVIEW工具包。这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。有时甚至于只需简单地调用几个工具包中的函数,就可以组成一个完整的测试测量应用程序。 二、系统方案 本设计的程序框图和前面板图分别是图1.1和图1.2,“温度测量及数据采集系统.vi”是一个测量温度并将测试数据输出到文件的VI。此VI中的温度是用一个20至40的随机整数来代替的,测试及采集100个温度值,每隔0.25秒测一次,共测定25秒。在数据采集过程中,VI将在前面板的波形图上实时地显示测量结果。采集过程结束后,波形图上显示出温度数据曲线,数组中显示每次的温度测量数据,并在显示控件中显示测试中温度的最大值、最小值和平均值,同时把测量的温度值以文件的形式存盘。

图1.1温度测量及数据采集程序框图 1.2温度测量及数据采集前面板图

二、系统各模块介绍 2.1循环模块 For循环用于将某段程序循环执行指定的次数, 是总数接线端,指定For循环内部代码执行的次数。如将0或负数连接至总数接线端,For循环不执行。 是计数接线端,表示完成的循环次数。第一次循环的计数为0。 本设计使用for循环将循环内的程序循环100次。

远程温度采集与显示系统设计

毕业设计论文 远程温度采集测量系统 系电子信息工程系 专业电子信息工程技术姓名张一浩班级电信091 学号0901043118 指导教师张少华职称讲师 设计时间2011.11.20-2012.1.8

目录 第一章测量方案 (4) 1.1 系统功能 (4) 1.1.1 功能介绍 (4) 1.2方案论证与确定 (4) 1.2.1温度测量方案的确定 (4) 1.2.2 远程无线数据传送方案的确定 (5) 第二章电路原理及主要功能模块 (6) 2.1工作原理 (6) 2.1.1 系统框图 (6) 2.1.2现场温度采集电路 (6) 2.2 通信模块 (7) 2.2.1 信号发送电路 (7) 2.2.2 接收解调电路 (8) 2.3微机硬件原理图 (9) 2.3.1主机控制原理图 (9) 2.3.2从机控制原理图 (10) 第三章软件系统设计 (11) 3.1软件主要功能 (11) 3.2 软件设计框图 (11) 3.2.1设计框图 (11) 3.3测试方法及所用仪表 (13) 第四章数据分析 (14) 4.1 测试数据及测试结果分析 (15) 4.1.1 温度数据 (15) 第五章结束语 (16) 参考文献 (17) 致谢 (18)

远程温度采集测量系统 摘要 本文给出了远程温度采集测量系统的设计,它由温度数据采集测量与远程无线数字调频传送两部分构成,分为现场温度采集、远程数据传送和温度数据显示三个模块。设计采用单片微型计算机系统,数字频率调制(FSK)芯片和相关接口电路,实现现场温度信号的调理、模数转换、处理和远程传送。测温范围可达-50℃~+150℃,误差小于1℃。远程无线传送距离有障碍物时大于20m,传送的误码率小于1‰。利用LCD和LED分别可在现场模块和终端模块显示当前温度值,显示分辨率为0.1℃,系统设有语音报温和温度上限报警功能,所有指标均满足题目的基本要求和发挥部分要求。 关键词:温度传感器;接收电路;温度的测量

单片机温度采集系统

课程设计 课程设计名称:温度采集装置 班级:数控技术0901 学号: 课程设计时间:2011.12.5—12.11

目录 1 设计任务 (2) 2 确定设计方案 (3) 2.1 温度传感器—AD22100K (3) 2.2 A/D转换器—ADC0809 (4) 2.3 单片机的选择—80C51 (6) 2.4 显示器接口—LED动态显示接口 (8) 3 硬件电路的设计 (10) 3.1 温度传感器与A/D转换器的接口电路 (10) 3.2 A/D转换器与89C51的接口电路 (10) 3.3 89C51与显示器间的接口电路 (11) 3.4 晶振电路和复位电路的设计 (12) 4 软件设计 (13) 4.1温度采集的主程序流程图 (13) 4.2 程序清单 (15) 5 心得体会 (20) 附录 (21) 温度采集装置 1、设计任务

设计一个温度采集系统,要求按1路/s的速度顺序检测8路温度点,测温范围为+20℃~+100℃,测量精度为±1%。要求用5位数码管显示温度,最高位显示通道号,次高位显示“—”,低三位显示温度值。 2、设计方案 2.1 温度传感器—AD22100K AD22100K是有信号调节的单片温度传感器,工作温度范围为-50~+150,信号调节不需要调节电路、缓冲器和线性化电路,简化了系统设计。输出温度与电压和电源电压的乘积(比率测量)成比例。输出电压摆幅为0.25V(对应-50℃)和4.75V(对应150℃),用5V单电源工作。 2.1.1 AD22100K的引脚图如2.1.1 图2.1.1 AD22100K的引脚图 注:1.V电源 4.GND接地 2.U输出 3、5~8 NC不连接

传感器课程设计(基于labview的pt100温度测量系统)

目录 第一章方案设计与论证 (2) 第一节传感器的选择 (2) 第二节方案论证 (3) 第三节系统的工作原理 (3) 第四节系统框图 (4) 第二章硬件设计 (4) 第一节PT100传感器特性和测温原理 (5) 第二节信号调理电路 (6) 第三节恒流源电路的设计 (6) 第四节TL431简介 (8) 第三章软件设计 (9) 第一节软件的流程图 (9) 第二节部分设计模块 (10) 总结 (11) 参考文献 (11)

第一章方案设计与论证 第一节传感器的选择 温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。 热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。 热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。常用的热电偶材料有铂铑-铂、铱铑-铱、镍铁-镍铜、铜-康铜等,各种不同材料的热电偶使用在不同的测温范围场合。热电偶的使用误差主要来自于分度误差、延伸导线误差、动态误差以及使用的仪表误差等。

基于Labview的温度采集系统

基于Labview 的温度采集系统 摘要:随着工业的不断发展,对温度测量的要求越来越高,而且测量范围也越来越广。本设计用LabView 软件在PC 机上编程实现了多点温度采集、动态图形显示、数据存储、报警、数据分析等功能,并重点对基于LabVIEW 的虚拟温度采集系统的设计进行了讨论。 关键词:LabVIEW; 温度采集 0 引言 进入21世纪以来,作为测试技术的一个分支,虚拟仪器的开发和研制在国内得到了飞速的发展。它可以利用计算机显示器的显示功能来模拟传统仪器的控制面板,以多种形式表达输出检测结果。目前,常用的温度采集系统绝大部分是由集成温度传感器和单片机构成的,设计过程繁琐、调试期长、修改不方便。本文借助LabVlEW 图形化软件开发系统,用软件代替DAQ 数据采集卡设计的这种虚拟温度采集系统,比以前的更易修改且成本低、周期短。 1 设计思想 该系统的功能框图如图所示。 本温度采集系统的设计采用软件代替了DAQ 数据采集卡,使用Demo read voltage 子程序来仿真电压测量,然后把所测得的电压值转换成摄氏或华氏温度读数。 在数据采集过程中,实时地显示数据。当采集的温度值大于设定的高限报警数值时,就会点亮高报警红色灯,同时触发条件结构里的事件发生,使系统发出蜂呜温度采集系统 实 时 温 度 显 示 保存数据 报警设定 数值计算 显示转换

声。当采集过程结束后,在图表上画出数据波形,并算出最大值、最小值和平均值,并自动产生数据文件的头文件,它包括操作者名字和文件名,将采集的数据附在头文件后面,以供查询。 2 子程序设计 2.1 温度计子程序 温度计界面程序如下图所示。在框图程序中设定温度计的标尺范围为0.0到100.0,在前面板窗口中放入竖直开关控制用下选择“温度值单位”,即选择以华氏还是摄氏显示。 2.2 实现步骤 1、点击框图程序窗口的空白处,弹出功能模板,从弹出的菜单中选择所需的对象。本程序用到下面的对象: Multiply(乘法)功能,将读取电压值乘以100.00,以获得华氏温度。 Subtract(减法)功能,从华氏温度中减去32.0,以便转换成摄氏温度。 Divide(除法)功能,把相减的结果除以1.8以转换成摄氏温度。 Select(选择)功能(Comparison子模板)。取决于温标选择开关的值,该功能输出华氏温度(当选择开关为false)或者摄氏温度(选择开关为True)数值。 Demo Read Voltage VI程序(Tutorial子模板)。该程序模拟从DAQ卡的0通道读取电压值,并把所测得的电压值转换成华氏或摄氏读数。 随机数产生功能(Numeric子模板),用于产生随机温度值。 数值常数。用连线工具,点击要连接一个数值常数的对象,并选择Create Constant功能。若要修改常数值,用标签工具双点数值,再写入新的数值。

基于labview温度数据采集文献综述

基于LabVIEW温度数据采集文献综述 摘要:本课题介绍了虚拟仪器概况及其发展背景;通过对虚拟仪器的学习和研究,运用软件工具,实现温度显示系统的模拟。实现系统软件设计思路是:利用LabVIEW中的各种控件,实现温度数据采集显示。利用虚拟仪器的优越性实现了基于操作系统下的交通终端服务系统的展示部分。 关键字:labVIEW,温度,数据采集 引言 美国国家仪器公司推出的LabVIEW不仅是一个图形化编程语言,而且是一个广泛应用于虚拟测控系统的虚拟仪器平台,它与数据采集卡一起构成虚拟测试仪器,其测试系统的构建可以通过图形化的语言描述,组态容易,设计简单,广泛应用于测量与控制[2] 。 LabVIEW是虚拟仪器领域中最具有代表性的图形化编程开发平台[1] ,是目前国际上首推并应用最广的数据采集和控制开发环境之一,主要应用于仪器控制、数据采集、数据分析、数据显示等领域,并适用于多种不同的操作系统平台。与传统程序语言不同,LabVIEW采用强大的图形化语言(G 语言)编程,面向测试工程师而非专业程序员,编程非常方便,人机交互界面直观友好,具有强大的数据可视化分析和仪器控制能力等特点。使用LabVIEW 开发环境,用户可以创建32位的编译程序,从而为常规的数据采集、测试、测量等任务提供了更快的运行速度。LabVIEW是真正的编译器,用户可以创建独立的可执行文件,且该文件能够脱离开发环境而单独运行[4] 。 1.1虚拟仪器的优势 1.经济实惠 2.方便适用 3.提高测试效果 4.开放且灵活 远程虚拟仪器的优势在于不受地域限制,功能可由用户自己定义,且构建容易,所以使用面极为广泛,是科研、开发、测量、检测、计量、测控等领域不可多得的好工具,更值得一提的是它可应用在高危险的区域进行在线的数据采集和检测[5]。使测量人员的工作不但摆脱了地理位置和条件的限制,还可以通过Intcrnet把所采集到的数据自动地转送到另一台计算机进行评估[8]。 1.2 VI及相关知识 使用LabVIEW开发平台编制的程序称为虚拟仪器程序,简称为VI。VI包括三个部分:程序前面板、框图程序和图标/ 连接器。程序前面板用于设置输入数值和观察输出量,用于模拟真实仪表的前面板。在程序前面板上,输入量被称为控制(Controls),输出量被称为显示(Indicators)。控制和显示是以各种图标形

虚拟仪器温度采集系统

内蒙古科技大学虚拟仪器期末大作业 题目:虚拟仪器温度采集系统 姓名:王伍波 专业:测控技术与仪器 学号:1067112240 班级:测控10-2班 教师:肖俊生 时间:2013年6月18日

一、设计题目:虚拟仪器温度采集系统 二、设计要求: 1.连续采集温度信号,并存储 2.温度上下限报警功能,上下限可调 3.华氏、摄氏可转换显示 三、设计思路: 该设计是以计算机和单片机数据采集系统为核心,单片机数据采集系统主要完成对温度信号进行数据采集,计算机主要完成温度信号的分析、显示和控制等功能。设计中采用Intel 公司的89C51 单片机完成数据采集,采用A D 5 7 4 完成数据的A/D 转换。图2 为AD574 与89C51 单片机的接口电路。 1.设计虚拟前面板 温度监测软件设计本系统以labview8.5 作为开发工具。现以仿真数据为例来讲述系统软件对温度的监测、报警及显示功能。利用labview8.5编程使温度可以在华氏和摄氏之间随时进行切换,同时对温度实时监测。当温度超过上限要求时会及时点亮报警灯进行报警并显示每次采集过程中累加的报警次数,报警的上限值可以通过前面板的输入控件改变其值。采集进度定义为每次采集100 点。为了防止程序陷入死循环每次采集之间的时间间隔为1000ms。开始采集后在整个采集过程中可以暂停采集以便随时对温度进行观察。 2、编辑流程图 每一个程序前面板都对应着一段框图程序框图程序用

LabVIEW 图形编程语言编写.可以把它理解成传统程序的源代码。框 图程序由端口、节点、.图框和连线构成。其中端口被用来同程序前 面板的控制和显示传递数据.节点被用来实现函数和功能调用.图框 被用来实现结构化程序控制命令.而连线代表程序执行过程中的数据流.定义了框图内的数据流动方向 3、运行检验 检验是否能够完成系统的功能.改变相应参数进行进一步验证.以方便根据实际情况修改设计.从而方便实际器件的设计、调试。4、功能描述 创建一个VI程序模拟温度测量:把创建的温度计程、序 T(hermometerVI1作为一个子程序用在当前新建程序里.先前的温 度计子程序用于采集数据.而当前的程序用于显示温度曲线.并在前 面板上设定测量次数和每次测量间隔的延时;再创建一个新VI程序,进行温度测量,并把结果在波形图表上显示:利用新创建的VI程序.再输入新的字符串;据采集过程中。实时地显示数据;当采集 过程结束后,在图表上画出数据波形.并算出最大值、最小值和平 均值(此处只使用摄氏温度单位):修改TemperatureAnalysis.VI DemoReadVohageVI程序以检测温度是否超出范围.当温度超出上限(High Limit)时,前面板上的LED点亮,并且有一个蜂鸣器发声。5、设计过程 创建一个VI程序模拟温度测量假设传感器输出电压与温度成 正比。例如.当温度为70时,传感器输出电压为0.7V。本程序也

基于labview温度监测系统

课题基于labview的温度监测系统班级 12电信 学号 201210350120 姓名邹临昌 时间 2015.12 .12-2016.1.12 景德镇陶瓷学院

摘要:本课题介绍了虚拟仪器概况及其发展背景;通过对虚拟仪器的学习和研究,运用软件工具,实现温度显示系统的模拟。实现系统软件设计思路是:利用LabVIEW中的各种控件,实现温度数据采集显示。利用虚拟仪器的优越性实现了基于操作系统下的交通终端服务系统的展示部分。 关键字:labVIEW,温度,数据采集 引言 美国国家仪器公司推出的LabVIEW不仅是一个图形化编程语言,而且是一个广泛应用于虚拟测控系统的虚拟仪器平台,它与数据采集卡一起构成虚拟测试仪器,其测试系统的构建可以通过图形化的语言描述,组态容易,设计简单,广泛应用于测量与控制。 LabVIEW是虚拟仪器领域中最具有代表性的图形化编程开发平台[1] ,是目前国际上首推并应用最广的数据采集和控制开发环境之一,主要应用于仪器控制、数据采集、数据分析、数据显示等领域,并适用于多种不同的操作系统平台。与传统程序语言不同,LabVIEW采用强大的图形化语言(G 语言)编程,面向测试工程师而非专业程序员,编程非常方便,人机交互界面直观友好,具有强大的数据可视化分析和仪器控制能力等特点。使用LabVIEW 开发环境,用户可以创建32位的编译程序,从而为常规的数据采集、测试、测量等任务提供了更快的运行速度。LabVIEW是真正的编译器,用户可以创建独立的可执行文件,且该文件能够脱离开发环境而单独运行。

1.1虚拟仪器的优势 1.经济实惠 2.方便适用 3.提高测试效果 4.开放且灵活 远程虚拟仪器的优势在于不受地域限制,功能可由用户自己定义,且构建容易,所以使用面极为广泛,是科研、开发、测量、检测、计量、测控等领域不可多得的好工具,更值得一提的是它可应用在高危险的区域进行在线的数据采集和检测[5]。使测量人员的工作不但摆脱了地理位置和条件的限制,还可以通过Intcrnet把所采集到的数据自动地转送到另一台计算机进行评估。

四路温度采集系统系统

四路温度采集系统的设计 【内容摘要】本文主要研究的是基于AT89S51单片机作为系统的温度显示以及设定双路温度报警系统的设计。此系统硬件电路主要包括5部分:AT89S51单片机最小系统电路部分和复位电路部分,LCD1602液晶显示电路部分,4个DS18B20作为温度检测部分,以及电源电路部分。 本系统采用C语言进行编写程序,为了便于阅读和修改,软件采用模块化结构设计,使程序间的逻辑层次更加简明。 【关键词】四路温度采集系统系统;DS18B20;LCD1602液晶显示;AT89S51单片机 1 引言 四路温度采集系统系统不仅是工业上的宠儿,也是是单片机实验中一个很常用的题目。因为它的有很好的开放性和可发挥性,因此对作者的要求比较高,不仅考察了对单片机的掌握能力更加强调了对单片机扩展的应用。而且在操作的设计上要力求简洁,功能上尽量齐全,显示界面也要出色。所以,双路温度报警系统无论作为比赛题目还是练习题目都是很有价值。 本文介绍一种基于 AT89C2051 单片机的一种温度测量,该电路DS18B20 作为温度监测元件,测量范围-55℃-~+125℃,使用LCD1602液晶显示模块显示,能通过键盘设置温度报警上下限.正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器 DS18B20 的原理,AT89C2051 单片机功能和应用.该电路设计新颖,功能强大,结构简单。 2双路温度报警系统系统简介及其作用综述 首先,由DS18B20温度传感器芯片测量当前温度,并将结果送入单片机。然后,通过AT89C51单片机芯片对送入的测量温度读数进行计算和转换,并将此结果送入液晶显示模块。最后,LCD 1602模块将送来的四路温度值值显示于显示屏上。

labview温度监控系统设计

虚拟仪器 期末设计报告 课题名称:温度监控系统 起讫日期:2012年6月19日- 2012年6月20日学生学号:XXXXXX 学生:____ ____XXXX________ ____ 报告成绩: 中国计量学院信息工程学院 生物医学工程专业 2012年 6 月20 日

目录 一、labVIEW介绍 (3) 二、labview温度监控设计的介绍 (3) 三、labview温度监控程序框图的设计 (3) 四、labview温度监控前面板的设计 (6) 五、DAQ信号采集的概述和配置 (7) 六、labview温度监控系统的检验和调试 (8) 七、个人心得和体会 (9) 八、参考资料 (10)

labVIEW介绍 LabVIEW(Laboratory Virtual Instrument EngineeringWorkbench,实验室虚拟仪器集成环境)是一个基于G(Graphic)语言的图形编程开发环境,在工业界和学术界中广泛用作开发数据采集系统、仪器控制软件和分析软件的标准语言,对于科学研究和工程应用来说是很理想的语言。它含有种类丰富的函数库,科学家和工程师们利用它可以方便灵活地搭建功能强大的测试系统。LabVIEW编程语言最主要的两个特点是图形化编程和数据流驱动。 labview温度监控设计的介绍 这个系统是在硬件温度传感器热敏电阻的基础上完成对温度信号的采集以得知某段时间的最高温度、最低温度和平均温度,还可以把测得的摄氏度转换为华氏供一些特殊的需要,在测量之前同时还可以人为的设定温的上限值和下限值当温度超过用户设定的温度上限值或者下限值时,红色警示灯会被点亮并且会有喇叭警告,但温度在上下界限时亮的时绿色的灯会亮着表示温度在用户设定的正常围。 labview温度监控程序框图的设计 首先是要了解怎么用热敏电阻上采集来的电压值Ut来转化为我们所需要温度值。在电路上我们要运用一个固定电阻和热敏电阻进行串联接在5伏的电源上,然后再用伏安法求得热敏电阻的阻值。如图1所示: 图1 其中R0为固定电阻,Rt为热敏电阻。通过简单的计算可得Rt=(Ut*R0)/(5-Ut); 在程序框图的实现如图2所示:

单片机实验温度采集系统

单片机原理与运用 课 程 设 计 课题名称:专业班级:学生姓名:指导老师:完成时间:温度采集与显示系统2012年7月4号

摘要 随着信息技术的飞速发展,嵌入式智能电子技术已渗透到社会生产、工业 控制以及人们日常生活的各个方面。单片机又称为嵌入式微型控制器,在智能 仪表、工业控制、智能终端、通信设备、医疗器械、汽车电器、导航系统和家 用电器等很多领域都有着广泛的应用,已成为当今电子信息领域应用最广泛的 技术之一。 本文主要介绍了一个基于STC89C52单片机的温度采集与显示系统,详细 描述了利用液晶显示器件温度传感器DS18B20开发测温系统的原理,重点对传感器与单片机的硬件连接和软件编程进行了详细分析。主要地介绍了数字温度 传感器DS18B20的数据采集过程,进而对各部分硬件电路的工作原理进行了介绍。温度传感器DS18B20与STC89C52结合构成了最简温度检测系统,该系统可以方便的实现温度采集和显示,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合我们日常生活和工、农业生产中的温 度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。 单片机综合实验的目的是训练单片机应用系统的编程及调试能力,通过对 一个单片机应用系统进行系统的编程和调试,掌握单片机应用系统开发环境和 仿真调试工具及仪器仪表的实用,掌握单片机应用程序代码的编写和编译,掌 握利用单片机硬件仿真调试工具进行单片机程序的跟踪调试和排错方法,掌握 示波器和万用表等杆塔工具在单片机系统调试中应用。 关键词:单片机STC89C52、DS18B20温度传感器、液晶显示器LCD1602、AT24C02数据存储芯片

基于Labview的温度控制器的设计

背景 随着科学技术的进步,计算机计术、仪器技术和通信技术等在各个领域得到越来越广泛的应用。传统的电子测量仪器由于其功能单一、体积庞大,已经很难满足实际测量工作中的需求,由此在80年代末期虚拟仪器技术应运而生。与传统仪器相比,虚拟仪器具有功能更丰富、处理速度更快、可充性更好的优点。作为计算机技术和现代仪器技术相结合的产物,实现了在传统测试理论和测量方法上的革命性突破。 LabView由面板、流程方框图、图标/连接器组成。其中,面板是用户界面,流程方框图是虚拟仪器源代码,图标/连接器是调用接口。流程方框图包括输入/输出(I/O)部件、计算部件和子虚拟仪器部件,它们用图标和数据流的连线表示。这里利用LabVIEW作为语言开发平台.设计系统软件.并利用计算机串口与下位机串行通讯,实现温度的实时测量与控制。 虚拟仪器包括硬件和软件两个基本要素。其中,硬件的功能是获取被测试的物理信号,提供信号传输的通道。在本设计中,所需要模拟的是温度信号,温度信号主要由电压信号提供。另外,虚拟仪器的硬件技术以GPIB、PXI等先进的计算机接口总线的发展为发展标志。GPIB、PXI接口是早期比较流行的接口,随着虚拟仪器技术的发展,现在使用比较广泛的接口是DAQ、PXI和LXI。本次设计中用到的就是DAQ仪器。仪器上需要我们了解运用的,是位于仪器上左上角的电位器。调节电位器时,电压信号也会在一定范围内浮动,这对我们的设计起到一定的作用。 基于LabView的温度控制器的设计,首先由集成温度传感器AD590产生的温度-电压信号输入到采集卡AI端,其次,由于本次课设只是运用有电压值模拟一个温度值,就在采集卡的输入端送给LabView一个5V的电压,通过传输到软件电路中,加以处理再进行应用。最后,通过前面板和程序框图的设计,完成设计要求。 背景 .................................................................................................................................................. I 1设计思路 . (1) 数据的采集 (1) 我们的设计题目即为温度控制,需要对温度值进行设定、测量和显示,所以首先我们应该从对温度值的采集入手,即数据的采集。 (1)

基于某labView地温度采集系统设计

基于LabVIEW的温度采集系统设计 摘要:设计了基于LabV IEW的温度采集系统。它利用DS18B20数字温度传感器和STC公司生产的STC89C52单片机采集被测环境温度,将测得的数据经串口传给计算机。计算机利用LabV IEW的V ISA读取串口数据并进行处理和显示,实现基于V ISA的串口温度采集。 关键词:温度传感器;单片机;LabV IEW;温度采集 1引言 虚拟仪器(Virtual Instrument)是基于计算机的软硬件测试平台,它可代替传统的测量仪器。LabVIEW是由美国国家仪器公司(National Instruments Co.)推出的、主要面向计算机测控领域的虚拟仪器软件开发平台,是一种基于图形开发、调试和运行的集成化环境[1]。 利用LabVIEW设计的数据采集系统,可模拟采集各种信号,但是配备NI公司的数据采集板卡比较贵,因此,可以选择单片机小系统作为前端数据采集系统,进行采集数据,然后通过RS-232串口通讯将数据送给计算机,在LabVIEW开发平台下,对数据进行各种处理、分析并对信号进行存储、显示和打印,从而实现了一种在LabVIEW环境下的单片机数据采集系统。 2 温度采集系统设计 本系统采用STC公司生产STC89C52单片机作为温度数据采集和传输的主控芯片,温度传感器采用单总线方式的集成数字温度传感器DS18B20。采集得到的数据利用单片机经串口通信的方式传输至计算机的串口。计算机上位机软件采用数据处理能力超强的LabV IEW软件编写,利用其所带的V ISA驱动进行串口的数据采集和处理,实现了基于V ISA的串口温度采集。 2.1温度采集系统的硬件设计 本系统以AT89C51为中央处理单元,利用DS18B20数字温度传感器对温度信号进行采集,采集到的信号被送到AT89C51中, 将采集到的温度值在LCD上显示并通过串口发送到上位机,其原理图如1所示(见附录1)。 2.1.1 中央处理单元——STC89C51 本设计选用的中央处理单元是STC89C52单片机,STC89C52是一种带8K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Eras-able Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除。该器件采用ATMEL高密度非易失存储器制造技

温度数据采集系统

第三章 系统硬件设计温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器 DS18B20,数据的发送和接收采用无线数据收 发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由 DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个 DS18B20,很方便。具有以下特点:(1)具有独特的 1-Wire 接口,只需要一个端口引脚就可以进行通信;(2)具备多节点能力,能够简化分布式温度检测应用中的设计;(3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在 3~5.5V ;(5)在待机状态下可以不消耗电源电量;(6)测量温度范围在-55~+125℃;(7)在-10~+85℃时测量精度在±0.5℃;(8)可以用程序设定 9~12 位分辨率;(9)用户可根据需要定义温度的上下限报警设置。DS18B203 脚封装的管脚排列图如图 3.1.1 所示。、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

LabView的温度监测系统

传感器技术与应用课程设计 设计题目:___ _基于LabView的温度监测系统_______ 班级:__________ _电信08-1班________________ 学号:__________ _ __29号____________________ 姓名:_______ _ _李锦明 _______ _________ 指导老师:_____ ____ ___张静_ ________________ 设计时间:__________2011年12月5日_ _________

摘要 随着信息领域各种技术的发展,在数据采集方面的技术也取得了很大的进步,采集数据的信息化是目前社会的主流发展方向。各种领域都用到了数据采集,在石油勘探,地震数据采集领域已经得到应用。随着测控技术的迅猛发展,以虚拟仪器为核心的数据采集系统已经在测控领域中占到了统治地位。 数据采集系统是将现场采集到的数据进行处理、传输显示、储存等操作。数据采集系统主要功能是把模拟信号变成数字信号,并进行分析、处理、存储和显示。温度数据采集系统广泛的应用于人们的日常生活中。 本文主要介绍了利用labview实现温度采集系统的设计过程,系统结构时利用了labview的虚拟仪器技术,由labview虚拟系统自生成温度信号,通过温度的采集实现对温度数据的采集,预处理,分析,储存和显示。全文的内容主要包括:虚拟仪器的发展,labview虚拟仪器的介绍,温度采集系统的制作与调试最后是自己在本次制作中的不足与展望。 关键词:labview ,虚拟仪器,温度监测系统

目录 中文摘要 (1) 一概述 (3) 1.1研究背景 (3) 1.1.1温度的研究背景 (3) 1.1.2 LABVIEW的发展 (3) 1.2研究的意义 (4) 二设计的任务以及要求 (4) 2.1设计的任务 (4) 2.2设计的要求 (4) 三系统化设计 (4) 3.1系统设计方案 (4) 3.1.1 结构框图 (4) 3.2.2 系统工作原理 (5) 3.2单元模块设计 (5) 3.2.1单元模块的设计 (7) 3.2.2单元模块的链接 (9) 四系统调试 (8) 4.1 前面板布置 (8) 4.2 系统运行以及分析 (8) 五结论与展望 (9) 六仪器设备清单 (9) 参考文献 (9)

相关主题
文本预览
相关文档 最新文档