当前位置:文档之家› 共顶点的等腰三角形解题技巧专题

共顶点的等腰三角形解题技巧专题

共顶点的等腰三角形解题技巧专题
共顶点的等腰三角形解题技巧专题

解题技巧专题:共顶点的等腰三角形

——形成精准思维模式,快速解题

◆类型一共顶点的等腰直角三角形

1.如图,已知△ABC和△DBE均为等腰直角三角形.

(1)求证:AD=CE;

(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.

2.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD,延长CA 至点E,使AE=AC,延长CB至点F,使BF=BC.连接BD,AD,AF,DF,EF.延长DB 交EF于点N.求证:

(1)AF=AD;

(2)EF=BD.

◆类型二共顶点的等边三角形

3.如图,△APB与△CDP是两个全等的等边三角形,且P A⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有()

A.0个B.1个C.2个D.3个

第3题图第4题图

4.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD,交于点O,则∠AOB的度数为________.

5.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.

(1)△DBC和△EAC全等吗?请说明理由;

(2)试说明AE∥BC的理由;

(3)如图②,将(1)中动点D运动到边BA的延长线上,其他条件不变,请问是否仍有AE∥BC?证明你的猜想.

参考答案与解析

1.(1)证明:∵△ABC 和△DBE 均为等腰直角三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =90°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE ,∴△ABD ≌△CBE ,∴AD =CE .

(2)解:垂直.理由如下:延长AD 分别交BC 和CE 于G 和F .由(1)知△ABD ≌△CBE ,∴∠BAD =∠BCE .∵∠BAD +∠ABC +∠BGA =∠BCE +∠AFC +∠CGF =180°,∠BGA =∠CGF ,∴∠AFC =∠ABC =90°,∴AD ⊥CE .

2.证明:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ABF =180°-∠ABC =135°,∠ACD =∠ACB +∠BCD =135°,∴∠ABF =∠ACD .∵CB =CD ,CB =BF ,∴BF =CD ,∴△ABF ≌△ACD (SAS),∴AF =AD .

(2)由(1)知△ABF ≌△ACD ,AF =AD ,∴∠F AB =∠DAC .∵∠BAC =∠BAD +∠DAC =90°,∠EAB =∠EAF +∠F AB =90°,∴∠EAF =∠BAD .∵AE =AC ,AB =AC ,∴AE =AB ,∴△AEF ≌△ABD (SAS),∴EF =BD .

3.D

4.120° 解析:设AC 与BD 交于点H .∵△ACD ,△BCE 都是等边三角形,∴CD =CA ,CB =CE ,∠ACD =∠BCE =60°,∴∠ACD +∠ACB =∠BCE +∠ACB ,即∠DCB =∠ACE ,∴△DCB ≌△ACE ,∴∠CDB =∠CAE .∵∠DCH +∠CHD +∠BDC =180°,∠AOH +∠AHO +∠CAE =180°,∠DHC =∠OHA ,∴∠AOH =∠DCH =60°,∴∠AOB =180°-∠AOH =120°.

5.解:(1)△DBC 和△EAC 全等.理由如下:∵△ABC 和△EDC 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =60°,∠DCE =60°,∴∠BCD =60°-∠ACD ,∠ACE =60°-∠ACD ,

∴∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,DC =EC ,

∴△DBC ≌△EAC (SAS).

(2)由(1)知△DBC ≌△EAC ,∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .

(3)仍有AE ∥BC .证明如下:∵△ABC ,△EDC 为等边三角形,∴BC =AC ,DC =CE ,∠BCA =∠DCE =60°,∴∠BCA +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE .在△DBC

和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,CD =CE ,

∴△DBC ≌△EAC (SAS),∴∠EAC =∠B =60°.又

∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .

八下解题技巧专题:共顶点的等腰三角形

解题技巧专题:共顶点的等腰三角形 ——形成精准思维模式,快速解题 ◆类型一共顶点的等腰直角三角形 1.如图,已知△ABC和△DBE均为等腰直角三角形. (1)求证:AD=CE; (2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由. 2.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD,延长CA 至点E,使AE=AC,延长CB至点F,使BF=BC.连接BD,AD,AF,DF,EF.延长DB 交EF于点N.求证: (1)AF=AD; (2)EF=BD. ◆类型二共顶点的等边三角形

3.如图,△APB与△CDP是两个全等的等边三角形,且P A⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有() A.0个B.1个C.2个D.3个 第3题图第4题图 4.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD,交于点O,则∠AOB的度数为________. 5.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE. (1)△DBC和△EAC全等吗?请说明理由; (2)试说明AE∥BC的理由; (3)如图②,将(1)中动点D运动到边BA的延长线上,其他条件不变,请问是否仍有AE∥BC?证明你的猜想. 参考答案与解析

1.(1)证明:∵△ABC 和△DBE 均为等腰直角三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =90°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE ,∴△ABD ≌△CBE ,∴AD =CE . (2)解:垂直.理由如下:延长AD 分别交BC 和CE 于G 和F .由(1)知△ABD ≌△CBE ,∴∠BAD =∠BCE .∵∠BAD +∠ABC +∠BGA =∠BCE +∠AFC +∠CGF =180°,∠BGA =∠CGF ,∴∠AFC =∠ABC =90°,∴AD ⊥CE . 2.证明:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ABF =180°-∠ABC =135°,∠ACD =∠ACB +∠BCD =135°,∴∠ABF =∠ACD .∵CB =CD ,CB =BF ,∴BF =CD ,∴△ABF ≌△ACD (SAS),∴AF =AD . (2)由(1)知△ABF ≌△ACD ,AF =AD ,∴∠F AB =∠DAC .∵∠BAC =∠BAD +∠DAC =90°,∠EAB =∠EAF +∠F AB =90°,∴∠EAF =∠BAD .∵AE =AC ,AB =AC ,∴AE =AB ,∴△AEF ≌△ABD (SAS),∴EF =BD . 3.D 4.120° 解析:设AC 与BD 交于点H .∵△ACD ,△BCE 都是等边三角形,∴CD =CA ,CB =CE ,∠ACD =∠BCE =60°,∴∠ACD +∠ACB =∠BCE +∠ACB ,即∠DCB =∠ACE ,∴△DCB ≌△ACE ,∴∠CDB =∠CAE .∵∠DCH +∠CHD +∠BDC =180°,∠AOH +∠AHO +∠CAE =180°,∠DHC =∠OHA ,∴∠AOH =∠DCH =60°,∴∠AOB =180°-∠AOH =120°. 5.解:(1)△DBC 和△EAC 全等.理由如下:∵△ABC 和△EDC 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =60°,∠DCE =60°,∴∠BCD =60°-∠ACD ,∠ACE =60°-∠ACD , ∴∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS). (2)由(1)知△DBC ≌△EAC ,∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC . (3)仍有AE ∥BC .证明如下:∵△ABC ,△EDC 为等边三角形,∴BC =AC ,DC =CE ,∠BCA =∠DCE =60°,∴∠BCA +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,CD =CE , ∴△DBC ≌△EAC (SAS),∴∠EAC =∠B =60°.又 ∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .

共顶点等腰三角形产生相似三角形模型

共顶点等腰三角形产生相似三角形模型 今天研究一个难度较低但结论还比较有趣的模型。前面研究过两个有点类似的模型,当时起名个人是从模型构造出发分别叫旋转放缩对称直角三角形和互补旋转放缩等腰三角形模型,现在想想既复杂拗口,又没点穿本质,还不如直接叫共顶点直角三角形产生等腰三角形和共顶点等腰三角形产生直角三角形模型好点。所以今天这个就直接叫共顶点等腰三角形产生相似三角形模型了。 模型构造:一:任意作一等腰三角形ABC,∠A为顶角。然后将其绕A旋转180°得△AED。 二:将△AED绕A进行旋转及放缩,得到新的等腰三角形AED 三:连BD,CE(注意对应,不是BE和CD),分别作其中垂线,交于F点。

结论:△DFB∽△EFC,且∠DFB=∠EFC=180°-∠BAC。 证明:由边角边基本全等模型易证△EAB∽△DAC① 则有BE=DC,可推出△EFB≌△CFD②,从而∠EFB=∠CFD即∠DFB=∠CFE,△DFB ∽△EFC。

接下来推为什么产生的两新的相似的等腰三角形顶角和原等腰三角形顶角互补:由①,∠ADG=GEH,则∠GHE=∠DAE;由②,∠ HEI=∠FCI,则∠EHI=∠EFC。又∠EHI+∠GHE=180°,则有∠EFC+∠DAE=∠EFC=∠BAC=180°。 由于等腰△ABC形状可以改变,△ADE可以任意旋转放缩,给出的图形是否以偏概全结论是否任意情况都成立呢?应该是都成立的。尽管形状改变,过程和推导都大同小异,仅再举一情形进行证明。 在此图延长BE和DC交于G。由△AED≌△ADC,可推∠EGD=∠BAC。再由△EBF≌△CDF,可推∠GDF+∠EBF=180°,所以在四边形GBFD中,∠BFD+∠EGD=∠BFD+∠

等腰三角形经典练习题(有难度)

等腰三角形练习题 一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45° 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180° 得∠A=36° 3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160° 4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数 A B C D F E F E A D B C X x x 2x 2x A B C D E x x 3x 2x 3x 2x 2x A x

设∠A 为x ∠A= 7 180 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x ∠EDC=∠AED -∠C=15° 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=2 1,DE+BC=1, A B C D E x x 180°-2x 30° x -15° x -15° A

求∠ABC 的度数 延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90° 在Rt △DBF 中, BD=21,DF=1 所以∠F =∠1=30° 7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AED 由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1 二、证明题: 8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于 点D 、E 求证:DE=BD+AE 证明△PBD 和△PEA C B A D E P A B C D E

各种等腰三角形难题

各类等腰三角形难题 例1. 在⊿ABC中,AB=AC,且∠A=20°,在为AB上 一点,AD=BC,连接CD. 试求:∠BDC的度数. 分析:题中出现相等的线段,以此为突破口,构造 全等三角形. 解:作∠DAE=∠B=80°,使AE=BA,(点D,E在AC两侧) 连接DE,CE. ∵AE=BA;AD=BC;∠DAE=∠B. ∴⊿DAE≌⊿CBA(SAS),DE=AE;∠DEA=∠BAC=20°. ∠CAE=∠BAE-∠BAC=60°,又AE=AB=AC. ∴⊿AEC为等边三角形,DE=CE;∠DEC=∠AEC-∠DEA=40°. 则:∠CDE=70°;又∠ADE=80°.故∠ADC=150°,∠BDC=30°. 例2.已知,如图:⊿ABC中,AB=AC,∠BAC=20°. 点D和E分别在AB,AC上,且∠BCD=50°,∠CBE=60°. 试求∠DEB的度数.

本题貌似简单,其实不然. 解:过点E作BC的平行线,交AB于F,连接CF交BE于点 G,连接DG.易知⊿GEF,⊿GBC均为等边三角形. ∴∠FEG=∠EFG=60°;∠AFG=140°,∠DFG=40°; ∵∠BCG=50°;∠CBD=60°. ∴∠BDC=50°=∠BCD,则BD=BC=BG;又∠ABE=20°. 故∠BGD=80°,∠DGF=180°-∠BGD-∠FGE=40°. 即∠DGF=∠DFG,DF=DG;又EG=EF;DE=DE. ∴⊿DGE≌⊿DFE(SSS),得:∠DEG=∠DEF=30°. 所以,∠DEB=30°. 例3.已知,等腰⊿ABC中,AB=AC,∠BAC=20°,D和E分 别为 AB和AC上的点,且∠ABE=10°,∠ACD=20°. 试求:∠DEB的度数. 本题相对于上面两道来说,难度又增加了许多.且看我下面的解答.

等腰三角形——公开课教育教学设计

等腰三角形——公开课教学设计

————————————————————————————————作者:————————————————————————————————日期:

《13.3.1 等腰三角形》教学设计 习水八中数学教师:李桂福 教材分析: 本节课是在学生已经学习了三角形的基本概念、全等三角形和轴对称知识的基础上,进一步研究特殊的三角形——等腰三角形,研究等腰三角形的底角、底边上的中线、顶角平分线、底边上的高所具有的性质。 学习目标: 1.探索并证明等腰三角形的两个性质:“等边对等角”、“三线合一”;2.能利用性质证明两个角相等或两条线段相等、垂直; 3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用;感受解题方法的灵活美。 学习重点: 探索并证明等腰三角形的性质。 学习难点: 等腰三角形的性质证明中辅助线的添加,“三线合一”性质的理解。教学方法: 学生动手操作,小组合作、讨论探究,积极展示; 教师启发式教学、引导学生“问题解决”等。 教学用具: 教具:三角板、多媒体设备(ppt)、等腰三角形卡纸等; 学具:三角板、白纸、剪刀等。

教学过程: 一、动手做一做 师:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点? 生:按要求折剪三角形,说出该三角形为等腰三角形。 师:为什么这个图形是等三角形? 生:剪刀剪过的线段相等,根据等腰三角形定义可得。(或者其它不一定准确的回答) 二、小组合作讨论 师:仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗? 生:迅速投入到小组讨论、探索中…… 三、展示成果 师:(讨论结束后)现在请各小组派代表说说你们小组的探究成果,请举手回答。 生:……(各小组代表说出了各自小组不完整的探究成果)…… 师:……(在学生展示成果过程中,鼓励和评价学生的探究成果,并有意识地将两条重要的特征归纳在白板上)……

等腰三角形三线合一典型题型[1]

等腰三角形三线合一专题训练 姓名 例1:如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。 求证:BC=AB+DC。 变1:如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E 是AD边中点。求证:CE⊥BE。 变2:如图,四边形ABCD中,AD∥BC,E是CD上一点,且AE、BE分别平分∠BAD、∠ABC. (1)求证:AE⊥BE;(2)求证:E是CD的中点;(3)求证:AD+BC=AB. 变3:△ABC是等腰直角三角形,∠BAC=90°,AB=AC.⑴若D为BC的中点,过D作DM⊥DN分别交AB、AC于M、N,求证:(1)DM=DN。 ⑵若DM⊥DN分别和BA、AC延长线交于M、N。问DM和DN有何数量关系。 (1)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF交BC于点D. 求证:DE=DF. D C A E (2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC于点D,且D为EF B C E A D M N D C B A M N D C B A

的中点.求证:BE=CF. D B C F A E 利用面积法证明线段之间的和差关系 1、如图,在△ABC中,AB=AC,P为底边BC上的一点,PD⊥AB于D,PE⊥AC于E,?CF⊥AB于F,那么PD+PE与CF相等吗? 变1:若P点在直线BC上运动,其他条件不变,则PD 、PE与CF的关系又怎样,请你作图,证明。 F

F 1、已知等腰三角形的两边长分别为4、9,则它的周长为() A 17 B 22 C 17或22 D 13 根据等腰三角形的性质寻求规律 例1.在△ABC 中,AB=AC ,∠1= 12∠ABC ,∠2=12∠ACB ,BD 与CE 相交于点O ,如图,∠BOC 的大小与∠A 的大小有什么关系? 若∠1=13∠ABC ,∠2=13 ∠ACB ,则∠BOC 与∠A 大小关系如何? 若∠1=1n ∠ABC ,∠2=1n ∠ACB ,则∠BOC 与∠A 大小关系如何? 会用等腰三角形的判定和性质计算与证明 例2.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD?将这个 等腰三角形周长分成15和6两部分, 求这个三角形的腰长及底边长. 利用等腰三角形的性质证线段相等 例3.如图,P 是等边三角形ABC 内的一 点,连结PA 、PB 、PC ,?以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ . (1)观察并猜想AP 与CQ 之间的 大小关系,并证明你的结论. (2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由. 例1、等腰三角形底边长为5cm ,腰上的中线把三角形周长分为差是3cm 的两部分,则腰长为( ) A 、2cm B 、8cm C 、2cm 或8cm D 、不能确定 例2、已知AD 为△ABC 的高,AB=AC ,△ABC 周长为20cm ,△ADC 的周长为14cm ,求AD 的长。 例3、如图,已知BC=3, ∠ABC 和∠ACB 的平分线相交于点O ,OE ∥AB ,OF ∥AC ,求△OEF 的周长。 例4、如图,已知等边 △ABC 中,D 为AC 上中点,延长BC 到E ,使CE=CD ,连接DE ,试说明 DB=DE 。 A C A D A B F C O E

等腰三角形1——公开课教学设计说明

《13.3.1 等腰三角形》教学设计 习水八中数学教师:桂福 教材分析: 本节课是在学生已经学习了三角形的基本概念、全等三角形和轴对称知识的基础上,进一步研究特殊的三角形——等腰三角形,研究等腰三角形的底角、底边上的中线、顶角平分线、底边上的高所具有的性质。 学习目标: 1.探索并证明等腰三角形的两个性质:“等边对等角”、“三线合一”; 2.能利用性质证明两个角相等或两条线段相等、垂直; 3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用;感受解题方法的灵活美。 学习重点: 探索并证明等腰三角形的性质。 学习难点: 等腰三角形的性质证明中辅助线的添加,“三线合一”性质的理解。教学方法: 学生动手操作,小组合作、讨论探究,积极展示; 教师启发式教学、引导学生“问题解决”等。 教学用具: 教具:三角板、多媒体设备(ppt)、等腰三角形卡纸等; 学具:三角板、白纸、剪刀等。

教学过程: 一、动手做一做 师:如图所示,把一长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点? 生:按要求折剪三角形,说出该三角形为等腰三角形。 师:为什么这个图形是等三角形? 生:剪刀剪过的线段相等,根据等腰三角形定义可得。(或者其它不一定准确的回答) 二、小组合作讨论 师:仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗? 生:迅速投入到小组讨论、探索中…… 三、展示成果 师:(讨论结束后)现在请各小组派代表说说你们小组的探究成果,请举手回答。 生:……(各小组代表说出了各自小组不完整的探究成果)…… 师:……(在学生展示成果过程中,鼓励和评价学生的探究成果,并有意识地将两条重要的特征归纳在白板上)……

等腰三角形知识点+经典例题

第一讲等腰三角形 【要点梳理】 要点一、等腰三角形的定义 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一 边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC 为腰,BC为底边,∠A是顶角,∠B、∠C是底角. 2.等腰三角形的作法 已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a. 作法:1.作线段BC=a; 2.分别以B,C为圆心,以b为半径画弧,两弧 相交于点A; 3.连接AB,AC. △ABC为所求作的等腰三角形 3.等腰三角形的对称性 (1)等腰三角形是轴对称图形; (2)∠B=∠C; (3)BD=CD,AD为底边上的中线. (4)∠ADB=∠ADC=90°,AD为底边上的高线. 结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴. 4.等边三角形 三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. 要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B,∠B=∠C=180 2A ?-∠. (2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形. 要点二、等腰三角形的性质 1.等腰三角形的性质 性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的三个内角都相等,并且每个内角都等于60°. 性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”. 2.等腰三角形中重要线段的性质 等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等. 要点诠释:这条性质,还可以推广到一下结论: (1)等腰三角形底边上的高上任一点到两腰的距离相等。

公开课教案(等腰三角形)

12.3.1 等腰三角形 第1课时 花地中学古瑜青 教学内容 本节主要内容是等腰三角形的性质. 教学目标 1.知识与技能 在观察、操作中认识等腰三角形的性质,感受等腰三角形“三线合一”的意义. 2.过程与方法 经历探索等腰三角形性质的过程,掌握其应用方法. 3.情感、态度与价值观 让学生感悟等腰三角形的实际应用价值,激发他们的求知欲. 重、难点与关键 1.重点:等腰三角形的性质. 2.难点:等腰三角形的性质2的应用. 3.关键:借助轴对称变换来研究等腰三角形. 教具准备 剪刀、长方形纸片. 教学方法 采用“情境──探究”式教学方法. 教学过程 一、操作观察,探索新知 【问题探究】 教师叙述:请同学们把一张长方形的纸对折(如课本图14.3─1)剪去一个角,再把它展开,得到的三角形有什么特点? 【学生活动】拿出事先准备好的纸和剪刀,动手操作,然后观察得出结论:“剪刀剪过的两条边是相等的.”

【师生共识】有两条边相等的三角形,叫做等腰三角形,相等的两边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 【媒体使用】投影显示课本图12.3─1和图1. 【教学形式】操作引入,师生互动. 【继续探究】 上面剪出的等腰三角形是轴对称图形吗? 把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,填入下表: 重合的线段 你能发现等腰三角形的性质吗?说一说你的猜想. 【教师活动】操作投影仪,提出探究的问题,引导学生观察,发现. 【学生活动】动手操作、观察,发现重合的线段是AB=AC,BD=CD,底边上的高、顶角的平分线,底边上的中线重合.重合的角是∠B=∠C,∠BAD=∠CAD.?∠ADB=?∠ADC=90°.【媒体使用】投影显示“思考题”和图2. 【形成性质】 性质1:等腰三角形的两个底角相等(简写成“等边对等角”); 重合的角

等腰三角形典型例题练习

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为() A.5cm B.3cm C.2cm D.不能确定 2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论: ①AE=BD ②CN=CM ③MN∥AB 其中正确结论的个数是() A.0B.1C.2D.3 二.填空题(共1小题) 3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于_________. 三.解答题(共15小题) 4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证 DE=DF. 5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.

6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC 是什么三角形并说明理由. 7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE. (1)∠E等于多少度 (2)△DBE是什么三角形为什么 8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD. 9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF. 10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.

解题技巧专题:共顶点的等腰三角形

北师版八年级数学下册 解题技巧专题:共顶点的等腰三角形 ——形成精准思维模式,快速解题 ◆类型一共顶点的等腰直角三角形 1.如图,已知△ABC和△DBE均为等腰直角三角形. (1)求证:AD=CE; (2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由. 2.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD,延长CA 至点E,使AE=AC,延长CB至点F,使BF=BC.连接BD,AD,AF,DF,EF.延长DB 交EF于点N.求证: (1)AF=AD; (2)EF=BD.

◆类型二共顶点的等边三角形 3.如图,△APB与△CDP是两个全等的等边三角形,且P A⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有() A.0个B.1个C.2个D.3个 第3题图第4题图 4.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD,交于点O,则∠AOB的度数为________. 5.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE. (1)△DBC和△EAC全等吗?请说明理由; (2)试说明AE∥BC的理由; (3)如图②,将(1)中动点D运动到边BA的延长线上,其他条件不变,请问是否仍有AE∥BC?证明你的猜想.

参考答案与解析 1.(1)证明:∵△ABC 和△DBE 均为等腰直角三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =90°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE ,∴△ABD ≌△CBE ,∴AD =CE . (2)解:垂直.理由如下:延长AD 分别交BC 和CE 于G 和F .由(1)知△ABD ≌△CBE ,∴∠BAD =∠BCE .∵∠BAD +∠ABC +∠BGA =∠BCE +∠AFC +∠CGF =180°,∠BGA =∠CGF ,∴∠AFC =∠ABC =90°,∴AD ⊥CE . 2.证明:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ABF =180°-∠ABC =135°,∠ACD =∠ACB +∠BCD =135°,∴∠ABF =∠ACD .∵CB =CD ,CB =BF ,∴BF =CD ,∴△ABF ≌△ACD (SAS),∴AF =AD . (2)由(1)知△ABF ≌△ACD ,AF =AD ,∴∠F AB =∠DAC .∵∠BAC =∠BAD +∠DAC =90°,∠EAB =∠EAF +∠F AB =90°,∴∠EAF =∠BAD .∵AE =AC ,AB =AC ,∴AE =AB ,∴△AEF ≌△ABD (SAS),∴EF =BD . 3.D 4.120° 解析:设AC 与BD 交于点H .∵△ACD ,△BCE 都是等边三角形,∴CD =CA ,CB =CE ,∠ACD =∠BCE =60°,∴∠ACD +∠ACB =∠BCE +∠ACB ,即∠DCB =∠ACE ,∴△DCB ≌△ACE ,∴∠CDB =∠CAE .∵∠DCH +∠CHD +∠BDC =180°,∠AOH +∠AHO +∠CAE =180°,∠DHC =∠OHA ,∴∠AOH =∠DCH =60°,∴∠AOB =180°-∠AOH =120°. 5.解:(1)△DBC 和△EAC 全等.理由如下:∵△ABC 和△EDC 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =60°,∠DCE =60°,∴∠BCD =60°-∠ACD ,∠ACE =60°-∠ACD , ∴∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS). (2)由(1)知△DBC ≌△EAC ,∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC . (3)仍有AE ∥BC .证明如下:∵△ABC ,△EDC 为等边三角形,∴BC =AC ,DC =CE ,∠BCA =∠DCE =60°,∴∠BCA +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,CD =CE , ∴△DBC ≌△EAC (SAS),∴∠EAC =∠B =60°.又 ∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .

共顶点的等腰三角形的旋转探索

共顶点的等腰三角形的旋转探索 学习目标:1.学生能认识平面图形关于旋转中心的旋转; 2.学生熟悉旋转的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等; 3.通过本节课探索,学生掌握具有共顶点的等腰三角形与旋转之间的联系,从而利用旋转来转化线段,求线段的长度. 一、复习引入 二、例题与变式探究 例:如图,ABD ?、AEC ?都是等边三角形,BE 和CD 有什么关系? 你能用旋转的性质说明上述关系成立的理由吗?(九年级数学上册第63页第10题) 变式一:如图,△ABD 、△ACE 都是等腰直角三角形,求证:BE=CD. 变式二:如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,求BD 的长.

三、课堂小结: 四、作业布置: 1..如图,△ABC 中,∠ABC =30,AB =6,BC =8,△ACD 是等边三角形,求BD 的长. 2. 如图,四边形ABCD 中,AC 、BD 是对角线, ABC ?是等边三角形,30ADC ∠=,3AD =,5BD =,求四边形ABCD 的面积. 五、教学反思:通过本次微课,对于共本课题是学生学会《旋转》的图形的旋转及性质后,通过一个 课后习题引起的探究,意在通过基教材之根本,挖掘教材中典型,即由共顶点的两个等边三角形,通过旋转的性质可以得到线段之间的关系,进而联想到其它共顶点的等腰三角形是不是也可以通过旋转的性质得到呢?特别是在变式二的探究上是创新的,而且本微课通过动画演示,让学生更加清晰的看到旋转的本质,对学生不仅是直观感受颇深,而且对于旋转性质的理解与掌握甚至是灵活运用都起到良好的引导作用,最后的作业设计更是精心设计,第1小题力求达到巩固,第2小题稍有拓展,旨在培养学生深层次综合思维。

等腰三角形题型总结#(精选.)

B C A D 等腰三角形典型题练 方程思想 1. 如图,在△ABC 中,D 在BC 上, 若AD=BD ,AB=AC=CD , 则∠ABC 的度数为 . 2.如图,△ABC 中,∠A=36°,AB=AC ,BC=BD=BE ,则图中的等腰三角形共有 个。 3.如图,在ΔABC 中,∠ABC =120°,点D 、E 分别在AC 和AB 上,且AE =ED =DB =BC ,则∠A 的度数为______°. 4.某数学兴趣小组开展了一次活动,过程如下: 设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB ,AC 上. 活动一: 如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A 1A 2 为第1根小棒. 数学思考: (1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1. ①θ=_________度; ②若记小棒A 2n -1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,…) 求出此时a 2,a 3 的值,并直接写出a n (用含n 的式子表示). 活动二: 如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. 数学思考: (3)若已经摆放了3根小棒,θ1 =_________,θ2=________, θ3=________;(用含θ的式子表示) (4)若只能..摆放4根小棒,求θ的范围. A 1 A 2 A B C 图乙 A 3 A 4 1 θ 2θ 3θ θ A 1 A 2 A B C A 3 A 4 A 5 A 6 a 1 a 2 a 3 图甲 θ E D C B A

北师大版八年级数学下册解题技巧专题:等腰三角形中辅助线的作法

解题技巧专题:等腰三角形中辅助线的作法 ——形成精准思维模式,快速解题 ◆类型一利用“三线合一”作辅助线 一、已知等腰作垂线(或中线、角平分线) 1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=2,则BC =________. 2.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF.求证:DE=DF. 3.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于点D,E是AD上一点,且EA=EC,连接EB.求证:EB⊥AB. 二、构造等腰三角形

4.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为() A.3 B.4 C.5 D.6 5.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE. ◆类型二巧用等腰直角三角形构造全等 6.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上.求证:DE=DF. ◆类型三等腰(边)三角形中截长补短或作平行线构造全等 7.如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于点D.求证:BC

=AB+CD. 8.如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,且P A=CQ,连接PQ交AC于点D. (1)求证:PD=DQ; (2)若△ABC的边长为1,求DE的长.【方法8】 参考答案与解析 1.4 2.证明:连接AD.∵AB=AC,D是BC的中点,∴∠EAD=∠F AD.在△AED和△AFD

人教版八年级数学上解题技巧专题:等腰三角形中辅助线的作法.docx

初中数学试卷 桑水出品 解题技巧专题:等腰三角形中辅助线的作法 ——形成精准思维模式,快速解题◆类型一利用“三线合一”作辅助线 一、已知等腰作垂线(或中线、角平分线) 1.如图,在△ABC中,AB=AC,AE⊥BE于点E, 且BE=1 2 BC,若∠EAB=20°,则∠BAC= __________. 2.如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E, F. (1)求证:DE=DF; (2)若∠A=90°,图中与DE相等的有哪些线段(不说明理由)? 3.如图,△ABC中,AC=2AB,AD 平分∠BAC交BC 于D,E是AD上一点,且EA=EC,求证:EB⊥AB. 二、构造等腰三角形 4.如图,△ABC的面积为1cm2,AP垂直∠ABC 的平分线BP于P,则△PBC的面积为 ( ) A.0.4cm2 B.0.5cm2 C.0.6cm2 D.0.7cm2 5.如图,已知△ABC是等腰直角三角形,∠A =90°,BD平分∠ABC交AC于点D,CE⊥BD.求证:BD=2CE. ◆类型二巧用等腰直角三角形构造全等 6.(2016·铜仁中考)如图,在△ABC中,AC =BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF. ◆类型三等腰(边)三角形中截长补短或作平行线构造全等 7.如图,已知AB=AC,∠A =108°,BD平分∠ABC交AC于D,求证:BC=AB+CD. 8.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D. (1)求证:PD=DQ; (2)若△ABC的边长为1,求DE的长.

2016年最新等腰三角形和等边三角形知识点和典型例题

新知:等腰三角形 1.等腰三角形的定义: 2.等腰三角形的性质:等边对等角;等腰三角形的三线合一 3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等) 4.等腰三角形的一腰上的高与底边的夹角等于顶角的一半 5.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明) 6.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴 7.等腰三角形的判定: 1.在同一三角形中,有两条边相等的三角形是等腰三角形(定义) 2.在同一三角形中,等角对等边 8.等边三角形定义:三条边都相等的三角形叫做等边三角形 9.等边三角形的性质: ⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。 ⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一) ⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。 ⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一) ⑹等边三角形内任意一点到三边的距离之和为定值(等于其高) 10.等边三角形的判定: ⑴三边相等的三角形是等边三角形(定义) ⑵三个内角都相等(为60度)的三角形是等边三角形 ⑶有一个角是60度的等腰三角形是等边三角形 (4)两个内角为60度的三角形是等边三角形 (5)说明:可首先考虑判断三角形是等腰三角形。 (6)等边三角形的性质与判定理解: 11、三角形中的中位线 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 三角形中位线定理的作用: 等腰三角形的性质应用及判定 例1如图,△ABC中,D、E分别是位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。 常用结论:任一个三角形都有三条中位线,由此有: 结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。 结论2:三条中位线将原三角形分割成四个全等的三角形。

中考数学专题复习教案:共顶点的等腰三角形与全等

共顶点的等腰三角形与全等(专题复习) 一、内容和内容解析 1.内容 基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用. 2.内容解析 本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想. 二、目标和目标解析 1.目标 (1)能根据共顶点的等腰三角形找出全等三角形. (2)能利用等边三角形的性质和判定进行综合运用. (3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略. 2.目标解析 达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件. 达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题. 达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义. 三、教学问题诊断分析 学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生

专题一等腰三角形的存在性问题解题策略

.. 教案课时 等腰三角形的存在性问题解题策略专题一课题目授 教师日年3月72015课日期授娜柳 学生 1 时 00 分时学课授 学科组长复习课型课娜柳 师生活动一、要点归纳等腰三角形的存在性问题是中考数学的热点问题.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验. 二、课前热身厘米的等腰三角形?这样的等腰三角形有多少个?怎样画腰长为5 厘米的等腰三角形?这样的等腰三角形有多少个?怎样画底边长为5 三、例题讲解 轴(如//x),4,直线CM0为原点,点A的坐标为(1,),点C的坐标为(01.在平面直角坐标系内,O,DCM相交于点经过点b为常数)B,且与直线by与点所示)图1.点BA关于原点对称,直线=x+(OD.联结的坐标;的值和点)求bD(1 的坐标;是等腰三角形,求点x轴的正半轴上,若△PODP在)设点(2P 1 图 ;. .. 、不与DAAB、AC上的两个动点(,BC=6,D、E分别是边=如图2.1,在△ABC中,AB=

AC5 DEFG.DE为边,在点A的异侧作正方形B重合),且保持DE//BC,以ABC的面积;(1)试求△DEFG的边长;与BC重合时,求正方形(2)当边FG的函数关系式,并写x,试求y 关于,△ABC与正方形DEFG重叠部分的面积为y3()设AD=x 出定义域;的长.是等腰三角形时,请直接写出AD(4)当△BDG 1 图 )m的中点.P(0,、y轴的正半轴上,M是BCxA的边长为3.如图,已知正方形OABC2,顶点、C 分别在D.PM交AB的延长线于点点除外)是线段OC上一动点(C,直线;m的代数式表示)D(1)求点的坐标(用含的值;APD是等腰三角形时,求m)当△(2 ;. .. 并延长交射上,联结EME在线段AB4,M是AD的中点,动点4.如图1,正方形ABCD的边长为.EG、FGEF的垂线交射线BC于G,联结F线CD于,过M作是等腰三角形;1)求证:△GEF(的取值范围;x的函数关系式,并写出自变量xGEF的面积为y,求y关于(2)设AE=x,△能否成为等边三角形?请说明理由.E运动的过程中,△GEF(3)在点

等腰三角形的性质练习题及答案

等腰三角形的性质练习题及答案 若按边(角)是否相等分类,两边(角)相等的三角形是等腰三角形.等腰三角形是一类特殊三角形,它的两底角相等;等腰三角形是轴对称图形,底边上的高、中线、顶角的平分线互相重合(简称三线合一),特别地,等边三角形的各边相等,各角都为60°.解与等腰三角形相关的问题,全等三角形依然是重要的工具,但更多的是思考运用等腰三角形的特殊性质,这些性质为角度的计算、线段相等的证明、直线位置关系的证明等问题提供了新的理论依据,因此,重视全等三角形的运用,又不囿于全等三角形,善于运用等腰三角形的性质探求新的解题途径. 例题求解 【例1】如图AOB是一钢架,且∠AOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF、FG、GH……添加的钢管长度都与OE相等,则最多能添加这样的钢管根.(山东省聊城市中考题) 思路点拨通过角度的计算,确定添加钢管数的最大值. 注角是几何中最活跃的元素,与角相关的知识异常丰富,在三角形中,角又有独特的等量关系,如三角形内角和定理、内外角关系定理.等腰三角形两底角相等,利用这些定理可以找到角与角之间的“和”、“差”、“倍”、“分”关系. 随着知识的丰富,我们分析问题、解决问题的方法和工具随之增加,因此,在使用什么方法解决问题时,需要综合与选择. 【例2】如图,若AB=AC,BG=BH,AK=KG,则∠BAC的度数为( ) A.30° D.32° C 36° D.40° (武汉市选拔赛试题) 思路点拨图中有很多相关的角,用∠BAC的代数式表示这些角,建立关于∠BAC的方程. 【例3】如图,在△ABC中,已知∠A=90°,AB=AC,D为AC上一点,AE⊥BD于E,延长AE交BC于F,问:当点D满足什么条件时,∠ADB=∠CDF,请说明理由. (安徽省竞赛题改编题) 思路点拨本例是探索条件的问题,可先假定结论成立,逐步逆推过去,找到相应的条件,若∠ADB=∠CDF,这一结论如何用?因∠ADB与∠CDF对应的三角形不全等,故需构造全等三角形,而作顶角的平分线或底边上的高(中线)是等腰三角形中一条常用辅助线.

相关主题
文本预览
相关文档 最新文档